JPS60116164A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60116164A
JPS60116164A JP58225893A JP22589383A JPS60116164A JP S60116164 A JPS60116164 A JP S60116164A JP 58225893 A JP58225893 A JP 58225893A JP 22589383 A JP22589383 A JP 22589383A JP S60116164 A JPS60116164 A JP S60116164A
Authority
JP
Japan
Prior art keywords
layer
substrate
ion implantation
film
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225893A
Other languages
Japanese (ja)
Inventor
Osamu Hataishi
畑石 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58225893A priority Critical patent/JPS60116164A/en
Publication of JPS60116164A publication Critical patent/JPS60116164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To purify the manufacturing steps of a C-MOSFET and to improve the controllability by sequentially forming an insulating film and a polycrystalline semiconductor layer on a substrate, and implanting from the ion implantation preventive layer having the prescribed hole formed on the layer to the substrate with reverse conductive type impurity. CONSTITUTION:A gate insulating film 5 of the prescribed thickness is formed on a one-conductive type semiconductor substrate 1, and a polycrystalline semiconductor layer 7 is formed on the film 5 by a CVD method. Then, an ion implantation preventive layer (resist layer) 3 having a hole 8 is formed on the layer 7. With the layer 3 as a mask reverse conductive type impurity to the substrate 1 is implanted from the hole 8. This impurity is implanted through the layer 7 and the film 5 to the surface directly under the hole 8 of the substrate 1. The layer 3 used as the mask is removed, an insular region 4 having the reverse conductive type is formed, a gate electrode 6 is formed by polycrystalline silicon on the film 5, the manufacturing step of C-MOSFET is simplified to improve the controllability.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置の製造方法に係り、特に相補型MO
5電界効果半導体装置(以下CMO3FETと略記する
)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field of the invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device.
5 Field Effect Semiconductor Device (hereinafter abbreviated as CMO3FET).

(bl 従来技術と問題点 従来CMO8FETを製造するに際しては、まず第1図
18+に示すように、−導電型例えばn型のシリコン(
St)基板1に加熱酸化処理を施して二酸化シリコン(
S’i02 )膜2を形成し、次いでこれの上に所定の
パターンに従ってレジスト膜3を形成したのち、このレ
ジスト膜3をマスクとしてイオン注入法により反対導電
型即ちp型の不純物9例えばボロン(B)を上記Si基
板1表面に注入し、更に加熱処理を施して注入した不純
物を活性化して島状の反対導電型即ちp型頭域(以下こ
れをp−well、n型島状領域の場合はn−well
と称する)4を形成する。
(bl) Prior Art and Problems When manufacturing a conventional CMO8FET, first, as shown in FIG.
St) Heat oxidation treatment is applied to the substrate 1 to form silicon dioxide (
S'i02 ) film 2 is formed, and then a resist film 3 is formed on this according to a predetermined pattern. Using this resist film 3 as a mask, an impurity 9 of the opposite conductivity type, that is, p-type, is implanted by ion implantation. B) is implanted into the surface of the Si substrate 1, and heat treatment is performed to activate the implanted impurity and form an island-like opposite conductivity type, that is, a p-type head region (hereinafter referred to as p-well, an n-type island region). If n-well
4).

次いで上記マスクとして用いたレジスト膜3及びs+o
2B*2を除去したのち、あらためて加熱処理を施すこ
とによりSi基板1表面を酸化してゲート酸化膜5を形
成し、次いでこのゲート酸化膜5上に化学気相成長法(
C’V D法)を用いて多結晶シリコン層を成長させ、
次いでこの多結晶シリコン層を選択的に除去して多結晶
シリコン層よりなるゲート6を形成していた。
Next, the resist film 3 used as the mask and s+o
After removing 2B*2, the surface of the Si substrate 1 is oxidized by heat treatment again to form a gate oxide film 5, and then chemical vapor deposition (CVD) is performed on this gate oxide film 5.
Grow a polycrystalline silicon layer using C'VD method),
Next, this polycrystalline silicon layer was selectively removed to form a gate 6 made of the polycrystalline silicon layer.

上述の如〈従来の製造方法においては、ここまでの製造
工程において加熱処理が3回にわたって行うことが必要
であった。そのため製造工程が煩雑であるのみならず、
ゲート酸化工程においてp−wel14表面の不純物の
アウト・ディフュージョンが起こる等の問題がある。
As mentioned above, in the conventional manufacturing method, it was necessary to perform the heat treatment three times in the manufacturing process up to this point. Therefore, not only is the manufacturing process complicated,
There are problems such as out-diffusion of impurities on the surface of the p-well 14 in the gate oxidation process.

(C) 発明の目的 本発明の目的は上記島状の反対導電型領域を形成するま
での加熱処理工程を極力少なくし得る半導体装置の製造
方法を提供することにある。
(C) Object of the Invention An object of the present invention is to provide a method for manufacturing a semiconductor device that can minimize the number of heat treatment steps required to form the island-shaped regions of opposite conductivity type.

(dl 発明の構成 本発明の特徴は、−導電型を有する半導体基板表面に所
定の絶縁膜と該絶縁膜上に多結晶半導体層を形成し、次
いで該多結晶半導体層上に所定の開口を有するイオン注
入阻止層を形成し、次いで該イオン注入阻止調をマスク
として反対導電型の不純物を前記多結晶半導体層及び絶
縁膜を透過して前記半導体載板の前記イオン注入阻止層
の開口直下部表面にイオン注入法により注入する工程を
含むことにある。
(dl Structure of the Invention The present invention is characterized by forming a predetermined insulating film on the surface of a semiconductor substrate having a conductivity type and a polycrystalline semiconductor layer on the insulating film, and then forming a predetermined opening on the polycrystalline semiconductor layer. Then, using the ion implantation blocking layer as a mask, an impurity of the opposite conductivity type is transmitted through the polycrystalline semiconductor layer and the insulating film to form an ion implantation blocking layer directly under the opening of the ion implantation blocking layer of the semiconductor mounting board. The method includes a step of implanting into the surface by an ion implantation method.

(fl) 発明の実施例 以下本発明の一実施例を図面を参照しながら説明する。(fl) Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

第2図(al及び(b)は本発明の一実施例を製造工程
の順に示す要部断面図である。
FIGS. 2A and 2B are sectional views of essential parts of an embodiment of the present invention showing the manufacturing steps in order.

本実施例においては同図(8)に見られるように、−導
電型を有する半導体基板2例えばn型のSt基板lを加
熱酸化して凡そ1000 (人〕の厚さを有するゲート
絶縁膜(本実施例ではゲート酸化膜)5を形成したのち
、これの上にCVD法により凡そ3000 (人〕の厚
さの多結晶半導体基板例えば多結晶シリコン層7を被着
せしめる。次いで該多結晶シリコン層7上に、開口8を
有するレジスト膜3を形成する。このレジスト膜3は後
述する如く、このあとのイオン注入工程におけるマスク
として用いるイオン注入阻止層であって、上記開口8を
除く他の部分に照射されるイオンを阻止するのに要する
厚さに形成しておく。この目的から本実施例ではレジス
ト膜3の厚さを凡そ1〜1.5〔μm〕とした。
In this example, as shown in FIG. 8, a semiconductor substrate 2 having a negative conductivity type, for example an n-type St substrate l, is heated and oxidized to form a gate insulating film ( In this embodiment, after forming a gate oxide film (5), a polycrystalline semiconductor substrate, e.g., a polycrystalline silicon layer 7, having a thickness of approximately 3000 mm is deposited thereon by the CVD method. A resist film 3 having an opening 8 is formed on the layer 7. As will be described later, this resist film 3 is an ion implantation blocking layer used as a mask in the subsequent ion implantation process, and other than the opening 8 is The resist film 3 is formed to have a thickness necessary to block ions irradiated onto the portion.For this purpose, in this embodiment, the thickness of the resist film 3 is approximately 1 to 1.5 [μm].

なおイオン注入工程のマスクとして用いるイオン注入阻
止層としては、上述のレジスト膜3に変えてアルミニウ
ム(AO)層或いはCVD法によって形成した二酸化シ
リコン(5t02)膜等を用いても良い。
Note that as the ion implantation blocking layer used as a mask in the ion implantation process, an aluminum (AO) layer, a silicon dioxide (5t02) film formed by CVD method, or the like may be used instead of the above-mentioned resist film 3.

次いでこのように形成したレジスト膜3をマスクとして
イオン注入法を施し、反対導電型即ち本実施例ではp型
の不純物1例えばボロン(B)をSi基板1表面に注入
する。本実施例ではボロン(B)を多結晶シリコン層7
及びゲート酸化膜5を通してSi基板1表面に注入する
ので、この工程における注入エネルギは凡そ200 (
k eV]とした。
Next, an ion implantation method is performed using the resist film 3 thus formed as a mask, and an impurity 1 of the opposite conductivity type, that is, a p-type in this embodiment, such as boron (B), is implanted into the surface of the Si substrate 1. In this embodiment, boron (B) is added to the polycrystalline silicon layer 7.
Since the implantation is performed on the surface of the Si substrate 1 through the gate oxide film 5, the implantation energy in this step is approximately 200 (
keV].

こうすることにより上記開口8部では注入イオンは多結
晶シリコン屑7及びゲート酸化膜5を透過して、Si基
板1の表面に注入され、伯の部分ではマスクとして用い
たレジスト膜3によりほぼ阻止されて、これの下層には
殆ど注入されない。上記条件によれば、Si基板1表面
に注入されたイオンは、分布のピークが多結晶シリコン
層70表面から凡そ6000 (人〕の深さとなるよう
な分布となり、その濃度は几そ2x103 (cm−2
)となる。
By doing this, the implanted ions pass through the polycrystalline silicon chips 7 and the gate oxide film 5 and are implanted into the surface of the Si substrate 1 in the opening 8, and are almost blocked in the circled portion by the resist film 3 used as a mask. The layer below this is hardly injected. According to the above conditions, the ions implanted into the surface of the Si substrate 1 have a distribution such that the peak of the distribution is approximately 6,000 cm deep from the surface of the polycrystalline silicon layer 70, and the concentration is approximately 2 x 10 cm. -2
).

次いで上記マスクとして用いたレジスト膜3を除去した
のち、例えば1150(”C3程度の温度において加熱
処理を施すことにより、注入したイオンの活性化を行っ
て島状の反対導電型領域1本実施例ではp型領域即ちp
−wellを形成する。但しこの活性化のための加熱処
理工程は必ずしもこの段階で実施する必要はなく、この
あとの工程において実施されるアイソレーション或いは
コンタクト領域形成のだめの加熱処理工程において同時
に活性化を行なっても良い。
Next, after removing the resist film 3 used as the mask, the implanted ions are activated by heat treatment at a temperature of, for example, 1150 (C3) to form an island-shaped region of the opposite conductivity type. Then, the p-type region, that is, p
- form a well. However, the heat treatment step for activation does not necessarily need to be performed at this stage, and activation may be performed simultaneously in the heat treatment step for isolation or contact region formation performed in a subsequent step.

次いで同図tblに見られる如く、上記多結晶シリコン
層7を選択的に除去して、p−well上及びn型領域
上の所定の位置にのみ多結晶シリコン層7を残留せしめ
る。この残留せる多結晶シリコン層はケート電極6とな
るものである。
Next, as shown in FIG. tbl, the polycrystalline silicon layer 7 is selectively removed, leaving the polycrystalline silicon layer 7 only at predetermined positions on the p-well and n-type region. This remaining polycrystalline silicon layer becomes the gate electrode 6.

以上により本実施例を用いてSi基板1と反対導電型の
島状領域(即ちp−wellまたはn−well)が形
成された。
As described above, an island-like region (that is, a p-well or an n-well) having a conductivity type opposite to that of the Si substrate 1 was formed using this example.

このあとは通富の製造工程に従って図示はしていないが
、ソース領域、ドレイン領域、及び各部の電極等を形成
して半導体装置が完成する。
After this, although not shown in the drawings, a source region, a drain region, electrodes of various parts, etc. are formed according to Tsutomi's manufacturing process, and the semiconductor device is completed.

上述の説明6;より明らかなよ痕3、本実施例ではp−
wellあるいはn−wellを形成するまでの工程に
おいて、加熱処理工程は1回のみ施せば良い。従って製
造工程が非常に簡単化され、しかもアウトディフュージ
ョンを生じないので、製造工程及び特性の制御が容易に
なるという利点もある。
Explanation 6 above; more obvious mark 3, in this example p-
In the process up to forming a well or an n-well, the heat treatment process only needs to be performed once. Therefore, the manufacturing process is greatly simplified, and since outdiffusion does not occur, there is an advantage that the manufacturing process and characteristics can be easily controlled.

(fl 発明の詳細 な説明した如く本発明によれば、CMOSF E Tの
製造工程が簡単化され、しかも製造工程の制御性が向上
する。
(fl) As described in detail, according to the present invention, the manufacturing process of CMOSFET is simplified and the controllability of the manufacturing process is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法のゲ1を点を説明
するための要部断面図、第2図は本発明の一実施例を製
造工程の順に示す要部断面図である。 図において、lは−・導電型を有する半導体基板(シリ
コン基板)、3はイオン注入阻止層(レジスト膜)、4
ば反対導電型を有する島状領域、5はゲート絶縁B’A
 (ゲート酸化膜)、6は多結晶シリコンよりなるゲー
ト電極、7は多結晶半導体層(多結晶シリコン層)、8
は開口を示す。
FIG. 1 is a cross-sectional view of a main part for explaining the main points of a conventional method for manufacturing a semiconductor device, and FIG. 2 is a cross-sectional view of a main part showing an embodiment of the present invention in the order of manufacturing steps. In the figure, l is a semiconductor substrate (silicon substrate) having a - conductivity type, 3 is an ion implantation blocking layer (resist film), and 4 is
5 is an island-like region having an opposite conductivity type, and 5 is a gate insulation B'A.
(gate oxide film), 6 is a gate electrode made of polycrystalline silicon, 7 is a polycrystalline semiconductor layer (polycrystalline silicon layer), 8
indicates an opening.

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有する半導体基板表面に所定の絶縁膜と該絶
縁膜上に多結晶半導体層を形成し、次いで該多結晶半導
体層上に所定の開口を有するイオン注入阻止層を形成し
、次いで該イオン注入阻止層をマスクとして反対導電型
の不純物を前記多結晶半導体層及び絶縁膜を透過して前
記半導体基板の前記イオン注入阻止層の開口直下部表面
にイオン注入法により注入する工程を含むことを特徴と
する半導体装置の製造方法。
A predetermined insulating film and a polycrystalline semiconductor layer are formed on the surface of a semiconductor substrate having one conductivity type, and then an ion implantation blocking layer having a predetermined opening is formed on the polycrystalline semiconductor layer. The step includes a step of implanting an impurity of the opposite conductivity type through the polycrystalline semiconductor layer and the insulating film into the surface of the semiconductor substrate directly below the opening of the ion implantation blocking layer by an ion implantation method using the ion implantation blocking layer as a mask. A method for manufacturing a semiconductor device, characterized by:
JP58225893A 1983-11-29 1983-11-29 Manufacture of semiconductor device Pending JPS60116164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225893A JPS60116164A (en) 1983-11-29 1983-11-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225893A JPS60116164A (en) 1983-11-29 1983-11-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60116164A true JPS60116164A (en) 1985-06-22

Family

ID=16836523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225893A Pending JPS60116164A (en) 1983-11-29 1983-11-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60116164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138029U (en) * 1991-06-19 1992-12-24 中井工業株式会社 Belt conveyor installation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138029U (en) * 1991-06-19 1992-12-24 中井工業株式会社 Belt conveyor installation structure

Similar Documents

Publication Publication Date Title
US4268321A (en) Method of fabricating a semiconductor device having channel stoppers
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
JP2510751B2 (en) Process for forming high voltage and low voltage CMOS transistors on a single integrated circuit chip
JPS6037775A (en) Production of wafer by injection through protective layer
JPS62174966A (en) Manufacture of semiconductor device
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
US5780347A (en) Method of forming polysilicon local interconnects
JPS6360549B2 (en)
JPS5817655A (en) Manufacture of semiconductor device
JPS60116164A (en) Manufacture of semiconductor device
JP2544806B2 (en) Method for manufacturing semiconductor device
JPH0227769A (en) Semiconductor device
JPH0115148B2 (en)
JPS6251248A (en) Manufacture of semiconductor device
JPH0582734A (en) Manufacture of mos semiconductor device
JPS61150377A (en) Manufacture of mis type semiconductor device
JPH0479336A (en) Production of semiconductor device
JPH0579186B2 (en)
JPS6281051A (en) Semiconductor device and manufacture thereof
JPS6031276A (en) Semiconductor device and manufacture thereof
JPS63144575A (en) Manufacture of semiconductor device
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPS6266678A (en) Manufacture of semiconductor device
JPS6362100B2 (en)
JPH0274042A (en) Manufacture of mis transistor