JPS5978556A - Manufacture of complementary metallic oxide semiconductor device - Google Patents

Manufacture of complementary metallic oxide semiconductor device

Info

Publication number
JPS5978556A
JPS5978556A JP57188618A JP18861882A JPS5978556A JP S5978556 A JPS5978556 A JP S5978556A JP 57188618 A JP57188618 A JP 57188618A JP 18861882 A JP18861882 A JP 18861882A JP S5978556 A JPS5978556 A JP S5978556A
Authority
JP
Japan
Prior art keywords
region
channel
transistor
gate electrode
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57188618A
Other languages
Japanese (ja)
Inventor
Junichi Ono
淳一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57188618A priority Critical patent/JPS5978556A/en
Publication of JPS5978556A publication Critical patent/JPS5978556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/86Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body the insulating body being sapphire, e.g. silicon on sapphire structure, i.e. SOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify the manufacturing process for an SOS-CMOS device which prevents the generation of current leakage by utilizing crystallinity modification due to Si ion implantation. CONSTITUTION:An island form Si layer 102 is provided on an insulation substrate 101. Si is ion-implanted into the region except the neighborhood of the boundary of a p type and an n type MOS transistor, heat treatment is performed, and thus the crystallinity of the ion implanted region is modified. Next, gate oxide films 104 (1041, 1042) and gate electrodes 105 (1051, 1052) of each transistor are formed. An n type impurity is ion-implanted into an n-channel MOS forming region with the gate electrode 1051 and a resist 106 as a mask, and a p type impurity into a p-channel MOS forming region with the gate electrode 1052 and a resist 107 as a mask. At this time, an ion implanted depth becomes shallow at the crystallinity modified region. Thereafter, heat treatment is performed, and accordingly the CMOS device wherein a drain region in the neighborhood of the boundary of each transistor is formed deeply is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は絶縁基板上の島状の半導体層に形成された相補
型MOS半導体装置(CMOS)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary MOS semiconductor device (CMOS) formed in an island-shaped semiconductor layer on an insulating substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

絶縁基板上の半導体層に設けたCMOSは、島状の半導
体層にpチャンネル、nチャ/ネルのMOS ) 7ン
ジスタをそれらのドレイ/領域が互に接触して三者の境
界を高濃度接合させた構造になっている。かがる構造の
CMOSは従来、次のような方法により製造されている
CMOS, which is provided on a semiconductor layer on an insulating substrate, has seven transistors (p-channel, n-channel/channel MOS) on an island-shaped semiconductor layer, and their drains/regions are in contact with each other, forming a high-concentration junction between the three. It has a structure that allows A CMOS having an overcast structure has conventionally been manufactured by the following method.

まず、サファイア等の絶縁基板l上に空気絶縁された島
状の半導体層2を形成した後、nチャンネル、pチャン
ネルのMOS ) 7ンシフタ形成予定部に夫々ゲート
酸化膜3. 、3.を介して例えば多結晶シリコンb・
らゲート電極41142を形成する。つづいて、nチャ
ンネ/I/4AIJに例えば拡散係数の小さい砒素を選
択的にイオン注入し、更にpチャンネル側に例えばボロ
ンを選択的にイオン注入した後、活性化処理を施してn
型のソース、ドレイン領域5□、6、及びp型のソース
、ドレイン領域52 * 62を夫々形成してCMOS
を製造する(第1図図示)。
First, an air-insulated island-shaped semiconductor layer 2 is formed on an insulating substrate l made of sapphire or the like, and then gate oxide films 3. , 3. For example, polycrystalline silicon b.
A gate electrode 41142 is then formed. Next, ions of arsenic, which has a small diffusion coefficient, for example, are selectively implanted into the n-channel/I/4AIJ, and boron, for example, is selectively ion-implanted into the p-channel side, and then an activation process is performed.
type source and drain regions 5□, 6 and p-type source and drain regions 52 * 62 are formed respectively to form a CMOS.
(as shown in Figure 1).

上述したCMOSにおいてはnチャンネル及びpチャン
ネルのMOS )ランシフタのドレイン領域61 + 
62が互に接触して、三者の境界を高濃度接合されてい
るため、素子面積を大幅に縮小できる。しかしながら、
nチャンネルMOS)ランシフタのソース領域5□、ド
、レイン領域6、を砒素のイオン注入(或いは熱拡散)
により形成すると、砒素が島状の半導体層2と絶縁基板
1の界面にまで到達しないことがある。かかる構造のC
MOSにおいて、インバータの入力(Vin)のレベル
を L にし、pチャンネルMOSトランジスタはON
状態にして出力(Vout)のレベルヲHにすると、第
1図の点線に示すように順バイアス状態となり、pチャ
ンネルMO8)ランシフタのドレイン領域62がもの電
流がnチャンネルMOS)ランシフタのソース領域5.
にバスしてリーク電流が生じるという問題があった。
In the above-mentioned CMOS, the drain region 61 + of the n-channel and p-channel MOS) run shifter
62 are in contact with each other, and the boundaries between the three are bonded with high concentration, so that the device area can be significantly reduced. however,
Arsenic ion implantation (or thermal diffusion) into the source region 5□, drain region 6, and drain region 6 of the n-channel MOS) run shifter.
If formed using the above method, arsenic may not reach the interface between the island-shaped semiconductor layer 2 and the insulating substrate 1. C of such a structure
In MOS, the level of the inverter input (Vin) is set to L, and the p-channel MOS transistor is turned on.
When the level of the output (Vout) is set to H, the state becomes a forward bias state as shown by the dotted line in FIG.
There was a problem that leakage current occurred due to the bus.

上述した欠点を改善するため、第2図に示す如(、nチ
ャンネル、pチャンネルのMOS )シンシフタを構成
するソース、ドレイン領域5.′。
In order to improve the above-mentioned drawbacks, the source and drain regions 5. which constitute a syn shifter (n-channel, p-channel MOS) as shown in FIG. '.

52’+6□/、621を夫々半導体層2と絶縁基板1
の界面まで達するように形成して、前述したリーク電流
を防止することが行なわれている。しかしながら、この
ような構造にすると、各トランジスタ′のチャンネル長
(Leff)が非常に小さくなり、いわゆるショートチ
ャンネル効果が現れるという不都合さを生じる。
52'+6□/, 621 are the semiconductor layer 2 and the insulating substrate 1, respectively.
In order to prevent the above-mentioned leakage current, the leakage current is formed so as to reach the interface between the two. However, with such a structure, the channel length (Leff) of each transistor' becomes very small, resulting in the inconvenience that a so-called short channel effect appears.

また、島状の半導体層の膜厚を減少させて、チャンネル
長の短縮化を生じることなく、各トランジスタのソース
、ドレイン領域を半導体層と絶縁基板の界面まで到達す
るような構造にすることも考えられる。しかしながら、
絶縁基板上の半導体層の膜厚が薄くなると、結晶性が悪
化し、素子寸法の縮小に伴なって該結晶性の悪化が素子
特性に顕著に悪影響を及ぼす。
It is also possible to reduce the thickness of the island-shaped semiconductor layer and create a structure in which the source and drain regions of each transistor reach the interface between the semiconductor layer and the insulating substrate without shortening the channel length. Conceivable. however,
As the film thickness of the semiconductor layer on the insulating substrate becomes thinner, the crystallinity deteriorates, and as the device size decreases, the deterioration of the crystallinity significantly adversely affects the device characteristics.

このようなことから、最近、以下に示す方法によりショ
ートチャンネル効果の防止とリーク電流の防止を図った
CMOSを製造することが行なわれている。
For this reason, recently, the following method has been used to manufacture CMOS in which the short channel effect and leakage current are prevented.

まず、絶縁基板(例えばサファイア基板)1ノ上に半導
体層(例えばシリコン層)をエピタキシャル成長させた
後、該シリコン層を選択的に除去して周囲が空気絶縁さ
れた島状のシリコン層12を形成する。つづいて、島状
のシリコン層12のnチャンネル、pチャンネルのMO
S)ランジスタ形成予定部に夫々ゲート酸化膜13、。
First, a semiconductor layer (for example, a silicon layer) is epitaxially grown on an insulating substrate (for example, a sapphire substrate) 1, and then the silicon layer is selectively removed to form an island-shaped silicon layer 12 whose periphery is insulated from air. do. Next, the n-channel and p-channel MO of the island-shaped silicon layer 12
S) Gate oxide film 13 in each portion where transistors are to be formed.

132を介して多結晶シリコンからなるゲート電5&1
4.,14.を形成した後、写真蝕刻法によりpチャン
ネルMO8)ランジスタ形成予定部を覆うレジストパタ
ー/15を形成し、更に該レジストパターン15及びゲ
ート電極14、をマスクとしてn型不純物、例えば砒素
をシリコン層12に低い打込みエネルギーで選択的にイ
オン注入してシリコン層12表面付近に第1の砒素イオ
ン注入層16を形成する(第3図(a)図示)。ひきつ
づき、レジストパターン15を除去し、再度、写真蝕刻
法によりpチャンネルMOSトランジスタ形成予定部及
びゲーム電極141を含む周辺を覆うレジストバターン
ノ7を形成した後、該レジストパターン17をマスクと
して例えば砒素をシリコン層12に高い打込みエネルギ
ーで選択的にイオン注入してシリコン層12内部に第2
の砒素イオン注入層18を形成する(第3図(b)図示
)。
Gate electrodes 5 & 1 made of polycrystalline silicon via 132
4. ,14. After forming, a resist pattern /15 is formed by photolithography to cover the area where the p-channel MO8) transistor is to be formed, and using the resist pattern 15 and the gate electrode 14 as a mask, an n-type impurity such as arsenic is added to the silicon layer 12. A first arsenic ion implantation layer 16 is formed near the surface of the silicon layer 12 by selectively implanting ions with low implantation energy (as shown in FIG. 3(a)). Subsequently, the resist pattern 15 is removed, and a resist pattern 7 is formed again by photolithography to cover the area where the p-channel MOS transistor is to be formed and the periphery including the game electrode 141. Using the resist pattern 17 as a mask, for example, arsenic is applied. A second ion is implanted into the silicon layer 12 by selectively implanting ions into the silicon layer 12 with high implant energy.
An arsenic ion-implanted layer 18 is formed (as shown in FIG. 3(b)).

次いで、レジストバター/17を除去し、再度、写真蝕
刻法によりnチャンネルMOSトランジスタ形成予定部
を覆うレジストパターン19を形成した後、該レジスト
パターン19及びゲート電極142をマスクとしてp型
不純物1例えばボロンをシリコン層12に低い打込みエ
ネルギーで選択的にイオン注入してシリコンh12の表
面付近に第1のボロンイオン注入層2θを形成する(第
3図(C)図示)。つづいて、レジストパターン19を
除去し、再度、写真蝕刻法によりnチャンネルMO8)
 7 yジスタ形成予定部及びゲート電極14□を含む
周辺を覆うレジストパターン21を形成した後、該レジ
ストパターン2ノをマスクとしてボロンを高い打込みエ
ネルギーでシリコン層12に選択的にイオン注入してシ
リコン層12内部に第2のボロンイオン注入層22を形
成する(第3図(d)図示)。この後、レジストパター
ン21を除去し、熱処理を施したりその結果第11第2
の砒素イオン注入層16.18が活性化されてゲート電
極14.近傍で浅く、ゲート電極14、より遠ざかる部
分ではシリコン層12とサファイア基板11の界面まで
達するn型のソース、ドレイン領域23、。
Next, the resist butter/17 is removed, and a resist pattern 19 is again formed by photolithography to cover the area where the n-channel MOS transistor is to be formed. Using the resist pattern 19 and the gate electrode 142 as a mask, a p-type impurity 1 such as boron is added. is selectively implanted into the silicon layer 12 with low implantation energy to form a first boron ion implantation layer 2θ near the surface of the silicon h12 (as shown in FIG. 3C). Subsequently, the resist pattern 19 was removed, and the n-channel MO8) was photolithographically etched again.
7 After forming a resist pattern 21 covering the area where the Y transistor is to be formed and the periphery including the gate electrode 14 □, boron ions are selectively implanted into the silicon layer 12 with high implant energy using the resist pattern 2 as a mask to implant silicon. A second boron ion implantation layer 22 is formed inside the layer 12 (as shown in FIG. 3(d)). After that, the resist pattern 21 is removed, heat treatment is performed, and as a result, the 11th and 2nd
The arsenic ion implantation layer 16.18 of the gate electrode 14.1 is activated. N-type source and drain regions 23 are shallow near the gate electrode 14 and reach the interface between the silicon layer 12 and the sapphire substrate 11 in the farther regions.

241が形成された。同時に第1、第2のボロ/イオン
注入層20.22が活性化されてゲート電極14□近傍
で浅く、ゲート電極142より遠ざかる部分ではシリコ
ン層12とサファイア基板1ノの界面まで達するp型の
ソース、ドレインイン領域”s + 242  が互に
接触して高濃度接合されたnチャ/ネル、pチャンネル
のMOS F5ンジスタを有する0MO8が造られた(
第3図(e)図示)。
241 was formed. At the same time, the first and second boron/ion implantation layers 20.22 are activated, and the p-type layer becomes shallow in the vicinity of the gate electrode 14□ and reaches the interface between the silicon layer 12 and the sapphire substrate 1 in the part farther away from the gate electrode 142. An 0MO8 was fabricated with n-channel/p-channel MOS F5 transistors in which the source and drain-in regions (s+242) were in contact with each other and were highly doped.
(Illustrated in FIG. 3(e)).

上述した方法により得られた0MO8は第3図(eJに
示す如く、各MOB )ランシフタのドレイン領域24
.、x42 はシリコン層12と+7フイア基板1ノの
界面まで到達した状態で接合しているため、既述した電
流リークの発生を防止でき、かつゲート電極14..1
42周辺のソース、ドレイン領域23□、232,24
..242部分は浅いためショートチャンネル効果を防
止できる。しがしながら、上記製造方法にあっては通常
の0MO8の製造プロセスに比べて2回の写真蝕刻工程
と2回のイオン注入工程が増えるため、工程が非常に複
雑になると−いう問題がある。
The 0MO8 obtained by the above-mentioned method is used as the drain region 24 of the run shifter in FIG.
.. , x42 are bonded to each other when they reach the interface between the silicon layer 12 and the +7 layer substrate 1, so that the current leak described above can be prevented, and the gate electrode 14. .. 1
Source and drain regions around 42 23□, 232, 24
.. .. Since the 242 portion is shallow, the short channel effect can be prevented. However, the above manufacturing method has a problem in that the process becomes extremely complex because it requires two photo-etching steps and two ion implantation steps compared to the normal 0MO8 manufacturing process. .

〔発明の目的〕[Purpose of the invention]

本発明は電流リークの発生及びショートチャンネル効果
を防止できると共に、従来法に比べて写真蝕刻工程を1
回、イオン注入工程を2回減少して工程の簡素化を達成
し得る0MO8の4AJi造方法を提供しようとするも
のである。
The present invention can prevent the occurrence of current leakage and short channel effect, and can reduce the photolithography process by one step compared to the conventional method.
The present invention aims to provide a method for manufacturing 0MO8 4AJi that can simplify the process by reducing the number of ion implantation steps by two times.

〔発明の概要〕[Summary of the invention]

本発明は少1よ(ともnチャンネル、pチャンネルMO
8)ランシフタの境界付近を除く絶縁基板上の半導体層
領域にシリコンをイオン注入し、熱処理を施して該イオ
ン注入領域の結晶性を改質する工程と、前記半導体層の
各トランジスタ形成領域にゲート酸化膜を介してゲート
電極を夫々選択的に形成する工程と、少なくともゲート
電極をマスクとして前記半導体層のnチャンネルMO8
)ランシフタ形成領域にn型不純物を、同半導体層のp
チャンネルMO8トランジスタ形成領域部にpm不純物
を夫々イオン注入し、熱処理する工程とKよって、前記
結晶性改質半導体層領域と各トランジスタのドレイン領
域となる結晶性改質半導体層域とではイオン注入深さは
、結晶性未改質半導体層の方が深くなることを利用して
前記結晶性改質半導体領域に浅い不純物イオン注入層を
、前記結晶性改質半導体層領域に深い不純物イオン注入
層を夫々形成でき、熱処理により各トランジスタの境界
付近のドレイン領域部分を絶縁基板と半導体層の界面ま
で到達でき、かつその他のドレイン領域部分及びソース
領域を浅く形成できる。その結果、Sjを半導体層にイ
オン注入するためのレジストパターンの形成工程が増え
るものの、従来法の如くn型、pWを二層イオン注入す
るための2回のレジストパターンの形成工程及びn型、
p星の夫々のイオン注入工程を省略でき、ひいては電流
リークの発生及びショートチャンネル効果を防止した高
信頼性の0MO8を簡単に得ることができる。
The present invention is small (both n-channel and p-channel MO).
8) A step of implanting silicon ions into the semiconductor layer region on the insulating substrate excluding the vicinity of the boundary of the run shifter, and performing heat treatment to modify the crystallinity of the ion implanted region, and implanting a gate into each transistor forming region of the semiconductor layer. A step of selectively forming gate electrodes through an oxide film, and using at least the gate electrodes as a mask, forming an n-channel MO8 of the semiconductor layer.
) An n-type impurity is added to the run shifter formation region, and a p-type impurity is added to the run shifter formation region.
Through the process of ion-implanting pm impurities into the channel MO8 transistor formation region and heat treatment, the ion implantation depth is reduced between the crystalline modified semiconductor layer region and the crystalline modified semiconductor layer region which becomes the drain region of each transistor. Now, taking advantage of the fact that the crystalline unmodified semiconductor layer is deeper, a shallow impurity ion implantation layer is formed in the crystalline modified semiconductor region, and a deep impurity ion implantation layer is formed in the crystalline modified semiconductor layer region. By heat treatment, the drain region near the boundary of each transistor can reach the interface between the insulating substrate and the semiconductor layer, and the other drain region and source region can be formed shallowly. As a result, although the process of forming a resist pattern for ion-implanting Sj into the semiconductor layer increases, the process of forming a resist pattern twice for double-layer ion implantation of n-type and pW as in the conventional method and the process of forming n-type,
The ion implantation process for each p-star can be omitted, and as a result, a highly reliable 0MO8 that prevents current leakage and short channel effects can be easily obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第4図(a)〜(d)を参照し
て説明する−0 (1)  まず、サファイア基板101上に厚さ0.6
μmのシリコン層をエピタキシャル成長させた後、該シ
リコン層を選択的に除去して周囲が空気絶縁された島状
のシリコンN102を形成した。つづいて、写真蝕刻法
によりnfヤンネル、pチャンネルMOSトランジスタ
のゲート電極直下及びゲート電極近傍が露出するように
レジストパターン103を形成した後、該レジストパタ
ーン103をマスクとしてSiを加速電圧370 ke
V、ドーズikl X l O”am−2(Rp=0.
58μm)  の榮件でイオン注入し、更に加11−2 速電圧100 keV ドーズ量2XlOC0IL  
(Rp=0.15μm)の条件でイオン注入した(第4
図(a)図示)。なお、このように2回のイオン注入を
行なったのは、サファイア基g1.101−シリコン層
102の界面及びシリコンf@xoz表面の結晶性を同
時に改質するためである。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 4(a) to (d).
After epitaxially growing a .mu.m silicon layer, the silicon layer was selectively removed to form an island-shaped silicon N102 whose periphery was insulated with air. Subsequently, a resist pattern 103 is formed by photolithography to expose the nf channel, directly under the gate electrode of the p-channel MOS transistor, and in the vicinity of the gate electrode. Using the resist pattern 103 as a mask, Si is heated at an acceleration voltage of 370 ke.
V, dose ikl X l O”am-2 (Rp=0.
Ion implantation was carried out under the conditions of 58 μm), and additionally 11-2 ion implantation was performed at a voltage of 100 keV and a dose of 2XlOC0IL.
Ion implantation was performed under the condition of (Rp=0.15 μm) (4th
Figure (a) shown). Note that the reason why the ion implantation was performed twice is to simultaneously modify the crystallinity of the sapphire base g1.101-silicon layer 102 interface and the silicon f@xoz surface.

(11)次いで、レジストパターン103を除去した後
、1000°O,N2雰囲気中で熱処理を施した。これ
により、Slがイオン注入されたシリコン層102領域
は他の領域より結晶性が改質され、不純物に対する拡散
係数りは小さくなる。つづいて、nチャンネルMOS)
ランシフタ領域のチャンネル領域予定部にp型不純物、
例えばボロンをイオン注入し、更にpチー\ャ/ネルΔ
408 F、7ンジスタ形成領域のチャンネル領域予定
部にn型不純物、例えば砒素をイオン注入し、°熱処理
を施して各トランジスタの閾値制御を行なった。ひきつ
づき、各トランジスタ領域にゲート酸化膜104□、1
04゜を介して多結晶シリコンからなるゲート電極10
58,105□を夫々選択的に形成し、写真蝕刻法によ
りpチャンネルMO8)ランシフタ形成領域を覆うレジ
ストバク−7106を形成した後、該レジストパターン
106及びゲート電極105□をマスクとしてn型不純
物、例えば砒素を加速電圧40 keV、ドーズ量2 
X 10IIlffi−2〜4X101117m   
の条件でイオン注入した。
(11) Next, after removing the resist pattern 103, heat treatment was performed at 1000° O in a N2 atmosphere. As a result, the crystallinity of the region of the silicon layer 102 into which Sl ions have been implanted is improved compared to other regions, and the diffusion coefficient for impurities becomes smaller. Next, n-channel MOS)
P-type impurity is added to the planned channel region of the run shifter region.
For example, by implanting boron ions and further p
An n-type impurity, for example, arsenic, was ion-implanted into the intended channel region of the 408F, 7 transistor formation region, and a heat treatment was performed to control the threshold value of each transistor. Subsequently, gate oxide films 104□, 1 are formed in each transistor region.
Gate electrode 10 made of polycrystalline silicon through 04°
58 and 105 □ are selectively formed, respectively, and after forming a resist bag 7106 covering the p-channel MO8) run shifter formation region by photolithography, using the resist pattern 106 and the gate electrode 105 □ as a mask, n-type impurities, For example, arsenic is accelerated at a voltage of 40 keV and at a dose of 2
X 10IIlffi-2~4X101117m
Ion implantation was performed under the following conditions.

この時、シリコン層102の結晶性の差異により結晶性
改質領域では注入深さが浅く、結晶性未改質領域では注
入深さが深い砒素イオン注入層が形成された(第4図(
b)図示)。
At this time, due to the difference in crystallinity of the silicon layer 102, an arsenic ion implantation layer was formed in which the implantation depth was shallow in the crystalline modified region and deep in the crystalline unmodified region (see Fig. 4).
b) As shown).

(11D  次いで、レジストパターン106を除去し
、再度、写真蝕刻法によりnチャンネルMOS トラン
ジスタ形成領域を覆うレジストパターン107を形成し
た後、該レジストパターン107及びゲート電極ios
□をマスクとしてpffi不純物、例えばボロンを加速
電圧40keV、ドーズ量lXl0”cIrL72〜3
XlO”(m  〕i件でイオン注入した。この時、シ
リコン層の結晶性の差異により結晶性改質領域では注入
深さが浅く、結晶性未改質領域では注入深さが深い、ボ
ロンイオン注入層が形成された(第4図(C)図示ン。
(11D) Next, the resist pattern 106 is removed and a resist pattern 107 covering the n-channel MOS transistor formation region is formed again by photolithography, and then the resist pattern 107 and the gate electrode ios
Using □ as a mask, apply a pffi impurity, for example, boron, at an acceleration voltage of 40 keV and a dose of lXl0"cIrL72~3
XlO''(m)i ions were implanted. At this time, due to the difference in crystallinity of the silicon layer, the implantation depth was shallow in the crystalline modified region and deep in the crystalline unmodified region. An injection layer was formed (as shown in FIG. 4(C)).

Ov)  次いで、レジストパターン107を除去した
後、熱処理を施した。その結果、注入深さの異なる砒素
イオン注入層が拡散されてゲート電極1051近傍で浅
く、ゲート電極1052から遠ざかる部分ではシリコン
層102とサファイア基板101の界面まで達するn型
のソース、ドレイン領域10B、 、 l 091が形
成された。同時に、注入深さの異なるボロンイオン注入
層が拡散されてゲート電極1052近傍で浅く、グー)
1極105.がら遠ざかる部分ではシリコン層102と
サファイア基板101の界面まで達するソース、ドレイ
ン領域1082*109□が形成され、n型、p型のド
レイン領域109. 、109.が互に接触して高濃度
接合されたnチャ/ネル、pチャンネルのMOS ) 
7ンジスタを有するCMOSを製造しfc(第4図(d
)図示)。
Ov) Next, after removing the resist pattern 107, heat treatment was performed. As a result, the arsenic ion-implanted layers with different implantation depths are diffused, and are shallow in the vicinity of the gate electrode 1051 and reach the interface between the silicon layer 102 and the sapphire substrate 101 in the part far from the gate electrode 1052, and the n-type source and drain regions 10B, , l 091 was formed. At the same time, boron ion implantation layers with different implantation depths are diffused and become shallow near the gate electrode 1052.
1 pole 105. Source and drain regions 1082*109□ reaching the interface between the silicon layer 102 and the sapphire substrate 101 are formed in the portion where the sapphire substrate 101 moves away from the source, and n-type and p-type drain regions 109. , 109. (n-channel/channel, p-channel MOS in which the MOS transistors are in contact with each other and are highly concentrated)
A CMOS with 7 transistors was manufactured and fc (Fig. 4(d)
).

しかして、本発明方法によればSiのイオン注入をレジ
ストパターン103をマスクとして行なう以外は通常の
CMOSプロセスにより電流リークの発生、ショートチ
ャンネル効果を防止したCMOSを製造できるため、工
程の簡素化、歩留りの向上を達成できる。
According to the method of the present invention, a CMOS that prevents current leakage and short channel effects can be manufactured using a normal CMOS process except for implanting Si ions using the resist pattern 103 as a mask. Yield improvement can be achieved.

また、上記方法では少なくともチャンネル領域の結晶性
は改質されるため、各トランジスタの動作゛速度等の特
性は従来のSiイオンにより結晶性を改質したCMOS
と同様、確保できる。
In addition, since the crystallinity of at least the channel region is modified in the above method, the characteristics such as the operating speed of each transistor are similar to those of conventional CMOS whose crystallinity has been modified with Si ions.
Similarly, it can be secured.

なお、上記実施例では各トランジスタのソース領域の一
部もシリコン層とサファイア基板の界面にまで達するよ
うにしたが、これに限定されない。例えは各トランジス
タの境界付近を除くシリコン層に81のイオン注入、熱
処理による結晶性改質を行ない、以後は実施例と同様な
工程で処理することにより、第5図に示す如く、浅いソ
ース領域10B、’ 、108□′と、互に接触する側
のみシリコン層102とサファイア基板101の界面ま
で達するドレイン領域1091゜1092を有するCM
O8を製造してもよい。
Note that in the above embodiment, a portion of the source region of each transistor also reaches the interface between the silicon layer and the sapphire substrate, but the present invention is not limited to this. For example, by performing 81 ion implantation and heat treatment to modify the crystallinity of the silicon layer except for the vicinity of the boundary of each transistor, and then performing the same process as in the example, a shallow source region can be formed as shown in FIG. CM having drain regions 1091° and 1092 that reach the interface between the silicon layer 102 and the sapphire substrate 101 only on the sides that contact each other.
O8 may also be produced.

上記実施例では絶縁基板としてサファイア基板を用いた
が、これに限定されずスピネル基板等の他の絶縁基板を
用いてもよい。
Although a sapphire substrate was used as the insulating substrate in the above embodiment, the present invention is not limited to this, and other insulating substrates such as a spinel substrate may be used.

上記実施例では空気絶縁により島状のシリコン層を形成
したが、誘電体分離により島状のシリコン層を形成して
もよい。
In the above embodiment, the island-shaped silicon layer was formed by air insulation, but the island-shaped silicon layer may be formed by dielectric separation.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば電流リークの発生及
びショートチャンネル効果を防止できると共に、従来法
に比べて写真蝕刻工程を1回、イオン注入工程を2回減
少して工程の著しい簡素化を達成でき、ひいては高性能
、高信頼性のCMO8を量産的に製造し得る方法を提供
できる。
As detailed above, according to the present invention, current leakage and short channel effects can be prevented, and the process is significantly simplified by reducing the number of photo-etching steps by one and the number of ion-implantation steps by two compared to the conventional method. In addition, it is possible to provide a method for mass-producing CMO8 with high performance and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々従来の絶縁基板上に形成された
CMO8を示す断面図、第3図(a)〜(e)は従来の
改良されたCMO8の製造工程を示す断面図、諮4図(
a)〜(d)は本発明の実施例における絶縁基板上に形
成されたCMO8の製造工程を示す断面図、第5図は本
発明方法により得られたCMO8の他の実施例を示す断
面図である010゛1・・・サファイア基板、102・
・・島状のシリコン層、104□、104.・・・ゲー
ト酸化膜、1058,1052・・・ゲート電極、10
81−。 出願人代理人弁理士 鈴江武彦
FIGS. 1 and 2 are cross-sectional views showing a conventional CMO8 formed on an insulating substrate, and FIGS. 3(a) to (e) are cross-sectional views showing the manufacturing process of a conventional improved CMO8. Figure 4 (
a) to (d) are cross-sectional views showing the manufacturing process of CMO8 formed on an insulating substrate in an example of the present invention, and FIG. 5 is a cross-sectional view showing another example of CMO8 obtained by the method of the present invention. 010゛1...Sapphire substrate, 102.
... Island-shaped silicon layer, 104□, 104. ... Gate oxide film, 1058, 1052 ... Gate electrode, 10
81-. Patent attorney representing applicant Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に設けられた島状の半導体層にpチャンネル
MO8)ランシフタ及びnチャンネルMOS)ランシフ
タを夫々形成すると共に、各トランジスタのドレイン領
域を互に接触させて三者の境界を高濃度接合させた相補
型MOS半導体装置の製造にあたり、少なくとも前記各
トランジスタの境界付近を除く半導体層領域にシリコン
をイオン注入し、熱処理を施して該シリコンのイオン注
入領域の結晶性を改孤する工程と、前記半導体層の各ト
ランジスタ形成領域にゲート酸化膜を介してゲート電極
を夫々選択的に形成する工程と、少なくともゲート電極
をマスクとして前記半導体層のnチャンネルMOSトラ
ンジスタ形成領域にn型不純物を、同半導体層のpチャ
ンネルMO8)ランシフタ形成領域にp型不純物をドー
ピングする工程とを具備したことを特徴とする相補型M
OS半導体装置の製造方法。
A p-channel MO8) run shifter and an n-channel MOS) run shifter are respectively formed in an island-shaped semiconductor layer provided on an insulating substrate, and the drain regions of each transistor are brought into contact with each other to form a high-concentration junction between the three boundaries. In manufacturing a complementary MOS semiconductor device, a step of implanting silicon ions into the semiconductor layer region excluding at least the vicinity of the boundaries of each of the transistors, and performing heat treatment to break the crystallinity of the silicon ion implanted region; A step of selectively forming a gate electrode in each transistor formation region of the semiconductor layer via a gate oxide film, and applying an n-type impurity to the n-channel MOS transistor formation region of the semiconductor layer using at least the gate electrode as a mask. A complementary type M characterized by comprising the steps of: 8) doping a p-type impurity into the run shifter formation region of the p-channel MO layer.
A method for manufacturing an OS semiconductor device.
JP57188618A 1982-10-27 1982-10-27 Manufacture of complementary metallic oxide semiconductor device Pending JPS5978556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188618A JPS5978556A (en) 1982-10-27 1982-10-27 Manufacture of complementary metallic oxide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188618A JPS5978556A (en) 1982-10-27 1982-10-27 Manufacture of complementary metallic oxide semiconductor device

Publications (1)

Publication Number Publication Date
JPS5978556A true JPS5978556A (en) 1984-05-07

Family

ID=16226826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188618A Pending JPS5978556A (en) 1982-10-27 1982-10-27 Manufacture of complementary metallic oxide semiconductor device

Country Status (1)

Country Link
JP (1) JPS5978556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150362A (en) * 1984-12-25 1986-07-09 Toshiba Corp Manufacture of semiconductor device
JPH01278768A (en) * 1988-04-27 1989-11-09 General Electric Co <Ge> Semiconductor device having depth extension parts of source and drain and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150362A (en) * 1984-12-25 1986-07-09 Toshiba Corp Manufacture of semiconductor device
JPH0330993B2 (en) * 1984-12-25 1991-05-01 Tokyo Shibaura Electric Co
JPH01278768A (en) * 1988-04-27 1989-11-09 General Electric Co <Ge> Semiconductor device having depth extension parts of source and drain and its manufacture

Similar Documents

Publication Publication Date Title
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
JPH07321216A (en) Coms and its preparation
JPH05129536A (en) Semiconductor device and manufacture thereof
JPH07176608A (en) Semiconductor device and fabrication thereof
JPH04214634A (en) High-speed silicon-on-insulator device and its manufacture
JPS5978557A (en) Manufacture of complementary metallic oxide semiconductor device
JP3208159B2 (en) Method of manufacturing bipolar transistors and CMOS transistors on SOI substrate and those transistors
JPH0351108B2 (en)
JPH07142565A (en) Semiconductor device and manufacture thereof
JP2000174135A (en) Semiconductor device and manufacture thereof
JPS5978556A (en) Manufacture of complementary metallic oxide semiconductor device
JPH0575041A (en) Cmos semiconductor device
JPS60128668A (en) Manufacture of semiconductor device
JP3326990B2 (en) Bipolar transistor and method of manufacturing the same
JPH02224223A (en) Semiconductor device
JPH0481336B2 (en)
JPS63302562A (en) Manufacture of mos type semiconductor device
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JP3110313B2 (en) Method for manufacturing semiconductor device
JPS6245179A (en) Manufacture of semiconductor device
JPH0387059A (en) Semiconductor integrated circuit
JPS6395664A (en) Semiconductor device and manufacture thereof
JPH06216379A (en) Semiconductor device and its manufacture
JPS641933B2 (en)