JPS5978386A - Manufacture of electrooptic unit - Google Patents

Manufacture of electrooptic unit

Info

Publication number
JPS5978386A
JPS5978386A JP18866282A JP18866282A JPS5978386A JP S5978386 A JPS5978386 A JP S5978386A JP 18866282 A JP18866282 A JP 18866282A JP 18866282 A JP18866282 A JP 18866282A JP S5978386 A JPS5978386 A JP S5978386A
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel electrode
metal
electro
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18866282A
Other languages
Japanese (ja)
Inventor
直 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP18866282A priority Critical patent/JPS5978386A/en
Publication of JPS5978386A publication Critical patent/JPS5978386A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気光学装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an electro-optical device.

さらに詳しくは金属−絶縁膜−金属(Metal−工n
sulator−Metal)構造を持つ非線形素子(
以下M工M素子と呼ぶ)を備えた電気光学装置の製造方
法に関する。
For more details, see Metal-Insulating Film-Metal (Metal-Insulating Film-Metal)
A nonlinear element with a sulator-Metal structure (
The present invention relates to a method of manufacturing an electro-optical device equipped with an M element (hereinafter referred to as an M element).

近年、液晶を用いたg気光学装置の実用化が進み腕時計
、電卓を始めとして多くの分野に応用がなされている。
In recent years, the practical use of g-optical devices using liquid crystals has progressed, and they have been applied to many fields including wristwatches and calculators.

しかし、他の分野1例えば情報端末や個人用小形電子機
器等の表示部への応用を考えた場合、表示ユニットの容
積が小さい、低電圧駆動可能、消gjI電力が少ないと
いう利点にもがかわらず、駆11J電圧−コントラスト
特性があまり良くなく、多桁のマトリクス駆動が出来な
いため表示可能な情報量が少ないという欠点が問題とな
っていた。
However, when considering application to other fields, such as display units in information terminals and small personal electronic devices, the advantages of small display unit volume, low voltage drive, and low power consumption are still lacking. First, the voltage-contrast characteristics of the drive 11J were not very good, and because multi-digit matrix driving was not possible, the amount of information that could be displayed was small.

この液晶を用いた電気光学装置の持つ欠点を解消するた
めの一方法としてM1M素子を用いたマトリクス駆動が
考えられた。
Matrix driving using M1M elements has been considered as one method to eliminate the drawbacks of electro-optical devices using liquid crystals.

このMIM素子を組込んだ電気光学装置は第1図にその
概略の配置を示すように、M工M素子1及び該M工M素
子の一方の金属電極を形成する金属を用いた各M工M素
子を列方向に接続するリード部2及び基板外部との接続
を図る端子部5と画素電極4とから成る基板5と、リー
ド部2と直交するようなストライプ状電極を備えた対向
基板(図示せず)に液晶の配向処理を施して数It m
〜20IL rn程度の間隙を保って接着し液晶を封入
した後、偏光板を貼合わせて作られる。
As shown in FIG. 1, the electro-optical device incorporating this MIM element has an M-process M element 1 and each M-process using metal forming one metal electrode of the M-process M element. A substrate 5 consisting of lead portions 2 for connecting the M elements in the column direction, terminal portions 5 for connection to the outside of the substrate, and pixel electrodes 4, and a counter substrate ( (not shown) is subjected to liquid crystal alignment treatment, resulting in several It m
After adhering with a gap of about 20 IL rn and encapsulating liquid crystal, it is made by laminating a polarizing plate.

第2図は1画素分を拡大した図で、第3図は第2図Q−
6’部分の断面図である。
Figure 2 is an enlarged view of one pixel, and Figure 3 is a diagram of Figure 2 Q-
FIG. 6 is a cross-sectional view of the 6' portion.

従来の製造工程ではTσ、At、Nb等のバルブ金属を
用いてMIM素子1の一方の金属電極6、各MUM素子
の金属電極6を列方向に接続するリード部2及び基板外
部との接続を図る端子部6を形成した後、陽極酸化して
金属電極乙の表面に酸化膜7を形成してMIM素子1の
絶縁膜とする。
In the conventional manufacturing process, a valve metal such as Tσ, At, or Nb is used to connect one metal electrode 6 of the MIM element 1, the lead part 2 that connects the metal electrode 6 of each MUM element in the column direction, and the connection to the outside of the substrate. After the desired terminal portion 6 is formed, an oxide film 7 is formed on the surface of the metal electrode B by anodic oxidation to serve as an insulating film of the MIM element 1.

さらに、NiCr/Au 、Or/Au等の金属でM工
M素子1の対向電極8及び画素電極4との接続部9を形
成した後、S rI02  、 I n2 o3あるい
は工T。
Furthermore, after forming the counter electrode 8 of the M element 1 and the connection part 9 with the pixel electrode 4 with metal such as NiCr/Au or Or/Au, S rI02 , In2 o3 or T is formed.

(工n203−4−3nO2)等の透明導電性薄膜で画
素電極4を形成してMIM素子側の基板が完成する。
The pixel electrode 4 is formed using a transparent conductive thin film such as (N203-4-3nO2), and the substrate on the MIM element side is completed.

対向基板と組合わせ液晶を封入した時点での1画素分の
等何回路は第4図に示すようになり、容量Q MIMと
非線形抵抗RMIMを持つMIM素子1と容1JObc
と抵抗Rhoを持つ液晶部分1oとが直列に接続されて
いると考えることが出来る。
The equivalent circuit for one pixel when combined with the counter substrate and sealed with the liquid crystal is shown in Figure 4, with MIM element 1 having capacitance Q MIM and nonlinear resistance RMIM and capacitor 1JObc.
It can be considered that the liquid crystal portion 1o having the resistance Rho and the liquid crystal portion 1o are connected in series.

この場合、動作原理はマ) IJクス駆動の選択期間内
にMIM素子1の低抵抗状態を利用して液晶部分10の
容量Obcに電荷を蓄積し、非選択期間内はMIM素子
1の高抵抗状態を利用して前述の電荷を保持することに
より液晶に電界を印加して液晶の配向状態を制御して表
示を行なうと言える。この場合、M工M素子1の非線形
性と液晶部分10の容量CLc及び抵抗RLcの相互関
係で液晶に印加される実効値が決定される。
In this case, the operating principle is that the low resistance state of the MIM element 1 is utilized during the selection period of the IJ drive to accumulate charge in the capacitor Obc of the liquid crystal portion 10, and the high resistance state of the MIM element 1 is accumulated during the non-selection period. It can be said that display is performed by applying an electric field to the liquid crystal to control the alignment state of the liquid crystal by holding the above-mentioned charge using the state. In this case, the effective value applied to the liquid crystal is determined by the interrelationship between the nonlinearity of the M element 1 and the capacitance CLc and resistance RLc of the liquid crystal portion 10.

前述の従来の製造工程では画素電極4形成のフォトリン
グラフ工程で基板上のゴミ、フォトレジスト中のゴミあ
るいはその他の原因で例えば第5図に示すようにリード
2と画素電極4が重なったりすると画素電極につながる
M工M素子が実質上2個になり、M工M素子と液晶部分
の電気特性の整合がずれて正常な動作をしなくなり、電
気光学゛装置としては表示欠陥になるという欠点を有し
ていた。
In the conventional manufacturing process described above, if the lead 2 and the pixel electrode 4 overlap due to dust on the substrate, dust in the photoresist, or other causes during the photoringraph process for forming the pixel electrode 4, as shown in FIG. The disadvantage is that there are essentially two M elements connected to the pixel electrode, and the electric characteristics of the M element and the liquid crystal part become mismatched, resulting in abnormal operation, resulting in a display defect as an electro-optical device. It had

本発明はこのような欠点を除去するためGこ、異常形状
の画素電極を陽極酸化工程で修正しようとするものであ
る。
In order to eliminate such defects, the present invention attempts to correct the abnormally shaped pixel electrode by an anodizing process.

以下、実施例に従って説明する。Hereinafter, explanation will be given according to examples.

実施例 パイレックスガラス基板上にT(+2011及びTα薄
膜を形成する。そして、M工M素子の一方の金属電極6
、該金属電極6を列方向に接続する1)−ド2及び該リ
ード2と基板外部との電気的接続を図るための端子部を
バターニングする。
EXAMPLE A thin film of T(+2011 and Tα) is formed on a Pyrex glass substrate. Then, one metal electrode 6 of the M element
1) The leads 2 for connecting the metal electrodes 6 in the column direction and the terminal portions for electrically connecting the leads 2 to the outside of the substrate are patterned.

次に工TO薄膜をスパッタにて形成し、通常σ〕フォト
リングラフ工程によって画素電極4をノぐターニングす
る。更に、レジストを塗布し、ブlノヘークを行なった
後、再度画素電極形状に露光・現像を行ないポストベー
クする。ここで画素電極4のパターニングを行なった時
にゴミなどの原因で形状が異常になった画素電極4があ
ったとしても、通常の7オトリソグラフエ程に伴う洗浄
などでゴミが除去されていることが多く、異常形状とな
つ−た画素電極4上に再び形成されたレジストの形状が
再び異常となることは殆んど無く、例えば第6図(a)
ニ示スようにバターニングされた画素電極4上に再度形
成されたレジスト12は第6図(6)の斜線部で示すよ
うに正常な形状となる。
Next, a TO thin film is formed by sputtering, and the pixel electrode 4 is turned by a photolithography process. Furthermore, after applying a resist and performing a blank-hake process, exposure and development are performed again in the shape of the pixel electrode, followed by post-baking. Even if there is a pixel electrode 4 whose shape becomes abnormal due to dust or the like when patterning the pixel electrode 4, the dust has been removed by cleaning etc. associated with the normal 7 otolithography steps. The shape of the resist formed on the pixel electrode 4 which has become abnormal again rarely becomes abnormal again, for example, as shown in FIG. 6(a).
The resist 12 formed again on the patterned pixel electrode 4 has a normal shape as shown by the hatched area in FIG. 6(6).

この状態でリード部2及びM T、 M素子の一方の金
属電極6部をクエン酸水溶液中で陽極酸化すると、リー
ド部2と重なり合ってレジスト12に被覆されていない
画素電極4のITOは電気化学的に除去され、画素電極
4の形状修正が成される。
In this state, when the lead part 2 and the metal electrode 6 part of one of the MT and M elements are anodized in a citric acid aqueous solution, the ITO of the pixel electrode 4 which overlaps with the lead part 2 and is not covered with the resist 12 is electrochemically oxidized. The shape of the pixel electrode 4 is corrected.

レジスト12を除去した後、M工M素子の対向電極8と
ずべ(Orを蒸着しパターニングする。
After removing the resist 12, a counter electrode 8 of the M element (Or) is deposited and patterned.

更に液晶の配向処理を施し、別に製造し、同じく液晶の
配向処理を施した対向基板を10μmの間隙を保つよう
接着し液晶を封入した後、偏光板を貼って電気光学装置
とする。
Further, a liquid crystal alignment process is performed, and a separately produced counter substrate which has also been subjected to a liquid crystal alignment process is adhered to maintain a gap of 10 μm to encapsulate the liquid crystal, and then a polarizing plate is attached to form an electro-optical device.

以上説明したように本発明によれば画素電極の異常形状
に起因する表示欠陥を少なくした電気光学装置を得るこ
とが出来る。
As described above, according to the present invention, it is possible to obtain an electro-optical device in which display defects caused by abnormal shapes of pixel electrodes are reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はM工M素子を備えた基板の概略を示す平面図で
ある。 第2図は第1図の1画素分を拡大した図である。 −第3図は第2図a−a’の断面図である。 第4図はMXM素子及び液晶を用いた電気光学装置の1
画素分の等価回路である。 第5図は異常形状となった画素電極例を示す図である。 第6図は本発明の実施例における画素電極の修正を説明
する図である。 以  上 第1図 第2図 第4図
FIG. 1 is a plan view schematically showing a substrate provided with an M element. FIG. 2 is an enlarged view of one pixel in FIG. - Figure 3 is a sectional view taken along line aa' in Figure 2; Figure 4 shows one example of an electro-optical device using an MXM element and liquid crystal.
This is an equivalent circuit for pixels. FIG. 5 is a diagram showing an example of a pixel electrode that has an abnormal shape. FIG. 6 is a diagram illustrating modification of a pixel electrode in an embodiment of the present invention. Above Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 2枚の基板間に液晶を封入し、少なくとも一方の基板上
に、行列配置された複数の画素電極と、該画素電極に結
合された金属−絶縁膜−金属構造を持つ非線形素子とを
備えた電気光学装置の製造方法において、該非線形素子
の絶縁膜は一方の金属を陽極酸化することによって得ら
れ、かつ該画素電極は陽極酸化工程以前に形成されると
共に、陽極酸化工程中はレジストによって保護されてい
ることを特徴とする電気光学装置の製造方法。
A liquid crystal is sealed between two substrates, and at least one of the substrates is provided with a plurality of pixel electrodes arranged in rows and columns, and a nonlinear element having a metal-insulating film-metal structure coupled to the pixel electrodes. In the method for manufacturing an electro-optical device, the insulating film of the nonlinear element is obtained by anodizing one of the metals, and the pixel electrode is formed before the anodizing process and is protected by a resist during the anodizing process. A method for manufacturing an electro-optical device, characterized in that:
JP18866282A 1982-10-27 1982-10-27 Manufacture of electrooptic unit Pending JPS5978386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18866282A JPS5978386A (en) 1982-10-27 1982-10-27 Manufacture of electrooptic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18866282A JPS5978386A (en) 1982-10-27 1982-10-27 Manufacture of electrooptic unit

Publications (1)

Publication Number Publication Date
JPS5978386A true JPS5978386A (en) 1984-05-07

Family

ID=16227649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18866282A Pending JPS5978386A (en) 1982-10-27 1982-10-27 Manufacture of electrooptic unit

Country Status (1)

Country Link
JP (1) JPS5978386A (en)

Similar Documents

Publication Publication Date Title
JPH0534673B2 (en)
JPH01217325A (en) Liquid crystal display device
JPH0677186B2 (en) Thin film decoder multi-layer liquid crystal display device
EP0504792B1 (en) Liquid crystal display device
JPS5978386A (en) Manufacture of electrooptic unit
JPH04265945A (en) Active matrix substrate
JPS599635A (en) Electrooptic device
JPS6266231A (en) Liquid crystal display element
JPH05203997A (en) Liquid crystal display device
JPS58178320A (en) Electrooptic device
JP2590670B2 (en) Manufacturing method of electro-optical device
JP2868758B1 (en) Liquid crystal display
JPH0446412B2 (en)
JP2537612B2 (en) Liquid crystal display element
JP3287290B2 (en) Anodizing method, anodizing equipment
JPH0731329B2 (en) Method for manufacturing liquid crystal display substrate
JPS5983191A (en) Manufacture of electrooptic unit
JPH0519302A (en) Manufacture of matrix array substrate
JPH0356456B2 (en)
JP2001222022A (en) Liquid crystal cell and its manufacturing method
JPS58127985A (en) Liquid crystal display
JPH03215834A (en) Active matrix substrate
JPH10177180A (en) Liquid crystal display device
JPS6292919A (en) Liquid crystal display element for multiplex driving system
JPS5842027A (en) Production for liquid crystal display device