JPS5984571A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPS5984571A
JPS5984571A JP57194716A JP19471682A JPS5984571A JP S5984571 A JPS5984571 A JP S5984571A JP 57194716 A JP57194716 A JP 57194716A JP 19471682 A JP19471682 A JP 19471682A JP S5984571 A JPS5984571 A JP S5984571A
Authority
JP
Japan
Prior art keywords
boron
oxide film
gate oxide
implanted
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194716A
Other languages
Japanese (ja)
Other versions
JPH0554268B2 (en
Inventor
Akihiro Komori
小森 昭宏
Akinori Matsuo
章則 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP57194716A priority Critical patent/JPS5984571A/en
Publication of JPS5984571A publication Critical patent/JPS5984571A/en
Publication of JPH0554268B2 publication Critical patent/JPH0554268B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form the high-speed COMS of low threshold value by a method wherein a gate oxide film is thinly formed and ion implantation of boron is performed twice. CONSTITUTION:An N type well 2 and a field SiO2 film 3 for element isolation are formed on one main surface side of a P type silicon substrate 1. After a mask 4 and an underlayer of SiO2 film 5 have been removed by performing an etching, whole surface is oxidized by heat, and a gate oxide film 6 of 750Angstrom and another relatively thick gate oxide film 6 are grown on the whole element region. Then, p type impurity such as an ion beam of boron is irradiated, boron is ion-implanted through the gate oxide film 6, and a boron-implanted region 8 is formed directly below the above boron-implanted part. Then, an etching is performed on an SiO2 using polysilicon 9 and 10 and a field SiO2 film 3, the gate oxide film 6 located on element regions C and D is completely removed, and the whole surface is oxidized by heat. As a result, a gate oxide film 11 of 500Angstrom in thickness and another relatively thick gate oxide film 11 are grown on the element regions C and D. P type impurities such as boron, for example, are ion-implanted on the substrate side through a thin SiO2 film 11 using an ion beam 13. As a result, boron 14 is double-implanted superposing on the boron implanted region 8 located on the element regions C and D.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置t(以下、工Cと略丁。)
及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device T (hereinafter referred to as TE C).
and its manufacturing method.

近年、OM OB (Complementary M
etalOXide Sem1aonductor  
)型の](fPROM−(Electrically 
Programmable Read OnlyMθm
ory )の開発が行なわれている。この棟のCMOB
型EPROMとして、各M08FEfTのゲート電極t
1層目のポリシリコンで形成すると共に、そのゲート酸
化膜の膜押紮列えげ5ooXと1000Aとの2種類と
し、前者は高速FIIiT用、後者葡高耐圧化FET用
として用するものが提案芒れている。しかしこの構造で
は、0MO8化する場合には、ゲート酸化膜厚1ooo
XのFITのしきい値電圧ヶ低めに制御する1こめのイ
オン打込み用のマスク?追加しなけnばならず、このた
めに製造工数が増えることになる。他方、ゲート電mk
1層目のポリシリコン層で形成したFITのゲート酸化
膜fur略800″Aとし、ゲート電極?2層目のポリ
シリコン層で形成し7を曲のFE!Tのゲート酸化膜厚
を略1200Xとしたものが知られている。この場合に
は、厚いゲート酸化膜〜のFETのしきい値電圧を低く
するのに上n己と同僚のマスク?追加する必要があって
製造が困難となり、かつその高耐圧化自体も容易ではな
い。
In recent years, OM OB (Complementary M
etalOXide Sem1aonductor
) type](fPROM-(Electrically
Programmable Read Only Mθm
ory) is being developed. CMOB of this building
As a type EPROM, the gate electrode t of each M08FEfT
The first layer is made of polysilicon, and the gate oxide film has two types: 5ooX and 1000A.The former is proposed for use in high-speed FIIIT, and the latter is used in high-voltage FETs. It's awned. However, in this structure, when converting to 0MO8, the gate oxide film thickness is 1ooo
A mask for the first ion implantation that controls the FIT threshold voltage of X to be low? n must be added, which increases the number of manufacturing steps. On the other hand, the gate voltage mk
The gate oxide film fur of the FIT formed with the first polysilicon layer is approximately 800"A, and the gate oxide film fur of the gate electrode is approximately 1200"A. In this case, in order to lower the threshold voltage of the FET with a thick gate oxide film, it is necessary to add a mask, which makes manufacturing difficult. Moreover, increasing the voltage resistance itself is not easy.

従って、木兄−の目的に、製造工程?簡略化すると同時
にしきい値゛電圧の制御が容易である工〇及びその製造
方法?提供することにある。
Therefore, what is the manufacturing process for the purpose of the tree brother? A process that is simple and at the same time allows easy control of the threshold voltage and its manufacturing method? It is about providing.

以下、本発明10MO8型BPROMに通用した実施レ
リケ図面について詳細に説明する。
Hereinafter, a detailed description will be given of the implementation drawings that are applicable to the 10MO8 type BPROM of the present invention.

本例によるEPROM1その製造プロセスに沿って説明
する。
The manufacturing process of the EPROM 1 according to this example will be explained.

1す第1図の如く、P型シリコン基板1の一生面側に、
公知の牛導体製造技術に従ってN型ウェル2、素子分離
用のフィールド5102膜3ケ所定パターンに形成する
。図中の4はこのフィール下5102膜勿泗択酸化技術
で形成する際に用いる耐酸化マスク(窒化シリコン)で
ある。フィールド5102膜3によって、冒耐圧化MI
S FET用の累子領域A、メモリ用の素子領域B、0
M08i構成するNチャネルM工5FET及びPチャネ
ルM工5FET用の素子領域C及びDが夫々分離芒れる
1. As shown in FIG. 1, on the whole surface side of the P-type silicon substrate 1,
An N-type well 2 and three field 5102 films for element isolation are formed in a predetermined pattern according to a known conductor manufacturing technique. 4 in the figure is an oxidation-resistant mask (silicon nitride) used when forming the 5102 film under this field by selective oxidation technology. The field 5102 film 3 increases the pressure resistance of MI.
S FET resistor area A, memory element area B, 0
Element regions C and D for the N-channel M5FET and the P-channel M5FET constituting M08i are separated, respectively.

次いで第2図の如く、マスク4及び下地の8102i5
hエツチングで除去しに後に全I]iIt熱飯化し、厚
87.5OAと比較的厚いゲート酸化膜6勿全累子領域
に成長8ぜる。
Next, as shown in Figure 2, mask 4 and base 8102i5
After removal by etching, all I]iIt is heated and a relatively thick gate oxide film 6 of 87.5 OA is grown in the entire lattice region.

次いで第3図の如く、全面にP型不純物、圀えばボロン
のイオンビーム7i75KeVの、エネルギー、2X1
0”/c4のドーズ童で照射し、ゲート酸化膜6盆通し
てボロンtイオン打込みしてその直下にボロン注入領域
8葡形成する。このボロン打込みによって、ゲート酸化
膜6盆用いるM工5FETのしきい値電圧は0.5v程
度と低めに制両芒nる。
Next, as shown in Fig. 3, an ion beam of 7i75KeV of P-type impurity, in other words boron, is applied to the entire surface, energy 2X1.
Irradiation is performed with a dose of 0"/c4, and boron t ions are implanted through the gate oxide film 6 trays to form a boron implanted region 8 directly under it. By this boron implantation, the M-type 5FET using the gate oxide film 6 trays is The threshold voltage is set to be low, about 0.5V.

次いで第4図の如く、化学的気相成長技術で盆山iVc
成長させた不純物ドープド(低抵抗)ポリシリコン?エ
ツチングでパターニングし、素子領域A及びBのゲート
酸化膜6上に1層目ポリシリコンからなるゲート電t!
9、フローティングゲートJmlOi夫々形底する。
Next, as shown in Figure 4, Bonsan iVc was formed using chemical vapor deposition technology.
Grown impurity-doped (low resistance) polysilicon? After patterning by etching, a gate electrode t! made of the first polysilicon layer is placed on the gate oxide film 6 in the device regions A and B.
9. Floating gates JmlOi each have a shaped bottom.

次いで第5図の如く、ポリシリコン9及び10とフィー
ルド810g族3にマスクとしてSin、のエンチング
7行ない、素子領域0及びDのゲート酸化膜6ン完全に
除去する。
Next, as shown in FIG. 5, polysilicon 9 and 10 and field 810g group 3 are etched seven times with Sin as a mask, and gate oxide film 6 in device regions 0 and D is completely removed.

仄いて第6図の如く、全面ン熱酸化することによって、
系子穎域C及びD VC膜厚500Aと比軟的薄いケー
ト酸化膜11i成長させる。素子領域Aにおいては、ゲ
ート酸化膜6の両側に膜厚5(1)入のSin、膜11
が同時に形Iiy、さ扛、かつ各ポリシリコン層9及び
11の表面には厚さ100OAの5in2膜12が成長
する。
As shown in Figure 6, by thermally oxidizing the entire surface,
A relatively thin cate oxide film 11i with a VC film thickness of 500A is grown in the system columen region C and D. In the element region A, a Si film 11 with a thickness of 5(1) is formed on both sides of the gate oxide film 6.
At the same time, a 5in2 film 12 having a thickness of 100 OA is grown on the surface of each polysilicon layer 9 and 11.

次いで第7図の如く、全面にP型不糾物、列えばボロン
のイオンビーム13’、(30KeVのエネルギー、4
 X 10” / ctAのドーズ甜で照射し、薄い5
to2[11r通して基板側にボロンケイオン打込みす
る。これによって、素子領域C及びD17Cに上記した
ボロン注入領域8と重ねてボロン14が打込’Eflる
(二重打込み)ことになり、ボロン濃度が高くなる。こ
のボロンの二重打込みで、ゲート酸化Milk用いるM
工5PETのしきい値電圧が0.5V程度と低くなるよ
うに制御する。この低しぎい値′屯圧r得るには、51
02膜11により打込みボロンが食わnる現象?考慮す
る必をがあ、67)K、Eli0211rA11下1c
i上記二直打込みにJ:vボロンが高張度に打込”ft
lてbるために、采ロンが食わnるの盆充分に補償し、
光分なボロン濃度に保持するごとができる。
Next, as shown in FIG.
Irradiate with a dose of 10"/ctA, and
Boron silicon ions are implanted into the substrate side through to2[11r. As a result, boron 14 is implanted into the element regions C and D17C overlapping the boron implanted region 8 described above (double implantation), increasing the boron concentration. With this boron double implant, M using gate oxidation milk
Step 5: The threshold voltage of PET is controlled to be as low as about 0.5V. To obtain this low threshold value, 51
Is there a phenomenon where the implanted boron is eaten away by the 02 film 11? Must be considered, 67) K, Eli0211rA11 lower 1c
i J: v Boron is implanted with high tension in the above two straight implants”ft
In order to protect you, I will fully compensate you for your loss.
It is possible to maintain the boron concentration at a certain level.

次いで第8図の如く、化学的気、44J成表技術によつ
て277層目不純物ドープド低抵抗ポリシリコン紮全面
に成長8せ、これ孕エンチングでパターニングして素子
領域B、C!、Dに2層目ポリシリコンのコントロール
ゲートti15.0MO8の各ケー)’i極16.17
奮宍り形成する。第8図には、こ扛らの各ゲート電極2
マスクとして下地の5i021FJ 11.12tエツ
チングし、更にコントロールゲートma+5下のフロー
ティングゲート10及び8102膜6ケエツチング(瓜
ね切り)し1こ状態が示もれている。なお、第7図にボ
したボロンの2重打込み領域(8+14)はm8図では
十印18で示している。
Next, as shown in FIG. 8, the 277th layer of impurity-doped low-resistance polysilicon is grown on the entire surface using chemical vapor deposition and 44J deposition techniques, and is patterned by etching to form device regions B, C! , D is the second layer polysilicon control gate ti15.0 MO8 each case) 'i pole 16.17
Strive to form. In FIG. 8, each of these gate electrodes 2
The underlayer 5i021FJ 11.12t is etched as a mask, and the floating gate 10 and 8102 film 6 under the control gate ma+5 are etched (melon cut). The boron double implantation region (8+14) shown in FIG. 7 is indicated by a cross mark 18 in the m8 diagram.

次いで第9図の如く、全曲を戦く熱酸化してシリコン及
びポリシリコンの表面にs10xl1M19.20葡成
長δぜる。
Next, as shown in FIG. 9, thermal oxidation is performed on the entire surface of the silicon and polysilicon to form s10xl1M19.20 crystals.

欠いて第10図の如く、公知のイオン打込み技や11に
より、谷ゲート″RL極rマスクの一部として用−てN
型不縄′m(けりえはリン)、P型不軸物(レリえはボ
ロン)を父互にイオンす]込みする。これによって、紮
子鋼域A、B、Oにソース又はドレイン領域としてのN
 型拡散領域21及び22.23及び24.25及び2
6r形成し、かつ素子領域りにソース又はドレインの領
域としてのP+型拡散領域27及び28紫形成する。
As shown in FIG.
Incorporate a type-unwired substance (kerie is phosphorus) and a P-type axial substance (relie is boron) into each other. This allows N to be used as a source or drain region in the steel regions A, B, and O.
Mold diffusion regions 21 and 22.23 and 24.25 and 2
6r is formed, and P+ type diffusion regions 27 and 28 are formed as source or drain regions in the element region.

次いで1Al1図の如く、化学的り構成長技術で全面に
付着せしめたリンシリケートガラス膜29?フオトエツ
チングで加工して各コンタクトホール音間け、更に真空
蒸看孜術で付着せしめたアルミニウム牙フォトエツチン
グで加工して上記各フンタクトホール内に被眉芒扛窺各
アルミニウム配線30.31.32r形成する。
Next, as shown in Fig. 1Al1, a phosphosilicate glass film 29 is deposited on the entire surface using chemical deposition technology. Aluminum wires 30, 31. are processed by photo etching between each contact hole, and aluminum wires 30.31. 32r is formed.

以上のプロセスによって、次の4棹類のMISFET’
(z有する(II!MO8型EP’ROMが作成anる
Through the above process, the following four types of MISFET'
(Z has (II! MO8 type EP'ROM is created.

MO8Iニア50Aと比叔的厚いゲート酸化膜6r有し
、かつチャネル部に低濃度のボロンがドープδnた高耐
圧、低しきい値電圧(o、5V )(7)NチャネルM
ISFET MO8mニア5QAと比載的摩いゲート酸化膜r有し、
フローティングゲート10及びコントロールゲート15
忙有する2層ポリシリコンゲート構造の低しきめ値メモ
リ素子。
MO8I near 50A, has a relatively thick gate oxide film 6r, and has a channel part doped with low concentration of boron δn, high breakdown voltage, low threshold voltage (o, 5V) (7) N channel M
ISFET MO8mnear 5QA and specific gate oxide film r,
Floating gate 10 and control gate 15
A low-threshold memory device with a two-layer polysilicon gate structure.

MOS2 : 500Aと比較的薄いゲート酸化膜11
ケ有し、チャネル部にボロンが高濃度にドープちれ、M
OS3と高速の0M0Sケ構成テるNチャオ・ルMIS
FIiliT0MO83:500Aと比較的薄いゲート
酸化膜11’z有し、チャネル部にボロンが高濃度にド
ープさfL、MOS2と高速の0M0Bf構成下る低し
きい値電圧のPチャネルMISF]flT。
MOS2: 500A and relatively thin gate oxide film 11
The channel part is heavily doped with boron, and M
OS3 and high speed 0M0S configuration N Chao Lu MIS
FIiliT0MO83: A P-channel MISF with a relatively thin gate oxide film 11'z of 500A, a channel portion heavily doped with boron, fL, a high-speed 0M0Bf configuration with MOS2, and a low threshold voltage]flT.

上記した如く、不実施タリによれば、1層目ポリシリコ
ンヶゲートとし、−比叔的埋Aゲート酸化腹2有し、チ
ャネル部に低濃度のボロンがドープされたMO8I及び
メモリ素子に共rこ低しきい値電圧7示すと共に、尚耐
圧を示すものとなる。こnば、ゲート酸化膜を逃択的に
〃くすると同時に、ボロンのイオン打込みr一度たけ行
なっているπめVCゼj睨性艮〈実現でさる。能力、2
層目ポリシリコンケゲートとし、比戦的薄込ゲート畷化
映を有し、かつチャネル部に高濃度のボロンがドープ烙
れたMOS3に工って、低しきい値で高速のCMOB′
f作成することができる。こnは、ゲート酸化膜勿選択
的に博くシ、かつボロンのイオン打込みに2度重ねて行
なうからである。   ′このように、各棟のMOSの
製造にマスクの追加なしに簡略に行なえると共に、そn
らのしきいf1u電圧もボロンの選択的打込みで容易に
制御することができ、しかも高密度に谷素子を作成でき
る。
As mentioned above, according to the non-implemented version, the first layer is a polysilicon gate, has a comparatively buried A gate oxide layer 2, and the channel portion is doped with a low concentration of boron. This shows a low threshold voltage 7 and also shows a withstand voltage. This time, the gate oxide film was made selectively thinner, and at the same time boron ion implantation was performed once. ability, 2
A low threshold, high-speed CMOB' is fabricated using a MOS3 layered polysilicon gate with a comparatively thin gate structure and a high concentration of boron doped in the channel part.
f can be created. This is because the gate oxide film is of course selectively expanded and the boron ion implantation is performed twice. 'In this way, MOS manufacturing for each building can be easily carried out without adding masks, and
The threshold f1u voltage can also be easily controlled by selective implantation of boron, and valley elements can be formed with high density.

なお、上6己のhaにおいてu 、@ M 08のゲー
ト酸化膜の11!41すに上記に限られることになく、
様々に変化6ゼてj:い。また、上記の各牛尋体領域の
導1!型r浬タイプに変候してもよい。更に、本発明は
gFROM以外にも、筒劇圧、低しきめ値′電圧、高速
の各化性r有するMI EIF ETからなる工C一般
1/i:通用可能である。
In addition, in the upper 6 ha, u, 11!41 of the gate oxide film of @M08 is not limited to the above,
Various changes 6zetej: Yes. Also, the guide 1 of each of the above-mentioned beef body areas! It may change to a type R type. Furthermore, the present invention can be applied not only to the gFROM but also to a general 1/i: technology consisting of an MI EIFET having various characteristics such as cylinder dynamic pressure, low threshold voltage, and high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3凶、第4図、第5図、第6図、第
7図、第8図、第9図、第1θ図及び第11図は本発明
の実施列によるEEPROM69製造方法紮工柳11れ
に示す各断面図でめる。 なお、図面に示す符号にお−て、6・・・比rw的厚い
ゲート酸化膜、7及び13・・・ボロンのイオンビーム
、8.14及び18・・・ボロン打込み領域、9及び1
0・・・1層目ポリシリコンゲート、11・・・比較的
薄いゲート酸化膜、15.16及び17・・・2層目ポ
リシリコンゲート、MoB2・・・高耐圧、低しきい値
電圧のNチャネルM工5FET、MO8m・・・2層ポ
リシリコン構造のメモリ累子、MoB2・・・0MO8
用のNチャネルM工5PET、MO83・・・0MO8
用の低しきh値電圧のPチャネルM工5FET。
Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 1θ, and Figure 11 are according to the implementation sequence of the present invention. EEPROM 69 Manufacturing Method 11 The cross-sectional views shown in Figure 1 are shown. In addition, in the reference numerals shown in the drawings, 6...relatively thick gate oxide film, 7 and 13... boron ion beam, 8.14 and 18... boron implantation region, 9 and 1
0...First layer polysilicon gate, 11...Relatively thin gate oxide film, 15.16 and 17...Second layer polysilicon gate, MoB2...High breakdown voltage, low threshold voltage N-channel M5FET, MO8m...2-layer polysilicon structure memory resistor, MoB2...0MO8
N channel M engineering 5PET, MO83...0MO8
P-channel M-type 5FET with low h-value voltage for use.

Claims (1)

【特許請求の範囲】 l、第1のポリシリコン層からなるゲート電極を有する
第1のM工S FETと、第2のポリシリコン層からな
るゲート電極r有する第20M工5FETとが共通の半
導体基体に設けらル、前記第1のM工SF]1IiTは
比較的厚いゲート絶縁膜會有し、かつ前記第2のM工S
 FfiTに比較的薄いゲート絶縁膜t;にすること’
に%徴とする半導体集積回路装置。 2、前記第1のM工8FETのチアンネル部に比較−低
#度の不純物がドープされており、かつ前記第20M工
5FETのチャネル郡に比較的高濃度の不純物がドープ
さ牡ていること葡脅徴とする特許請求の範囲第1gl記
載の半導体集積回路装置。 3、半導体基体の一生面を各素子領域に分離する工程と
、全素子鎖酸に比較的厚いケート絶縁&+!を形成する
工程と、この絶絃腺′に通して全菓子領域に不純物音ド
ープする工程と、第1の素子領域の比較的厚いゲート絶
縁膜上に1鳥目のポリシリコン層からなるゲート電極を
形成する工程と、第2の素子領域上の比較的厚いゲート
絶#膜を除去した後そこに比較的薄いゲート絶縁膜を形
成する工程と、この薄いゲート絶縁膜葡通して第2の素
子領域に不純物tドープする工程と、この第2の素子領
域の比較的凄いゲート絶縁膜上に2層目のポリシリコン
層からなるゲート電極音形成する工程とt有することt
−9徴とする半導体集積回路装置の製造方法。
[Claims] l. A first M-type S FET having a gate electrode made of a first polysilicon layer and a 20-M type 5FET having a gate electrode made of a second polysilicon layer are common semiconductors. [1IiT]1IiT has a relatively thick gate insulating film, and the second M
Making the FfiT a relatively thin gate insulating film t'
Semiconductor integrated circuit device with % characteristics. 2. The channel portion of the first M-type 8FET is doped with impurities at a relatively low concentration, and the channel portion of the 20M-type 5FET is doped with a relatively high concentration of impurities. A semiconductor integrated circuit device according to claim 1gl which is a threat. 3. The step of separating the whole surface of the semiconductor substrate into each element region, and the relatively thick insulation of the entire element chain. , a step of doping impurity into the entire confectionery region through this conductive gland, and a step of forming a gate electrode made of the first polysilicon layer on the relatively thick gate insulating film of the first element region. forming a relatively thin gate insulating film thereon after removing a relatively thick gate insulating film on the second element region; and a step of forming a gate electrode made of a second polysilicon layer on the relatively thick gate insulating film in the second element region.
- A method for manufacturing a semiconductor integrated circuit device having nine characteristics.
JP57194716A 1982-11-08 1982-11-08 Semiconductor integrated circuit device and manufacture thereof Granted JPS5984571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194716A JPS5984571A (en) 1982-11-08 1982-11-08 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194716A JPS5984571A (en) 1982-11-08 1982-11-08 Semiconductor integrated circuit device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5984571A true JPS5984571A (en) 1984-05-16
JPH0554268B2 JPH0554268B2 (en) 1993-08-12

Family

ID=16329055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194716A Granted JPS5984571A (en) 1982-11-08 1982-11-08 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5984571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220736A (en) * 2006-02-14 2007-08-30 Toshiba Corp Semiconductor device, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591877A (en) * 1978-12-30 1980-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS56120166A (en) * 1980-02-27 1981-09-21 Hitachi Ltd Semiconductor ic device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591877A (en) * 1978-12-30 1980-07-11 Fujitsu Ltd Manufacture of semiconductor device
JPS56120166A (en) * 1980-02-27 1981-09-21 Hitachi Ltd Semiconductor ic device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220736A (en) * 2006-02-14 2007-08-30 Toshiba Corp Semiconductor device, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0554268B2 (en) 1993-08-12

Similar Documents

Publication Publication Date Title
JPS638622B2 (en)
JPS6115594B2 (en)
JPS58148445A (en) Method of producing complementary field effect transistor
JPS58202562A (en) Method of producing semiconductor device
JPS63244776A (en) Manufacture of insulated-gate field-effect transistor
US4470191A (en) Process for making complementary transistors by sequential implantations using oxidation barrier masking layer
JPS6225452A (en) Manufacture of cmos transistor
JPS5984571A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6360549B2 (en)
JPS59231864A (en) Semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JPS6126234B2 (en)
JPH01264265A (en) Semiconductor device and its manufacture
JPH0115148B2 (en)
JPS61172372A (en) Manufacture of semiconductor device
JPS63283155A (en) Semiconductor device and manufacture thereof
JPH0481327B2 (en)
JPS63117459A (en) Manufacture of insulated gate field effect transistor
JPS6244700B2 (en)
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH01143357A (en) Semiconductor device and manufacture thereof
JPS5816567A (en) Manufacture of insulating gate type field effect semiconductor device
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPS6031276A (en) Semiconductor device and manufacture thereof
JPS60116164A (en) Manufacture of semiconductor device