JPS5977311A - Capacitor type converter - Google Patents

Capacitor type converter

Info

Publication number
JPS5977311A
JPS5977311A JP18708982A JP18708982A JPS5977311A JP S5977311 A JPS5977311 A JP S5977311A JP 18708982 A JP18708982 A JP 18708982A JP 18708982 A JP18708982 A JP 18708982A JP S5977311 A JPS5977311 A JP S5977311A
Authority
JP
Japan
Prior art keywords
voltage
pulse width
capacitance
capacity
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18708982A
Other languages
Japanese (ja)
Inventor
Terutaka Hirata
平田 輝孝
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP18708982A priority Critical patent/JPS5977311A/en
Publication of JPS5977311A publication Critical patent/JPS5977311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To compensate for nonlinearity effectively, by using a pair of variable capacitors, whose capacity is differentially varied in correspondence with the quantity to be measured, and a reference capacitor, whose capacity is constant. CONSTITUTION:A pair of variable capacitors C1 and C2 are constituted by a movable electrode 10, which is displaced in correspondence with the quantity to be measured such as pressure, and fixed electrodes 11 and 12. The capacity of a reference capacitor C3 is constant. A capacity pulse width converting circuit C/P detects the change in capacity of the capacitors and outputs a pulse width signal PW1, whose duty ratio corresponds to the difference in capacities of the capacitors C2 and C1 and a pulse width signal PW1, whose duty ratio corresponds to the difference in capacities of the capacitors C2 and C3. A switch SW2 is driven by the signal PW2 and turns ON and OFF a preset voltage Vr. An integrating circuit IC adds and integrates a voltage, which is obtained by turning ON and OFF the voltage Vr by the switch SW2, an output voltage Vo, and a reference voltage VS1, and obtains the voltage Vr. A filter circuit FC smoothes the voltage, which is turned ON and OFF by a switch SW1 and obtains the output voltage Vo.

Description

【発明の詳細な説明】 本発明は、圧力、差圧等の被測定量に応じて可動電極が
変位し容量が差動的に変化する一対の可変コンデンサを
用いた容量式変換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitive transducer using a pair of variable capacitors whose movable electrodes are displaced and whose capacitance differentially changes depending on a measured quantity such as pressure or differential pressure.

一般に容量式変換器においては、可変コンデンサに並列
に存在するストレイ容量の影響を受けて直線性が悪い欠
点があった。また圧力変換器のように可動電極が被測定
量に応じて変位する金属ダイヤスラムの場合には、被測
定量と容量との関係が双曲線で表わせるものが多く、被
測定量と出力とが非直線になっていた。
In general, capacitive converters have the disadvantage of poor linearity due to the influence of stray capacitance that exists in parallel with the variable capacitor. In addition, in the case of metal diaphragms such as pressure transducers in which the movable electrode is displaced according to the measured quantity, the relationship between the measured quantity and the capacitance is often expressed as a hyperbola, and the measured quantity and output are often expressed as a hyperbola. It was non-linear.

本発明は、被測定量に応じて容量が差動的に変化する一
対の可変コンデンサと容量が一定な基準コンデンサを用
い、一対の可変コンデンサの容量の差に応じたデユティ
レシオの第1のパルス幅信号および一対の可変コンデン
サのいずれか一方の容量と基準コンデンサの容量の差に
応じたデユティレシオの第2のパルス幅信号を得、第1
のパルス幅信号で設定電圧をオンオフした後平滑して出
力電圧を得るとともに、この出力電圧の一部を基準電圧
に加算し、この加算電圧に第2のパルス幅信号のデユテ
ィレシオの逆数を乗じた値を設定電圧とすることによっ
て、上述の如き非直線性を有効に補償できる容量式変換
器を実現したものである。
The present invention uses a pair of variable capacitors whose capacitance differentially changes depending on the measured quantity and a reference capacitor whose capacitance is constant, and the first pulse width of the duty ratio is determined according to the difference in capacitance of the pair of variable capacitors. A second pulse width signal with a duty ratio corresponding to the signal and the difference between the capacitance of one of the pair of variable capacitors and the capacitance of the reference capacitor is obtained;
After turning the set voltage on and off using the pulse width signal of By setting the value as the set voltage, a capacitive converter is realized that can effectively compensate for the nonlinearity as described above.

第1図は本発明変換器の一実施例を示す接続図である1
J図において、C□、C2は一対の可変コンデンサで、
圧力等の被測定量に応じて変位する可動′!を極10と
この可動電極10に対向配置されている固定電極1.1
.12とで構成されている。C3は容量が一定な基準コ
ンデンサである。C/Pは容量パルス幅変換回路で、一
対の可変コンデンサC1,C2と基準のである。
FIG. 1 is a connection diagram showing one embodiment of the converter of the present invention.
In diagram J, C□ and C2 are a pair of variable capacitors,
Movable that moves according to the measured quantity such as pressure! a pole 10 and a fixed electrode 1.1 arranged opposite to this movable electrode 10.
.. It consists of 12. C3 is a reference capacitor with constant capacitance. C/P is a capacitive pulse width conversion circuit, which is connected to a pair of variable capacitors C1 and C2 as a reference.

C/Pの具体的な構成の一例を第2図に示す。第2図に
オイテ、5W11.5W12.5W13(4そn ソレ
コンテンザC□、C2,C3に並列に接続された電界効
果トランジスタ等のスイッチ、PGti周期Tおよび時
間幅tが一定なパルスP1を出力するパルス発生器、B
A、、 BA2. BA3は各々バッファアンプ、cp
l、 cp2゜C20は各々コンパレータ、G1.G2
.G3.G4.G5は各々ノアゲート、工vはインバー
タである。5W11 rSWSWl ”W13はPGか
らの第3p(イ)に示す如き一定周期Tで一定パルス幅
tのパルスP1によって同RK駆動され、tの期間オン
になる。オンになるとC□。
An example of a specific configuration of the C/P is shown in FIG. Fig. 2 shows the output, 5W11.5W12.5W13 (4 parts), a switch such as a field effect transistor connected in parallel to C2 and C3, PGti, which outputs a pulse P1 with a constant period T and time width t. Pulse generator, B
A, BA2. BA3 is a buffer amplifier, cp
l, cp2°C20 are comparators, G1. G2
.. G3. G4. G5 is a Noah gate, and G5 is an inverter. 5W11 rSWSWl "W13 is driven by the same RK with a pulse P1 of a constant period T and a constant pulse width t as shown in the third p (a) from the PG, and is turned on for a period of t. When turned on, C□.

C2,C3に充電されていた電荷が放電し、オフになる
と抵抗R□□、R□2.R□3を介して直流電源Vaよ
υの電流でC□、C2,C3が充電される。その結果C
□、C2゜C3ノ充電電圧VC□、vO2,vc3ハ第
3図<口)K示すようになる。コンパレータCp1.C
p2.Cp3でBAl、 BA2゜BA3を介して与え
られるvcl、vO2,vO3を監視し、vcl、vO
2,vO3が一定値vbに達するとCpl、C20,C
20の出力が第3図(ハ)、に)、(ホ)に示すように
反転する。
When the charges stored in C2 and C3 are discharged and turned off, the resistors R□□, R□2. C□, C2, and C3 are charged with the current of DC power supply Va through R□3. The result C
□, C2° C3 charging voltage VC□, vO2, VC3 is shown in Fig. 3. Comparator Cp1. C
p2. Cp3 monitors vcl, vO2, vO3 given through BAl, BA2゜BA3, and vcl, vO
2. When vO3 reaches a certain value vb, Cpl, C20, C
The output of 20 is inverted as shown in FIGS.

VC□、vO2,vO3がvbに達すルマテノ時間を1
1.12゜t3とすると、ノアゲートG4.G5の出力
端にはそれぞれ第3図(へ)、(ト)に示すようにデー
ティレシオがt2−t1t2−t3 −  9    なるノ(ルス@信号pw1. pw2
が生T          T する。そして、t□、t2.t3は抵抗R□ITR□2
.R□3の値をR□1− R□2 ” R□3=Rとす
ると、t1= k C1(1) t2=kC2(2) t3−kC3(5) ただし、k = −Re n (1−Wb/Va)で力
見られるので、pwl、 pw2のデーティレシオはそ
れぞれC2と01の容量の差およびC2と03の容量の
差に応じたものとなる。
The time required for VC□, vO2, and vO3 to reach vb is 1
1.12°t3, Noah Gate G4. At the output terminal of G5, as shown in FIGS.
is live T T . And t□, t2. t3 is resistance R□ITR□2
.. If the value of R□3 is R□1-R□2 ” R□3=R, then t1=k C1(1) t2=kC2(2) t3-kC3(5) However, k=-Re n (1 -Wb/Va), the duty ratios of pwl and pw2 correspond to the difference in capacitance between C2 and 01 and the difference in capacitance between C2 and 03, respectively.

再び第1図において、SW□、 5W2U各々スイツチ
で、SW  けパルス幅信号PW1で駆動され、SW2
はパルス幅信号pW2で駆動されてそれぞれ設定電圧V
rをオンオフするものである。なおスイッチSW1゜S
W2としては電界効果トランジスタ等の電子スイッチが
好適である。ICは演算増幅器Op2を用いた積分回路
で、入力(−ンに抵抗R□を介して加えられる設定電圧
VrをスイッチSW2でオンオフした電圧と、抵抗R2
を介して加えられる出力電圧Voと、抵抗R3を介して
加えられる基準電圧VS1とを加算積分して設定電圧V
rを得るものである。FCは演算増幅器OP1を用いた
フィルタ回路で、SWlでオンオフされた電圧を平滑し
て出力電圧Voを得るものである。
Again in FIG. 1, SW□ and 5W2U are each driven by a switch, and SW2 is driven by the pulse width signal PW1.
are driven by the pulse width signal pW2 to set the respective set voltages V
It turns on and off r. In addition, switch SW1゜S
As W2, an electronic switch such as a field effect transistor is suitable. The IC is an integrator circuit using an operational amplifier Op2.
The set voltage V is obtained by adding and integrating the output voltage Vo applied through the resistor R3 and the reference voltage VS1 applied through the resistor R3.
This is to obtain r. FC is a filter circuit using an operational amplifier OP1, which smoothes the voltage turned on and off by SW1 to obtain an output voltage Vo.

このように構成した本発明変換器において、pW2の周
期Tが積分回路ICの時定数C工R1に比較し十分に短
かく、定常状態に達しているときの積分回路ICの出力
電圧の直流分をVrとすると、積分回路ICの平均入力
電流は零となるので、フィルタ回路FCの出力電圧の直
流分をVoとすると次式の関係が成立する。
In the converter of the present invention configured as described above, the period T of pW2 is sufficiently short compared to the time constant C R1 of the integrating circuit IC, and the DC component of the output voltage of the integrating circuit IC when the steady state is reached. When Vr is the average input current of the integrating circuit IC, the average input current of the integrating circuit IC is zero. Therefore, when the DC component of the output voltage of the filter circuit FC is Vo, the following relationship holds true.

同様にパルス幅信号PW10周期Tがフィルタ回路FC
の時定数CF、R5に比較し十分に短かいので、定常状
態に達しているときのフィルタ回路FCの出力電圧の直
流分vOは となる。(4)式と(5)式からvOは。
Similarly, the pulse width signal PW10 period T is the filter circuit FC.
Since the time constants CF and R5 are sufficiently short compared to the time constants CF and R5, the DC component vO of the output voltage of the filter circuit FC when the steady state is reached is as follows. From equations (4) and (5), vO is.

となる。このようにvOはpWlのパルス幅(12−1
1)に大きく依存しているので、12=1□のときの出
力の点(零点)はスイッチSWよ、SW2の浮遊容量、
抵抗R□l R21R31R41R5の温度変化などの
影響を受けず、零点の安定性がよい。またパルスp□の
周期Tが変化してもその影響を受けない。(6)式に(
り式。
becomes. In this way, vO is the pulse width of pWl (12-1
1), the output point (zero point) when 12=1□ is the stray capacitance of switch SW2,
Resistor R□l R21R31R41R5 is not affected by temperature changes and has good zero point stability. Further, even if the period T of the pulse p□ changes, it is not affected by the change. In equation (6), (
Ri ceremony.

(2)式および(3)式を代入すると、Voは次式で表
わすことができる。
By substituting equations (2) and (3), Vo can be expressed by the following equation.

一方可変コンデンサClIC2の容量は変位量Xに対し
、初期容量をCo、可動電極10と固定電極11(12
)間の込1−亭間ト;°kをd(x=Oのとき)および
ストレイ容量をCsとすると、 C1= Co −7,−+ Cs          
     (8ンC2“Co−Hニア+ Cs    
          (9)の関係で変化する。よって
出力電圧Voは、となる。ここで、基準コンデンサC3
の容量をC3=Cs                
 Of)に選べば、出力電圧vOは、 となる。よって、 を満足するように可変抵抗R3の抵抗値を調整すれば、
出力電圧Voは、 となり、 R2,RA、 d、 Vslは一定値である
ので、出力電圧vOは変位量Xに正確に対応したものと
なる。
On the other hand, the capacitance of the variable capacitor ClIC2 is determined by setting the initial capacitance to Co for the displacement amount
) If k is d (when x=O) and stray capacity is Cs, then C1= Co -7,-+ Cs
(8n C2 “Co-H near + Cs
It changes due to the relationship (9). Therefore, the output voltage Vo is as follows. Here, the reference capacitor C3
The capacity of C3=Cs
Of), the output voltage vO is as follows. Therefore, if the resistance value of variable resistor R3 is adjusted to satisfy the following,
The output voltage Vo is as follows. Since R2, RA, d, and Vsl are constant values, the output voltage vO corresponds accurately to the amount of displacement X.

すれば、出力電圧vOの増加率は変位量Xが犬きくば、
変位量Xが大きくなる程増加率が減少するようになり、
入出力関係を非直線にできる。しかもその非直線性の大
きさは抵抗値R3の値を変えることによって設定できる
。したがって、例えば金属ダイヤフラムで差圧や圧力を
変位に変換する場合には、被測定量と可動電極10の変
位量Xとの非直線性を補正できる。すなわちリニアライ
ズができる。
Then, the rate of increase of the output voltage vO is as follows:
As the amount of displacement X increases, the rate of increase decreases,
The input/output relationship can be made non-linear. Moreover, the magnitude of the nonlinearity can be set by changing the value of the resistance value R3. Therefore, when converting differential pressure or pressure into displacement using a metal diaphragm, for example, the nonlinearity between the amount to be measured and the amount of displacement X of the movable electrode 10 can be corrected. In other words, linearization is possible.

なお上述では、可変抵抗R3を!4整してリニアライズ
を行う場合を例示したが、第4図に示すように出力電圧
vOを増幅器Aで増幅した後抵抗R3を介して積分回路
ICE与えるようにすれば、出力電圧Voは、増幅器A
のゲインをkXC3=C8とすると、となり、増幅善人
のゲインkを調整することによってリニアライズができ
る。なお第4図においては増幅器Aとして、演算増幅器
Op3と演算抵抗R6゜R7からなる非反転形のものが
示されており、そのゲインには(n6+ R7)/ne
で与えられ、演算抵抗R6ま幅信号PW2で駆動する場
合を例示したが、第5図に示すように増幅器Aを反転形
にすれば、可変コのパルス幅信号PW3で駆動するよう
にしてもよい。
In addition, in the above, variable resistor R3! Although the case where linearization is performed by adjusting the output voltage Vo is shown as an example, if the output voltage Vo is amplified by the amplifier A and then applied to the integrating circuit ICE via the resistor R3 as shown in FIG. 4, the output voltage Vo becomes Amplifier A
If the gain of is kXC3=C8, then linearization can be achieved by adjusting the gain k of the amplified good person. In addition, in FIG. 4, a non-inverting type amplifier A consisting of an operational amplifier Op3 and an operational resistor R6°R7 is shown, and its gain is (n6+R7)/ne.
, and the calculation resistor R6 is driven by the width signal PW2, but if the amplifier A is made inverted as shown in FIG. 5, it can also be driven by the variable pulse width signal PW3. good.

この場合の出力電圧vOは、C3−C6とすると、とな
り、抵抗R3ま入は増幅器Aのゲインkを調整すること
によってリニア2イズができる。なお第4図および第5
図においてスイッチsw1. sW2の一端と基準点間
に接続した抵抗r□、r2はSW□、 SW2の素子や
配線の浮遊容量の影響を除くためのものである。なお抵
抗r□+ r2の代りにSW□+ SW2と逆位相でオ
ンオフするスイッチとしてもよく、まりSWl。
The output voltage vO in this case is C3-C6, and by adjusting the gain k of the amplifier A, the resistance R3 can be linearly raised. In addition, Figures 4 and 5
In the figure, switch sw1. The resistors r□ and r2 connected between one end of sW2 and the reference point are used to eliminate the influence of stray capacitance of the elements and wiring of SW□ and SW2. Note that instead of the resistor r□+r2, a switch that turns on and off in the opposite phase to SW□+SW2 may be used, or SWl.

SW2’t )ランスファスイッチとしてもよい。なお
上述では基準コンデンサC3の容量を調整してC3=C
sヲ満足させる場合を例示したが、第2図の抵抗R13
ヲ可変抵抗としてC3−CsR/It13@満足するよ
うにR□3を調整しても同様にできる。ただし、この場
合n−n□□=R1□である。
SW2't) May be used as a transfer switch. In addition, in the above, the capacitance of the reference capacitor C3 is adjusted so that C3=C
Although the case where swo is satisfied is illustrated, the resistor R13 in FIG.
The same effect can be achieved by adjusting R□3 as a variable resistor to satisfy C3-CsR/It13@. However, in this case, n-n□□=R1□.

以上説明したように本発明においては、被測定量に応じ
て容量が差動的に変化する一対の可変コンデンサと容量
が一定な基準コンデンサを用い、一対の可変コンデンサ
の容量の差に応じたデーティレシオの第1のパルス幅信
号および一対の可変コンデンサのいずれか一方の容量と
基準コンデンサの容量の差に応じたデユティレシオの第
2のパルス幅信号を得て、第1のパルス幅信号で設定電
圧をオンオフして出力電圧を得るとともに、この出力電
圧と基準電圧との加算電圧に第2のパルス幅信号のデユ
ティレシオの逆数を乗じた値を設定電圧とするようにし
ているので、簡単な構成で有効に非直線性を補正できる
容部式変換器が得られる。
As explained above, in the present invention, a pair of variable capacitors whose capacitance differentially changes depending on the measured quantity and a reference capacitor whose capacitance is constant are used, and the date ratio is set according to the difference in capacitance of the pair of variable capacitors. A first pulse width signal and a second pulse width signal with a duty ratio corresponding to the difference between the capacitance of one of the pair of variable capacitors and the reference capacitor are obtained, and the set voltage is set using the first pulse width signal. It turns on and off to obtain the output voltage, and the set voltage is the sum of the output voltage and the reference voltage multiplied by the reciprocal of the duty ratio of the second pulse width signal, so it is effective with a simple configuration. A container-type transducer that can correct nonlinearity is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明変換器の一実施例を示す接続図、第2図
は本発明変換器に用いる容量パルス幅変換回路の具体的
な結成の一例を示す接続図、第3図はその動作説明のだ
めの波形図、第4図および第5図は本発明変換器の他の
実施例を示す接続図である。 C1,C2・・・一対の可変コンデンサ、C3・・・基
準コンデンサ、CIP・・・容量パルス幅変換回路、S
Wl、SW2・・・スイッチ、IC・・・積分回路、F
C・・・フィルタ回路、Opl、O20,O20・・・
演算増幅器、Vs□・・・基準電圧、A・・・増幅器。
Fig. 1 is a connection diagram showing an embodiment of the converter of the present invention, Fig. 2 is a connection diagram showing an example of a specific configuration of a capacitive pulse width conversion circuit used in the converter of the present invention, and Fig. 3 is its operation. 4 and 5 are connection diagrams showing other embodiments of the converter of the present invention. C1, C2... A pair of variable capacitors, C3... Reference capacitor, CIP... Capacitance pulse width conversion circuit, S
Wl, SW2...Switch, IC...Integrator circuit, F
C... Filter circuit, Opl, O20, O20...
Operational amplifier, Vs□...Reference voltage, A...Amplifier.

Claims (1)

【特許請求の範囲】[Claims] 被測定量に応じて容量が差動的に変化する一対の可変コ
ンデンサと、容量が一定な基準コンデンサと、前記一対
の可変コンデンサの容量の差に応じたデユティレシオの
第1のパルス幅信号および一対の可変コンデンサのいず
れか一方の容量と基準コンデンサの容量の差に応じたデ
ユティレシオの第2のパルス幅信号を得る回路と、前記
第1のパルス幅信号で設定電圧をオンオフした後平滑し
て出力電圧を得る手段と、この出力電圧と基準電圧との
加算電圧に前記第2のパルス幅信号のデユティレシオの
逆数を乗算した値を前記設定電圧と′する手段とを;自
する容量式変換器。
a pair of variable capacitors whose capacitance differentially changes depending on the quantity to be measured; a reference capacitor whose capacitance is constant; and a first pulse width signal with a duty ratio corresponding to the difference in capacitance of the pair of variable capacitors. a circuit for obtaining a second pulse width signal with a duty ratio corresponding to the difference between the capacitance of either one of the variable capacitors and the capacitance of the reference capacitor, and a circuit that turns on and off a set voltage using the first pulse width signal and then smoothes and outputs the signal. A capacitive converter comprising: means for obtaining a voltage; and means for setting the set voltage to a value obtained by multiplying the sum of the output voltage and the reference voltage by the reciprocal of the duty ratio of the second pulse width signal.
JP18708982A 1982-10-25 1982-10-25 Capacitor type converter Pending JPS5977311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18708982A JPS5977311A (en) 1982-10-25 1982-10-25 Capacitor type converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18708982A JPS5977311A (en) 1982-10-25 1982-10-25 Capacitor type converter

Publications (1)

Publication Number Publication Date
JPS5977311A true JPS5977311A (en) 1984-05-02

Family

ID=16199911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18708982A Pending JPS5977311A (en) 1982-10-25 1982-10-25 Capacitor type converter

Country Status (1)

Country Link
JP (1) JPS5977311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682270U (en) * 1991-12-14 1994-11-25 段谷産業株式会社 Directly applied decorative flooring
DE102018005906A1 (en) 2017-08-14 2019-02-14 Fanuc Corporation Stator and engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682270U (en) * 1991-12-14 1994-11-25 段谷産業株式会社 Directly applied decorative flooring
JP2533781Y2 (en) * 1991-12-14 1997-04-23 段谷産業 株式会社 Directly applied decorative flooring
DE102018005906A1 (en) 2017-08-14 2019-02-14 Fanuc Corporation Stator and engine

Similar Documents

Publication Publication Date Title
JPH07181094A (en) Method and device for feedback control for asymmetrical differential-pressure transducer
JPS5977311A (en) Capacitor type converter
JPS5928845B2 (en) displacement converter
JPS6139330Y2 (en)
JPS5912311A (en) Capacitor type converter
JPS59133422A (en) Capacity type converter
JPH0122085Y2 (en)
JPS6352686B2 (en)
JPS62186607A (en) Triangular wave generator
JPS59133421A (en) Capacity type converter
JPH1047993A (en) Variable capacitance sensor system
JPS6020004Y2 (en) capacitive converter
JPS59112223A (en) Capacity type converter
JPS6342330Y2 (en)
JPH0216450B2 (en)
JPH0374324B2 (en)
JPS59176622A (en) Capacity type converter
JPS6098328A (en) Temperature and static pressure compensating method of pressure and differential pressure transmitter
JPS622547Y2 (en)
JPH03149922A (en) D/a converter
JPS5950612A (en) Analog-digital converter
JPH05273265A (en) Frequency measuring circuit
JPS5935769Y2 (en) capacitive converter
JPS60224017A (en) Arithmetic processing circuit for distance measuring instrument
JPH0122086Y2 (en)