JPS6223546A - Electronically controlled fuel injection device for internal-combustion engine - Google Patents

Electronically controlled fuel injection device for internal-combustion engine

Info

Publication number
JPS6223546A
JPS6223546A JP16108185A JP16108185A JPS6223546A JP S6223546 A JPS6223546 A JP S6223546A JP 16108185 A JP16108185 A JP 16108185A JP 16108185 A JP16108185 A JP 16108185A JP S6223546 A JPS6223546 A JP S6223546A
Authority
JP
Japan
Prior art keywords
acceleration
correction coefficient
fuel injection
setting means
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16108185A
Other languages
Japanese (ja)
Inventor
Seiichi Otani
大谷 精一
Akihiko Araki
荒木 昭彦
Shinpei Nakaniwa
伸平 中庭
Naomi Tomizawa
富澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP16108185A priority Critical patent/JPS6223546A/en
Publication of JPS6223546A publication Critical patent/JPS6223546A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a response characteristic of acceleration in an engine, by providing a comparing means which compares outputs from an acceleration correction coefficient setting means and a slow acceleration correction coefficient setting means to output a larger correction coefficient as a correction signal. CONSTITUTION:A device provides an acceleration correction coefficient setting means E and a slow acceleration correction coefficient setting means F which respectively output correction coefficients in accordance with an engine operative condition in that time through an acceleration detecting means C and a slow acceleration detecting means D. A correction coefficient comparing means G, comparing outputs from the both setting means E, F, outputs a larger correction coefficient as a correction signal. A pulse output means H outputs a fuel injection pulse in which a fuel injection signal, output from an injection quantity setting means A, is corrected on the basis of the correction signal output from the comparing means G. In this way, the device, avoiding a hesitation in an engine when it is slow accelerated, enables a response characterristic of acceleration in the engine to be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の電子制御燃料噴射装置に係り、詳
しくは、加速運転時におけるヘジテーション(もたつき
感)を軽減させる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and more particularly to a device for reducing hesitation (feeling of sluggishness) during acceleration operation.

〈従来の技術〉 内燃機関の電子制御燃料噴射装置では、一般に吸入空気
流量測定窓(エアフローメータ)によって検出された吸
入空気流量と、点火コイルの点火信号等から検出される
機関回転数とにより燃料のノ、(本噴射量を定め、この
基本噴射量に相応する基本噴射0吟を適宜補正して得た
燃キ=1噴射信号を例えば点火信号に同期させるなどし
て機関の回転周期に比例した周期で′市磁式燃料噴射ブ
tの駆動回路に出力して噴射弁を駆動させることにより
、最適ら腎の燃料を機関に供給するようにしている。
<Prior art> In an electronically controlled fuel injection system for an internal combustion engine, fuel injection is generally performed based on the intake air flow rate detected by an intake air flow rate measuring window (air flow meter) and the engine speed detected from the ignition signal of the ignition coil. (The main injection amount is determined, and the fuel = 1 injection signal obtained by appropriately correcting the basic injection amount corresponding to this basic injection amount is proportional to the rotation period of the engine, for example by synchronizing it with the ignition signal. By outputting the output to the drive circuit of the city magnet type fuel injection valve t to drive the injection valve at the cycle, the optimal amount of fuel is supplied to the engine.

ところで、加速運転時に見られるヘジテーションは、吸
気絞弁より一上流の吸気通路の一箇所に燃料を噴射する
ようにしたシングルポイントインジェクションシステム
において多く見られ、燃料噴射弁から燃焼室に至る通路
の長さが長くなるほど顕著に現れる。これは、噴射され
た燃料が実際に燃焼室に到達するまでの時間が長くかか
るためであり、斯るヘジテーションを軽減させるために
機関の加速運転を検出したときに燃料噴射量を増量補正
するようにしていた。
By the way, hesitation that occurs during acceleration is often seen in single-point injection systems in which fuel is injected at one point in the intake passage upstream from the intake throttle valve, and the hesitation that occurs during acceleration is often seen in single-point injection systems that inject fuel at one point in the intake passage upstream from the intake throttle valve. The longer the time, the more noticeable it becomes. This is because it takes a long time for the injected fuel to actually reach the combustion chamber, and in order to reduce this hesitation, the fuel injection amount is increased when engine acceleration is detected. I was doing it.

ところが、吸気絞弁の開度に応答する信号を出力するス
ロワ]・ル開度センサの分解能は0.18deg程度で
あり、このスロットル開度センサの出力が供給すれるコ
ントロールユニット(マイクロコンピュータ)の分解能
を1.6degとしてノイズによる誤作動を回避するよ
うにしていた。第5図に加速判定限界の特性因を示す。
However, the resolution of the throttle opening sensor that outputs a signal responsive to the opening of the intake throttle valve is approximately 0.18 deg, and the output of the throttle opening sensor is The resolution was set to 1.6 degrees to avoid malfunctions due to noise. FIG. 5 shows the characteristic causes of the acceleration judgment limit.

〈発明が解決しようとする問題点〉 ところが、このような従来の加速増量補正機構を備えた
電子制御燃料噴射装置においては、コントロールユニッ
トのタイム分解能30麿Sの間に吸気絞弁の開度が1.
6degより大きく変化しなければ加速状yEであると
判断しない。従って、吸気絞弁が全開から全開に到達す
るまでに1.5sec (80/ L、SX 30m5
)より長くかかった場合は加速と看做されないために、
例えば第5図に破線で示すように全閉から全開までに1
.5〜7 secも要する緩加速運転時には所期の加速
増量が実行されないので燃料の供給遅れによるヘジテー
ションが発生してしまうというような問題点があった。
<Problems to be Solved by the Invention> However, in an electronically controlled fuel injection system equipped with such a conventional acceleration increase correction mechanism, the opening degree of the intake throttle valve is 1.
Unless the change is greater than 6 degrees, it is not determined that the acceleration state yE is present. Therefore, it takes 1.5 seconds for the intake throttle valve to go from fully open to fully open (80/L, SX 30m5
) so that it is not considered an acceleration if it takes longer than
For example, as shown by the broken line in Figure 5, from fully closed to fully open,
.. During slow acceleration operation, which requires 5 to 7 seconds, the expected increase in acceleration is not carried out, so there is a problem in that hesitation occurs due to a delay in fuel supply.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、急加速及び通常の加速時はもとより、従来で
は検出されなかった緩加速状態のもとにおいても所期の
加速増量を確実に実行させて電子制御燃料噴射装置を鮪
えた内燃機関の加速時のへジテーションを軽減して加速
応答性を向上させることを目的としている。
The present invention has been made in view of these conventional problems, and is capable of achieving a desired increase in acceleration not only during sudden acceleration and normal acceleration, but also under slow acceleration conditions that were not detected in the past. The purpose is to improve acceleration response by reliably executing the fuel injection system and reducing hesitation during acceleration of an internal combustion engine equipped with an electronically controlled fuel injection system.

く問題点を解決するための手段〉 斯る目的を達成するために本発明では第1図に示すよう
に、機関運転状態に応じた燃料噴射信号を所定の周期で
出力する噴射量設定手段Aと、吸気通路に介装した吸気
絞弁の開度に応答する信号を出力するスロットル開度セ
ンサBと、単位時間当りのスロットル開度センサBの出
力の変化量から機関の加速運転を検出する加速検出手段
Cと、前記単位時間より長い所定時間当りのスロットル
開度センサBの出力の変化量に基づいて機関の緩加速運
転を検出する緩加速検出手段りと、前記加速検出手段C
及び緩加速検出手段りを介して機関の加速運転及び緩加
速運転を検出したときにそのときの機関運転状態に応じ
た補正係数をそれぞれ出力する加速補正係数設定手段及
Eび緩加速補正係数設定手段Fと、該加速補正係数設定
手段E及び緩加速補正係数設定手段Fの出方を比較して
大きいほうの補正係数を補正信号として出力する比較手
段Gと、前記噴射量設定手段Aから出方された燃料噴射
信号を前記比較手段Gから出力された補iE信壮に基づ
いて補正した燃料噴射パルスを出力するパルス出力手段
Hと、該パルス出力手段Hから出力されたパルスに応じ
て電磁式の燃料噴射弁Iを駆動する駆動手段Jとを設け
た構成としている。
Means for Solving the Problems> In order to achieve such an object, the present invention provides an injection amount setting means A that outputs a fuel injection signal according to the engine operating state at a predetermined cycle, as shown in FIG. and a throttle opening sensor B that outputs a signal responsive to the opening of an intake throttle valve installed in the intake passage, and detects the acceleration operation of the engine from the amount of change in the output of the throttle opening sensor B per unit time. an acceleration detection means C; a slow acceleration detection means for detecting a slow acceleration operation of the engine based on the amount of change in the output of the throttle opening sensor B per a predetermined time longer than the unit time; and the acceleration detection means C.
and acceleration correction coefficient setting means E and slow acceleration correction coefficient setting means for outputting correction coefficients according to the engine operating state at that time when acceleration operation and slow acceleration operation of the engine are detected through the slow acceleration detection means E and the slow acceleration detection means. means F, a comparison means G for comparing the outputs of the acceleration correction coefficient setting means E and the slow acceleration correction coefficient setting means F, and outputting the larger correction coefficient as a correction signal, and an output from the injection amount setting means A. pulse output means H for outputting a fuel injection pulse corrected based on the supplementary iE signal output from the comparison means G; The structure includes a driving means J for driving the fuel injection valve I of the formula.

〈作用〉 斯る構成とすることにより、急加速及び通常の加速は勿
論のこと、従来では検出できなかった緩加速をも確実に
検出して所期の加速増量を実行させ、これにより、電子
制御燃料噴射装置を備えた内燃機関の加速時のへジテー
ションを軽減して加速応答性を向上させるようにしてい
る。
<Operation> With such a configuration, not only sudden acceleration and normal acceleration, but also slow acceleration, which could not be detected in the past, can be reliably detected and the desired acceleration increase can be executed. The present invention is designed to reduce hesitation during acceleration of an internal combustion engine equipped with a controlled fuel injection device, thereby improving acceleration response.

〈実施例〉 以下に本発’51の実施例を説明する。<Example> An example of this invention '51 will be described below.

第2図は本発明に係る内燃機関の電子制御燃料噴射装置
の一実施例を示すブロック図である。この図において、
点火コイルlの出力である点火0壮(回転数信号)、エ
アフローメータ2の出力である吸入空気流IIシ信号、
水温センサ3の出力である冷却水温度信号、スロットル
開度センサ4の出力である絞弁開度信号及び燃料温度セ
ンサ5の出力である燃料温度信号がマイクロコンピュー
タを内蔵したコントロールユニット6に供給され、該コ
ントロールユニット6はこれらの各種信号に基づいて後
述するように設定された噴射パルスを燃料噴射弁7の駆
動回路8に出力する。
FIG. 2 is a block diagram showing an embodiment of an electronically controlled fuel injection device for an internal combustion engine according to the present invention. In this diagram,
The ignition coil I outputs the ignition zero (rotation speed signal), the airflow meter 2 outputs the intake air flow II signal,
A cooling water temperature signal that is the output of the water temperature sensor 3, a throttle valve opening signal that is the output of the throttle opening sensor 4, and a fuel temperature signal that is the output of the fuel temperature sensor 5 are supplied to a control unit 6 that has a built-in microcomputer. Based on these various signals, the control unit 6 outputs an injection pulse set as described later to the drive circuit 8 of the fuel injection valve 7.

即ち、コントロールユニット6は機関の定常運転時は機
関回転数Nと吸入空気流量Qとにより燃料の基本噴射量
に相応するパルス[1]をもつ基本パルスTp  (=
KXQ/N)を設定し、これを冷却水温度等により補正
して得たパルス巾の燃料噴射パルスTiを駆動回路8に
出力して燃料噴射弁7を駆動することにより1点火値号
に同期した燃料噴射を行なう。
That is, during steady operation of the engine, the control unit 6 generates a basic pulse Tp (=
KXQ/N) is set, and a fuel injection pulse Ti with a pulse width obtained by correcting this by the cooling water temperature, etc. is output to the drive circuit 8 to drive the fuel injection valve 7, thereby synchronizing with one ignition value number. Perform the fuel injection.

一方、スロットル開度センサ4により検出される絞弁開
度αの単位時間(例えば30+ss)当りの変化量Δα
が所定値(例えば1.6deg)より大きいときは加速
と判定して後述する増量補正を行ない、これにより急加
速及び通常の加速時の加速応答性を確保する。又、単位
時間当りの変化量Δαか所定値より小さい場合であって
も前記単位時間より長い所定時間(例えば150 as
)当りの変化量Aαが所定値(例えば1.8deg)よ
り大きいときは緩加速であると判断して後述する増量補
正を実行して緩加速時のへジテーションを減少させると
いうように、スロットル開度センサ4とコントロールユ
ニット6とで加速検出手段C及び緩加速検出手段りが構
成される。
On the other hand, the amount of change Δα per unit time (for example, 30+ss) in the throttle valve opening α detected by the throttle opening sensor 4
is larger than a predetermined value (for example, 1.6 degrees), it is determined that acceleration is occurring, and an increase correction described later is performed, thereby ensuring acceleration responsiveness during sudden acceleration and normal acceleration. Further, even if the amount of change Δα per unit time is smaller than a predetermined value, the predetermined time longer than the unit time (for example, 150 as
) is larger than a predetermined value (for example, 1.8 deg), it is determined that the acceleration is slow, and the increase correction described later is executed to reduce hesitation during slow acceleration. The opening sensor 4 and the control unit 6 constitute an acceleration detection means C and a slow acceleration detection means.

次に、コントロールユニット6による具体的な燃料噴射
制御を第3図のフローチャートに従って説明する。第3
図において、Slでは点火コイル1からの点火信号によ
って得られる機関回転数Nと、エアフローメータ2から
の信号によって得られる吸入空気流量Qと、スロットル
開度センサ4からの開度信号による吸気絞弁の開度αを
入力し、ステップS2に進んで基本噴射量に相応する基
本パルスTp  (=KXQ/N)を演算する。
Next, specific fuel injection control by the control unit 6 will be explained according to the flowchart of FIG. 3. Third
In the figure, Sl indicates the engine speed N obtained from the ignition signal from the ignition coil 1, the intake air flow rate Q obtained from the signal from the air flow meter 2, and the intake throttle valve based on the opening signal from the throttle opening sensor 4. The opening degree α is input, and the process proceeds to step S2, where a basic pulse Tp (=KXQ/N) corresponding to the basic injection amount is calculated.

次に、ステップS3では現在の絞弁開度αと単位時間(
30ms)前の絞弁開度α0とに基づいてそのときの加
速度Aαを算出してステップS4に進み、この加速度Δ
αに応答する加速補正係@KACCをMAPから読み取
り、ステップS5に進む。第5図に加速検出の限界を示
す。
Next, in step S3, the current throttle valve opening α and the unit time (
30ms) The current acceleration Aα is calculated based on the previous throttle valve opening α0, and the process proceeds to step S4, where this acceleration Δ
The acceleration correction coefficient @KACC responsive to α is read from the MAP, and the process proceeds to step S5. Figure 5 shows the limits of acceleration detection.

ステップS5では前記単位時間(30ms)より長い所
定時間(150ms)当りの加速度Aαを前記同様にし
て算出し、この加速度Aαに応答する緩加速補正係数K
ACCSをステップS6においてMAPから読み取る。
In step S5, the acceleration Aα per predetermined time (150ms) longer than the unit time (30ms) is calculated in the same manner as described above, and the slow acceleration correction coefficient K responds to this acceleration Aα.
The ACCS is read from the MAP in step S6.

第4図に緩加速検出の限界を示す。尚、この場合はコン
トロールユニット6が加速検出手段C及び緩加速検出手
段りとして機能する。
Figure 4 shows the limits of slow acceleration detection. In this case, the control unit 6 functions as the acceleration detection means C and the slow acceleration detection means.

又、ステップS7では前記加速補正係数KACCと緩加
速補正係数KAGCSとを比較して大きいほうの補正係
数をパルス出力手段Hに出力し、ステップS8又はS9
にて噴射量設定手段Aから出力された基本噴射パルスT
Pに上記補正係数(KACC又はKACCS )を乗算
して燃料噴射パルスTiを演算し、出力する。尚、この
場合はコントロールユニット6がパルス出力手段Hとし
て機能する。
Further, in step S7, the acceleration correction coefficient KACC and the slow acceleration correction coefficient KAGCS are compared, and the larger correction coefficient is outputted to the pulse output means H, and in step S8 or S9.
The basic injection pulse T output from the injection amount setting means A at
A fuel injection pulse Ti is calculated by multiplying P by the above correction coefficient (KACC or KACCS) and output. In this case, the control unit 6 functions as the pulse output means H.

因に、前記補正係数KACC及びKAC:O9は、Δα
及び水温センサ4の出力の増加にともなって増大しつつ
Nの増加にともなって減少するが、燃料温度センサ5の
出力の増加にともなって減少する特性を有する。又、加
速検出手段C及び緩加速検出手段りにおいて加速又は緩
加速のいずれでもないと判断されたとき、つまり、定常
正転であると判断されたときは前記補正係数KACC及
びKACC9のいずれもが1″となるので基本噴射パル
スTPが燃料噴射パルスTi として出力されるが、こ
の場合においても水温センサ3及び燃料温度センサ5の
出力に応じて補正することが望まれる。
Incidentally, the correction coefficients KACC and KAC:O9 are Δα
It has a characteristic that it increases as the output of the water temperature sensor 4 increases and decreases as the N increases, but decreases as the output of the fuel temperature sensor 5 increases. Further, when it is determined by the acceleration detection means C and the slow acceleration detection means that there is neither acceleration nor slow acceleration, that is, when it is determined that steady normal rotation is occurring, both of the correction coefficients KACC and KACC9 are 1'', the basic injection pulse TP is output as the fuel injection pulse Ti. However, even in this case, it is desirable to correct it according to the outputs of the water temperature sensor 3 and the fuel temperature sensor 5.

上記実施例では加速時に噴射パルスの巾を増大補正する
場合について説明しているが、割込パルスによる加速増
量を行なう場合にも本発明を適用できることは詳述する
までもない。
Although the above embodiment describes the case where the width of the injection pulse is corrected to increase during acceleration, it goes without saying that the present invention can be applied to the case where the width of the injection pulse is increased during acceleration.

〈発明の効果〉 以上説明したように本発明によれば、吸気絞弁の開度の
変化状態を従来同様に巾位峙間毎に検出して加速運転さ
れているか否かを判定しつつ、この単位時間よりも長い
所定時間毎にも吸気絞弁開度の変化状yンを検出して緩
加速状態であるか否かを判定しているために、急加速時
の応答性を損なうことなく緩加速を的確に検出して所定
の加速増品を実行できるために、従来見られていた緩加
速時のへジテーションを回避して機関の加速応答性を向
−1ニさせることができる。
<Effects of the Invention> As explained above, according to the present invention, the state of change in the opening of the intake throttle valve is detected for each width interval as in the conventional case, and it is determined whether or not accelerating operation is being performed. Since changes in the intake throttle valve opening are detected at predetermined time intervals longer than this unit time to determine whether or not the state is in a slow acceleration state, responsiveness during sudden acceleration may be impaired. Since it is possible to accurately detect slow acceleration and execute the specified acceleration increase, it is possible to avoid the conventional hesitation during slow acceleration and improve the engine's acceleration response. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示すブロック図、第3図は同じく
制御ルーチンを示すフローチャート、第4図は緩加速の
検出限界を示すコントロールユニットのタイム限界能と
分解源との特性図、第5図は加速の検出限界を示すコン
トロールユニットのタイム限界能と分解f七との関係図
である。
Fig. 1 is a block diagram showing the configuration of the present invention, Fig. 2 is a block diagram showing the configuration of an embodiment of the present invention, Fig. 3 is a flowchart showing the control routine, and Fig. 4 is the detection limit of slow acceleration. FIG. 5 is a characteristic diagram between the time limit capability of the control unit and the resolution source showing the detection limit of acceleration. FIG.

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に応じた燃料噴射信号を所定の周期で出力
する噴射量設定手段と、吸気通路に介装した吸気絞弁の
開度に応答する信号を出力するスロットル開度センサと
、単位時間当りのスロットル開度センサの出力の変化量
から機関の加速運転を検出する加速検出手段と、前記単
位時間より長い所定時間当りのスロットル開度センサの
出力の変化量に基づいて機関の緩加速運転を検出する緩
加速検出手段と、前記加速検出手段及び緩加速検出手段
を介して機関の加速運転及び緩加速運転を検出したとき
にそのときの機関運転状態に応じた補正係数をそれぞれ
出力する加速補正係数設定手段及び緩加速補正係数設定
手段と、該加速補正係数設定手段及び緩加速補正係数設
定手段の出力を比較して大きいほうの補正係数を補正信
号として出力する比較手段と、前記噴射量設定手段から
出力された燃料噴射信号を前記比較手段から出力された
補正信号に基づいて補正した燃料噴射パルスを出力する
パルス出力手段と、該パルス出力手段から出力されたパ
ルスに応じて電磁式の燃料噴射弁を駆動する駆動手段と
、を備えてなる内燃機関の電子制御燃料噴射装置。
an injection amount setting means that outputs a fuel injection signal according to the engine operating state at a predetermined cycle; a throttle opening sensor that outputs a signal responsive to the opening of an intake throttle valve installed in the intake passage; acceleration detecting means for detecting accelerated operation of the engine from the amount of change in the output of the throttle opening sensor; A slow acceleration detection means for detecting, and an acceleration correction for outputting a correction coefficient according to the engine operating state at that time when acceleration operation and slow acceleration operation of the engine are detected through the acceleration detection means and the slow acceleration detection means. a coefficient setting means and a slow acceleration correction coefficient setting means; a comparison means for comparing the outputs of the acceleration correction coefficient setting means and the slow acceleration correction coefficient setting means and outputting a larger correction coefficient as a correction signal; and the injection amount setting means. pulse output means for outputting a fuel injection pulse that is obtained by correcting the fuel injection signal output from the comparison means based on the correction signal output from the comparison means; An electronically controlled fuel injection device for an internal combustion engine, comprising: a drive means for driving an injection valve.
JP16108185A 1985-07-23 1985-07-23 Electronically controlled fuel injection device for internal-combustion engine Pending JPS6223546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16108185A JPS6223546A (en) 1985-07-23 1985-07-23 Electronically controlled fuel injection device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16108185A JPS6223546A (en) 1985-07-23 1985-07-23 Electronically controlled fuel injection device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6223546A true JPS6223546A (en) 1987-01-31

Family

ID=15728260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16108185A Pending JPS6223546A (en) 1985-07-23 1985-07-23 Electronically controlled fuel injection device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6223546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246428A (en) * 1987-03-31 1988-10-13 Hitachi Ltd Control unit for internal combustion engine
JPH0219630A (en) * 1988-07-07 1990-01-23 Mitsubishi Motors Corp Fuel injection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827840A (en) * 1981-08-10 1983-02-18 Mitsubishi Electric Corp Electronic air-fuel ratio control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827840A (en) * 1981-08-10 1983-02-18 Mitsubishi Electric Corp Electronic air-fuel ratio control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246428A (en) * 1987-03-31 1988-10-13 Hitachi Ltd Control unit for internal combustion engine
JPH0219630A (en) * 1988-07-07 1990-01-23 Mitsubishi Motors Corp Fuel injection device

Similar Documents

Publication Publication Date Title
JPS582444A (en) Air-fuel ratio control
JPS6223546A (en) Electronically controlled fuel injection device for internal-combustion engine
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JPS62253936A (en) Electronically controlled fuel injection equipment for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6245950A (en) Electronic control fuel injection device for car internal combustion engine
JPH0246777B2 (en)
JPS63186936A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0452450Y2 (en)
JPH0744748Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0252103B2 (en)
JPH0517398Y2 (en)
JPS639654A (en) Fuel injection controller for internal combustion engine
JPS61255237A (en) Electronically controlled fuel injector for internal-combustion engine
JPS6035148A (en) Air-fuel ratio control device
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS6123845A (en) Air-fuel ratio controller
JPS60230533A (en) Fuel feeding apparatus for internal-combustion engine
JPS61286551A (en) Air-fuel ratio controller
JPH0416621B2 (en)
JPS61185649A (en) Control device for engine
JPS62191639A (en) Device for controlling air fuel ratio for electronically controlled fuel injection type internal combustion engine
JPH0385345A (en) Transitional fuel compensation