JPS59147844A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPS59147844A
JPS59147844A JP2246883A JP2246883A JPS59147844A JP S59147844 A JPS59147844 A JP S59147844A JP 2246883 A JP2246883 A JP 2246883A JP 2246883 A JP2246883 A JP 2246883A JP S59147844 A JPS59147844 A JP S59147844A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
output
standard voltage
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246883A
Other languages
Japanese (ja)
Inventor
Takeshi Kitahara
剛 北原
Kimitake Sone
曽根 公毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2246883A priority Critical patent/JPS59147844A/en
Publication of JPS59147844A publication Critical patent/JPS59147844A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference

Abstract

PURPOSE:To obtain an optimum air-fuel ratio at all times in a system to control fuel supply volume by a feed-back based on an output of an O2 sensor by changing a standard voltage at the time of the above feed-back control based on an output of a suction air volume sensor. CONSTITUTION:An output signal Vs of an O2 sensor provided at an exhaust air system is inputted in a plus terminal of a comparator 3 via a buffer amplifier 2, while in a minus terminal, a standard voltage Ve from a standard voltage operation circuit 11 is inputted and based on the compared results of both signals Vs and Ve, the fuel supply volume to the engine is controlled via a control unit 4. The standard voltage operation circuit 11 inputs the output signal Va of the suction air volume sensor 16 into a primary lagging circuit 14 via a buffer amplifier 12 and the primary lagging signal Vav to have a fixed time delay of time is inputted in a subtraction circuit 15 via a buffer amplifier 13. Here, it is made to output the standard voltage Ve which is arrived by subtracting K(constant)XVav from the basic standard voltage Veo.

Description

【発明の詳細な説明】 (1)技術分野 本発明はエンジンの排気中の酸素濃度を検出する酸素セ
ンサの出力に基づいてエンジンに供給する燃料量をフィ
ードハック制御する空燃比制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to an air-fuel ratio control device that performs feed-hack control on the amount of fuel supplied to an engine based on the output of an oxygen sensor that detects the oxygen concentration in exhaust gas of the engine.

〔2〕従来技術 従来の空燃比制御装置としては、例えば「NAPS・三
元触媒方式・1978年技術解説書」 (昭和53年8
月日産自動車株式会社発行)11〜1G頁に記載された
ものが知られており、第1図のように示すことができる
。第1図において、1はエンジンの排気中の酸素濃度を
検出する酸素センサであり、理論空燃比で起電力が急変
し過濃混合気側で起電力が高く希薄混合気側で起電力が
低くなる特性を有する。この酸素センサ1の出力信号V
sはバッファアンプ2を介して比較器3のプラス端子に
入力されており、比較器3のマイナス端子には所定の基
準電圧Veが入力されている。この基準電圧Veは酸素
センサ1の出力電圧変動の中間の電圧に設定されている
。したがって、比較器3は、Vs>Veのとき、すなわ
ち混合気が理論空燃比より濃いとき、H信号(ハイレヘ
ル信号)をコントロールユニット4に出力し、Vs<V
eのとき、すなわち混合気が理論空燃比−より薄いとき
、L信号(ローレベル49 % )をコントロールユニ
ット4に出力する。コントロールユニット4は、この比
較器3からの信号に基づいてエンジンに供給する燃料量
を増量あるいは減量補正し、この増量あるいは減量補正
の割合は一定である。したがって、この空燃比制御装置
は、バッファアンプ2、比!’3dit3およびコント
ロールユニット4で構成されるフィードバンク制御回路
5が酸素センサ1の出力に基づいてエンジンに供給する
燃料量を一定割合で増量補正あるいは減量補正を行うこ
とにより、混合気を理論空燃比付近に制御している。
[2] Prior art As a conventional air-fuel ratio control device, for example, "NAPS, three-way catalyst system, 1978 technical manual" (August 1978)
The one described on pages 11 to 1G (published by Nissan Motor Co., Ltd.) is known, and can be shown as shown in FIG. In Figure 1, numeral 1 is an oxygen sensor that detects the oxygen concentration in the engine's exhaust gas.The electromotive force changes suddenly at the stoichiometric air-fuel ratio, and the electromotive force is high when the mixture is rich and low when the mixture is lean. It has the following characteristics. The output signal V of this oxygen sensor 1
s is input to the plus terminal of the comparator 3 via the buffer amplifier 2, and a predetermined reference voltage Ve is input to the minus terminal of the comparator 3. This reference voltage Ve is set to an intermediate voltage of output voltage fluctuations of the oxygen sensor 1. Therefore, when Vs>Ve, that is, when the air-fuel mixture is richer than the stoichiometric air-fuel ratio, the comparator 3 outputs an H signal (high level signal) to the control unit 4, and Vs<Ve.
e, that is, when the air-fuel mixture is thinner than the stoichiometric air-fuel ratio -, an L signal (low level 49%) is output to the control unit 4. The control unit 4 increases or decreases the amount of fuel supplied to the engine based on the signal from the comparator 3, and the rate of this increase or decrease correction is constant. Therefore, this air-fuel ratio control device has buffer amplifier 2, ratio! A feed bank control circuit 5 composed of a 3dit 3 and a control unit 4 increases or decreases the amount of fuel supplied to the engine at a fixed rate based on the output of the oxygen sensor 1, thereby adjusting the air-fuel mixture to the stoichiometric air-fuel ratio. Nearby control.

しかしながら、このような従来の空燃比制御装置にあっ
ては、酸素センサの出力に基づいてエンジンに供給する
燃料量を一定割合で増量補正あるいは減量補正する構成
となっていたため、酸素センサの応答時間(酸素センサ
出力の50%応答時間)が立上り時と立下り時で異なる
場合には、フィードバンク制御する空燃比の制御中心が
理論空燃比からずれてしまう不具合がすなわち、酸素セ
ンサの応答時間と温度との関係は、第2図に示すように
、立上り応答時間Trが酸素センサの温度の低下に伴っ
て少し長くなるのに対して、立下り応答時間Tfは温度
の低下に伴って甚だしく長くなる。したがって、立下り
応答時間Tfは立上り応答時間Trに比べて温度の低下
により長くなり、立下り応答時間Tfと立上り応答時間
Trの差は温度の低下に伴って大きくなる。その結果、
例えば、第3図aに示すように空燃比が変化したとする
と、高温時には酸素センサの出力は第3図すに示すよう
に変化し、この出力電圧が基準電圧V。
However, in such conventional air-fuel ratio control devices, the amount of fuel supplied to the engine is increased or decreased at a fixed rate based on the output of the oxygen sensor, so the response time of the oxygen sensor is If the (50% response time of the oxygen sensor output) is different between the rise and fall, there is a problem in which the control center of the air-fuel ratio for feedbank control deviates from the stoichiometric air-fuel ratio. As shown in Figure 2, the relationship with temperature is that while the rise response time Tr becomes slightly longer as the temperature of the oxygen sensor decreases, the fall response time Tf becomes significantly longer as the temperature decreases. Become. Therefore, the falling response time Tf becomes longer than the rising response time Tr due to a decrease in temperature, and the difference between the falling response time Tf and the rising response time Tr increases as the temperature decreases. the result,
For example, if the air-fuel ratio changes as shown in FIG. 3A, the output of the oxygen sensor changes as shown in FIG. 3S at high temperatures, and this output voltage becomes the reference voltage V.

と交叉した時点で理論空燃比より濃いか薄いかを判断し
ているため、高温時の空燃比は第3図dのように判断さ
れる。ここで高温時の酸素センサの立上り応答時間Tr
、と立下り応答時間Tf、とはほぼ等しく、高温時にお
ける空燃比判断は、応答時間(Tr#Tf)の遅れはあ
るが、実際の空燃比変化を忠実に表している。一方、低
温時には、酸素センサの立上り応答時間Tr2はあまり
変化しないが、立下り応答時間Tr2は長くなり、酸素
センサの出力は第3図Cに示すように変化する。したが
って、低温時の空燃比は第3図eのように判断され、理
論空燃比より濃いと判断している時間が実際の空燃比の
濃い時間より長くなる。そして、これらの空燃比判断に
基づいて一定割合で増量補正あるいは減量補正を行うと
、高温時には理論空燃比が空燃比の制御中心となるが、
低温時には、例えば、第4図aのような酸素センサの出
力により、空燃比が濃いと判断され、第4図すに示すよ
うに空燃比の制御中心が薄い方へずれてしまう。したが
って、燃費の増加およびエンジン出力の低下を生しるこ
ととなり、特に三元触媒を使用している車両にあっては
、三元触媒の転化率が悪化するという不具合が生じる。
Since it is determined whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio at the point where the air-fuel ratio intersects with , the air-fuel ratio at high temperature is determined as shown in FIG. 3d. Here, the rise response time Tr of the oxygen sensor at high temperature is
, and the falling response time Tf are almost equal, and the air-fuel ratio judgment at high temperatures faithfully represents the actual air-fuel ratio change, although there is a delay in the response time (Tr#Tf). On the other hand, at low temperatures, the rise response time Tr2 of the oxygen sensor does not change much, but the fall response time Tr2 becomes longer, and the output of the oxygen sensor changes as shown in FIG. 3C. Therefore, the air-fuel ratio at low temperatures is determined as shown in FIG. 3e, and the time during which it is determined that the air-fuel ratio is richer than the stoichiometric air-fuel ratio is longer than the time when the air-fuel ratio is actually richer. Then, if the amount is increased or decreased at a fixed rate based on these air-fuel ratio judgments, the stoichiometric air-fuel ratio becomes the main control point for the air-fuel ratio at high temperatures.
At low temperatures, for example, it is determined that the air-fuel ratio is rich based on the output of the oxygen sensor as shown in FIG. Therefore, this results in an increase in fuel consumption and a decrease in engine output, and particularly in vehicles using a three-way catalyst, a problem arises in that the conversion rate of the three-way catalyst deteriorates.

〔3〕発明の目的 そこで、本発明は、酸素センサの出力電圧と比較して空
燃比が理論空燃比より濃いか薄いかを判断する基準電圧
を、酸素センサの温度と関係のある吸気量に基づいて変
化させることにより、空燃比の制御中心を理論空燃比と
することを目的としている。
[3] Purpose of the Invention Therefore, the present invention provides a reference voltage for determining whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio by comparing the output voltage of the oxygen sensor with the intake air amount, which is related to the temperature of the oxygen sensor. The purpose is to set the control center of the air-fuel ratio to the stoichiometric air-fuel ratio by changing the air-fuel ratio based on the air-fuel ratio.

〔4〕発明の構成 本発明の空燃比制御装置は、エンジンの排気中の酸素濃
度を検出し電圧信号を出力する酸素センサと、酸素セン
サの出力電圧を所定基準電圧と比較してエンジンへの燃
料の供給量を増量補正あるいは減量補正するフィードバ
ック制御回路と、を備えた空燃比制御装置において、エ
ンジンの吸入空気量を検出する吸気量センサを設け、前
記フィードバック制御回路が該吸気量センサの出力に基
づいて前記基準電圧を変化させることにより、空燃比の
制御中心を理論空燃比とするものである。
[4] Configuration of the Invention The air-fuel ratio control device of the present invention includes an oxygen sensor that detects the oxygen concentration in the exhaust gas of an engine and outputs a voltage signal, and a system that compares the output voltage of the oxygen sensor with a predetermined reference voltage and controls the engine. An air-fuel ratio control device comprising: a feedback control circuit for increasing or decreasing the amount of fuel supplied; an intake air amount sensor that detects the intake air amount of the engine; By changing the reference voltage based on , the control center of the air-fuel ratio is set to the stoichiometric air-fuel ratio.

〔5〕実施例 以下図面に従って本発明の詳細な説明する。[5] Examples The present invention will be described in detail below with reference to the drawings.

第5〜′7図は本発明の一実施例を示す図であり、本実
施例の説明にあたり第1図に示した従来例と同一構成部
分には同一符号を付す。
5 to '7 are diagrams showing one embodiment of the present invention, and in explaining this embodiment, the same components as those of the conventional example shown in FIG. 1 are given the same reference numerals.

まず、構成を説明すると、第5図において、酸素センサ
1の出力信号Vsはバッファアンプ2を介して比較器3
のプラス端子に入力されており、比較器3のマイナス端
子には基準電圧演算回路11からの基準電圧Veが入力
されている。
First, to explain the configuration, in FIG.
The reference voltage Ve from the reference voltage calculation circuit 11 is input to the minus terminal of the comparator 3.

基準電圧演算回路11は、バッファアンプ12.13、
−次遅れ回路14および減算回路15から構成されてお
り、基準電圧演算回路11にはエンジンの吸入空気量を
検出する吸気量センサ(例えばエアフロメータ)16か
らの吸気量信号Vaが入力されている。この吸気量信号
Vaはバッファアンプ12を介して一次遅れ回路14に
入力され、−次遅れ回路14ば抵抗R1とコンデンサC
1により構成されている。したがって、−次遅れ回路1
4は吸気量信号Vaの一次遅れ信号Vavをバッファア
ンプ13を介して減算回路15に出力する。
The reference voltage calculation circuit 11 includes buffer amplifiers 12, 13,
- It is composed of a next delay circuit 14 and a subtraction circuit 15, and the reference voltage calculation circuit 11 receives an intake air amount signal Va from an intake air amount sensor (for example, an air flow meter) 16 that detects the intake air amount of the engine. . This intake air amount signal Va is input to the first-order lag circuit 14 via the buffer amplifier 12, and the second-order lag circuit 14 is connected to a resistor R1 and a capacitor C.
1. Therefore, −th lag circuit 1
4 outputs the first-order delayed signal Vav of the intake air amount signal Va to the subtraction circuit 15 via the buffer amplifier 13.

減算回路15はオペアンプOP1、抵抗R2、R6、R
4、R9および基準電圧発生器L■、により構成され、
基準電圧発生器L V 、は所定の基本基準電圧Veo
を出力している。したがって、減算回路15は基本基準
電圧VeoからKXVa v(Kは定数〉を減算した基
準電圧Ve、ずなわちVe=Veo−KVavを比較器
3のマイナス端子に出力し、この基準電圧Veは、第6
図に示すように、基本基準電圧Veoから吸気量Vav
の増加に伴って一定割合にで小さくなる。
The subtraction circuit 15 includes an operational amplifier OP1, resistors R2, R6, and R
4, R9 and a reference voltage generator L,
The reference voltage generator L V , generates a predetermined basic reference voltage Veo
is outputting. Therefore, the subtraction circuit 15 outputs a reference voltage Ve obtained by subtracting KXVav (K is a constant) from the basic reference voltage Veo, that is, Ve=Veo−KVav, to the negative terminal of the comparator 3, and this reference voltage Ve is 6th
As shown in the figure, from the basic reference voltage Veo to the intake air amount Vav
decreases at a constant rate as .

そして、比較器3は、酸素センサ1の出力電圧Vsが基
準電圧Veよりも高いとき、すなわちVs>Veのとき
、H信号をコントロールユニット4に出力し、■S〈V
eのときL信号をコントロールユニット4に出力すル。
Then, when the output voltage Vs of the oxygen sensor 1 is higher than the reference voltage Ve, that is, when Vs>Ve, the comparator 3 outputs an H signal to the control unit 4, and ■S<V
When e, an L signal is output to the control unit 4.

コントロールユニット4は、エンジン回転数信号と吸気
量信号に基づいて基本燃料供給量を演算し、次いでこの
基本燃料供給量に各種補正係数を乗じて最終燃料供給量
を決定している。
The control unit 4 calculates the basic fuel supply amount based on the engine rotational speed signal and the intake air amount signal, and then multiplies the basic fuel supply amount by various correction coefficients to determine the final fuel supply amount.

そして、この補正係数には水温増量補正係数、始動およ
び始動後増量補正係数等があり、その中に上記酸素セン
サ1からの出力信号に基づいて決定される補正係数αが
ある。コントロールユニノl−4は、比較器3からの信
号、すなわち酸素センサ1からの信号に基づいて増量補
正するか、減量補正するかを判別し、補正係数αの値を
決定している。
The correction coefficients include a water temperature increase correction coefficient, a start-up and post-start increase correction coefficient, and among these, there is a correction coefficient α determined based on the output signal from the oxygen sensor 1. The control unit 1-4 determines whether to perform an increase correction or a decrease correction based on the signal from the comparator 3, that is, the signal from the oxygen sensor 1, and determines the value of the correction coefficient α.

なお、上記バッファアンプ2、比較器3、基準電圧演算
回路11およびコントロールユニット4はフィードバン
ク制御回路I7を構成している。
The buffer amplifier 2, comparator 3, reference voltage calculation circuit 11, and control unit 4 constitute a feed bank control circuit I7.

次に作用を説明する。Next, the action will be explained.

一般に、燃焼による発生熱量は吸気量に関係しており、
特に空燃比がフィードバンク制御され一定に保たれるエ
ンジンにあっては、吸気量が決まれば発生熱量が決定さ
れ排気温度が決定される。したがって、吸気量を検出す
れば排気温度を知ることができ、高温の排気温度を直接
測定しなくても、簡易かつ安価に排気温度を知ることが
できる。しかしながら、吸気はその流量が検出されてか
ら燃焼を経て排気となるまでに時間的遅れがあり、また
、吸気量の瞬時値はスロットル弁の開閉により大きく変
動するが、排気温度は緩慢な変化である。したがって、
吸気量の瞬時値はその時の排気温度を表示するものでは
なく、その−次遅れ信号がその時の排気温度とほぼ近似
したものとなる。その結果、−次遅れ回路14により出
力される吸気量信号Vaの一次遅れ信号Vavは排気温
度、すなわち酸素センサ1の温度を表示することとなる
。したがって、減算回路15は酸素センサ1の温度に基
づいて基準電圧Veを変化させて出力していることとな
り、基準電圧Veは、式(Ve=Ve。
Generally, the amount of heat generated by combustion is related to the amount of intake air.
Particularly in engines where the air-fuel ratio is kept constant through feedbank control, once the amount of intake air is determined, the amount of heat generated is determined and the exhaust temperature is determined. Therefore, the exhaust gas temperature can be determined by detecting the intake air amount, and the exhaust gas temperature can be determined easily and inexpensively without directly measuring the high temperature exhaust gas temperature. However, there is a time delay between the time when the flow rate of the intake air is detected and the time it undergoes combustion and becomes the exhaust gas, and while the instantaneous value of the intake air amount fluctuates greatly depending on the opening and closing of the throttle valve, the exhaust temperature changes only slowly. be. therefore,
The instantaneous value of the intake air amount does not indicate the exhaust gas temperature at that time, but its second-order delayed signal is approximately the same as the exhaust temperature at that time. As a result, the first-order lag signal Vav of the intake air amount signal Va output by the -order lag circuit 14 indicates the exhaust temperature, that is, the temperature of the oxygen sensor 1. Therefore, the subtraction circuit 15 changes and outputs the reference voltage Ve based on the temperature of the oxygen sensor 1, and the reference voltage Ve is expressed by the formula (Ve=Ve).

−KVav)からも明らかなように、温度が高くなるに
従って小さくなる。すなわち、第7図aのような空燃比
の変化に対して、酸素センサ1の出力信号Vsは、高温
時では、第7図すに示すように、立上り応答時間Trと
立下り応答時間T’fは等しく、低温時では、第7図C
に示すように、立上り応答時間Trよりも立下り応答時
間TfO方が長くなる。そして、高温時の基準電圧Ve
は酸素センサ1の出力変動の中間の値であるため、実際
の空燃比変化から酸素センサ1の出力信号が基準電圧V
eと交叉するまでの時間、すなわちみかけの立上りおよ
び立下り応答時間Tro、TfOと立上りおよび立下り
応答時間Tr−Trとは、第7図すに示すように、等し
いが、低温時においては、第7図Cに示すように、基準
電圧Veが高くなるため、みかけの応答時間Tro、、
Tfoと応答時間Tr、Tfは違ったものとなる。しか
し、みかけの立上り応答時間Troとみかけの立下り応
答時間Tfoとは等しくなる。すなわち、みかけの立上
り応答時間〒「0とみかけの立下り応答時間T f o
とは酸素センサ1の温度変化に対して第8図に示すよう
にほとんど等しくなる。したがって、低温時においても
、空燃比判断を、みかけの応答時間Tro、Tfoの時
間遅れはあっても、実際の空燃比変化を正確に判断し、
希薄側あるいは過濃側にずれて判断することはない。
-KVav), it decreases as the temperature increases. That is, in response to a change in the air-fuel ratio as shown in FIG. 7a, the output signal Vs of the oxygen sensor 1 has a rise response time Tr and a fall response time T' at high temperatures, as shown in FIG. f is equal, and at low temperature, Fig. 7C
As shown in the figure, the falling response time TfO is longer than the rising response time Tr. Then, the reference voltage Ve at high temperature
is an intermediate value of the output fluctuations of the oxygen sensor 1, so the output signal of the oxygen sensor 1 is equal to the reference voltage V from the actual air-fuel ratio change.
The time it takes to cross e, that is, the apparent rise and fall response times Tro, TfO, and the rise and fall response times Tr-Tr are equal, as shown in Figure 7, but at low temperatures, As shown in FIG. 7C, since the reference voltage Ve increases, the apparent response time Tro,
Tfo and response times Tr and Tf are different. However, the apparent rise response time Tro and the apparent fall response time Tfo are equal. That is, the apparent rising response time 〒"0 and the apparent falling response time T f o
are almost equal to each other as shown in FIG. 8 with respect to the temperature change of the oxygen sensor 1. Therefore, even at low temperatures, the air-fuel ratio can be determined accurately, even though there is a delay in the apparent response time Tro, Tfo, and the actual air-fuel ratio change can be accurately determined.
The judgment will not deviate to the lean side or the rich side.

その結果、空燃比の制御中心を、常に理論空燃比とする
ことができ、燃費を節約することができるとともにエン
ジン出力を向上させることができる。特に三元触媒を使
用している車両においては、三元触媒の転化率を向上さ
せることができる。
As a result, the control center of the air-fuel ratio can always be set to the stoichiometric air-fuel ratio, making it possible to save fuel consumption and improve engine output. Particularly in vehicles using a three-way catalyst, the conversion rate of the three-way catalyst can be improved.

〔6〕効果 本発明によれば、酸素センサの出力電圧と比較して空燃
比が理論空燃比より濃いか薄いかを判断する基準電圧を
、酸素センサの温度をよく表示する吸気量に基づいて変
化させることができるので、簡易かつ安価に、空燃比の
制御中心を常に理論空燃比とすることができる。したが
って、燃費を節約することができるとともにエンジン出
力を向上させることができ、特に、三元触媒を使用した
車両においては三元触媒の転化率を向上させることがで
きる。
[6] Effects According to the present invention, the reference voltage for determining whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio by comparing with the output voltage of the oxygen sensor is set based on the intake air amount that clearly indicates the temperature of the oxygen sensor. Since it can be changed, the control center of the air-fuel ratio can always be set to the stoichiometric air-fuel ratio easily and inexpensively. Therefore, fuel consumption can be saved and engine output can be improved, and in particular, in a vehicle using a three-way catalyst, the conversion rate of the three-way catalyst can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は従来の空燃比制御装置を示す図であり、第
1図はその概略構成図、第2図はその酸素センサの温度
と応答時間との関係を示すグラフ、第3図および第4図
はその作用説明図、第5〜7図は本発明の空燃比制御装
置を示す図であり、第5図はその構成図、第6図はその
基準電圧と吸気量との関係を示すグラフ、第7図はその
作用説明図、第8図は酸素センサの温度とみかけの応答
時間の関係を示すグラフである。 l −−−酸素センサ、 16− ・−吸気量センサ、 17−−−−フィードバンク制御回路。 特許出願人      日産自動車株式会社代理人弁理
士 有我軍一部
1 to 4 are diagrams showing a conventional air-fuel ratio control device, with FIG. 1 being a schematic configuration diagram thereof, FIG. 2 being a graph showing the relationship between the temperature and response time of the oxygen sensor, and FIGS. Fig. 4 is an explanatory diagram of its operation, Figs. 5 to 7 are diagrams showing the air-fuel ratio control device of the present invention, Fig. 5 is its configuration diagram, and Fig. 6 shows the relationship between its reference voltage and intake air amount. 7 is an explanatory diagram of its operation, and FIG. 8 is a graph showing the relationship between the temperature of the oxygen sensor and the apparent response time. l ---Oxygen sensor, 16---Intake air amount sensor, 17--Feed bank control circuit. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Agagun Part

Claims (1)

【特許請求の範囲】[Claims] エンジンの排気中の酸素濃度を検出し電圧信号を出力す
る酸素センサと、酸素センサの出力電圧を所定基準電圧
と比較してエンジンへの燃料の供給量を増量補正あるい
は減量補正するフィードバック制御回路と、を備えた空
燃比制御装置において、エンジンの吸入空気量を検出す
る吸気量センサを設け、前記フィードバック制御回路が
該吸気量センサの出力に基づいて前記基準電圧を変化さ
せるようにしたことを特徴とする空燃比制御装置。
An oxygen sensor that detects the oxygen concentration in the engine exhaust gas and outputs a voltage signal, and a feedback control circuit that compares the output voltage of the oxygen sensor with a predetermined reference voltage and corrects the amount of fuel supplied to the engine to increase or decrease. An air-fuel ratio control device comprising: an intake air amount sensor for detecting an intake air amount of the engine; and the feedback control circuit changes the reference voltage based on the output of the intake air amount sensor. Air-fuel ratio control device.
JP2246883A 1983-02-14 1983-02-14 Air-fuel ratio control device Pending JPS59147844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246883A JPS59147844A (en) 1983-02-14 1983-02-14 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246883A JPS59147844A (en) 1983-02-14 1983-02-14 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPS59147844A true JPS59147844A (en) 1984-08-24

Family

ID=12083535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246883A Pending JPS59147844A (en) 1983-02-14 1983-02-14 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPS59147844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294535A (en) * 1989-05-09 1990-12-05 Mitsubishi Motors Corp Air-fuel ratio control method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294535A (en) * 1989-05-09 1990-12-05 Mitsubishi Motors Corp Air-fuel ratio control method for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3030040B2 (en) Lambda control method and device
JPH0230915A (en) Catalyst degradation judging device for internal combustion engine
JPH084570A (en) Fuel-quantity adjusting controller for internal combustion engine
JPS6397852A (en) Air-fuel ratio control device for internal combustion engine
KR100240970B1 (en) Method for controlling mixture compositions of fuel and air for internal combustion engine
JPH01125533A (en) Fuel injection controller for internal combustion engine
JPS63120835A (en) Air-fuel ratio control device for internal combustion engine
JPS63195351A (en) Air-fuel ratio control device for internal combustion engine
JPH03134241A (en) Air-fuel ratio controller of internal combustion engine
JPS5916095B2 (en) Kuunenhichiyouseisouchi
JPS59147844A (en) Air-fuel ratio control device
JP2643038B2 (en) Three-way catalyst deterioration determination method
JPS59147845A (en) Air-fuel ratio control device
JP2668027B2 (en) Engine air-fuel ratio adjustment method
JPS6312855A (en) Air-fuel ratio controller for internal combustion engine
JPH02230934A (en) Air-fuel ratio control device for internal combustion engine
JP2535007B2 (en) Engine air-fuel ratio control device
JPH06288265A (en) Air-fuel ratio control method and device for gas engine
JPH0718361B2 (en) Air-fuel ratio controller for internal combustion engine
JPS63134835A (en) Air-fuel ratio control device for internal combustion engine
JPH0192548A (en) Air-fuel ratio control device for internal combustion engine
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0718364B2 (en) Air-fuel ratio controller for internal combustion engine
JP2692430B2 (en) Air-fuel ratio control device for internal combustion engine