JPS6098328A - Temperature and static pressure compensating method of pressure and differential pressure transmitter - Google Patents

Temperature and static pressure compensating method of pressure and differential pressure transmitter

Info

Publication number
JPS6098328A
JPS6098328A JP58206725A JP20672583A JPS6098328A JP S6098328 A JPS6098328 A JP S6098328A JP 58206725 A JP58206725 A JP 58206725A JP 20672583 A JP20672583 A JP 20672583A JP S6098328 A JPS6098328 A JP S6098328A
Authority
JP
Japan
Prior art keywords
pressure
signal
fluctuations
temperature
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58206725A
Other languages
Japanese (ja)
Other versions
JPH047460B2 (en
Inventor
Atsushi Kimura
木村 惇
Megumi Katayama
片山 芽
Saichiro Morita
森田 佐一郎
Hideki Kuwayama
桑山 秀樹
Yoshiji Fukai
深井 吉士
Tamotsu Kobayashi
保 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58206725A priority Critical patent/JPS6098328A/en
Publication of JPS6098328A publication Critical patent/JPS6098328A/en
Publication of JPH047460B2 publication Critical patent/JPH047460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms

Abstract

PURPOSE:To compensate fluctuations of the zero point and the span with an inexpensive and simple constitution by compensating these fluctuations due to fluctuations of temperature and static pressure on a basis of the fluctuation of a dielectric constant of a sealed liquid. CONSTITUTION:Signals related to electrostatic capacities C1 and C2 obtained through an operating circuit 11 are led to a dielectric constant operating circuit 19, and a zero point fluctuation compensating signal proportional to the dielectric constant is calculated. This signal is added to the output signal of the operating circuit 11 at an addition point 20 to compensate the fluctuation of the zero point due to fluctuations of temperature and static pressure. The dielectric constant may be operated on a basis of the electrostatic capacity of a reference electrostatic capacity means 21 provided in a sealed liquid 5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はプロセス制御装置に用いられるベローズ又はダ
イヤフラム等の受圧要素を用いた差圧又は圧力伝送器に
おいて問題とされる、温度又は静圧変動に起因するゼロ
点変動又はスパン変動を補償する方法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention addresses temperature or static pressure fluctuations that are a problem in differential pressure or pressure transmitters using pressure receiving elements such as bellows or diaphragms used in process control devices. The present invention relates to a method for compensating for zero point fluctuations or span fluctuations caused by.

〈従来技術〉 第1図は差圧伝送器の従来の温度、静圧変動によるゼロ
点変動、スパン変動補償の概念を説明するだめの構成図
である。1は一室構造の差圧伝送器の本体断面を示し、
両端面に測定すべき圧力PH+PLを受けるダイヤ72
ム2,3がその周縁をこの本体に溶接されて配置されて
おシ、本体に形成された貫通孔4とこれらダイヤフラム
で囲まれた中空室内にはシリコン油等の封液5が満たさ
れている。
<Prior Art> FIG. 1 is a block diagram for explaining the concept of compensating for zero point fluctuations and span fluctuations due to temperature and static pressure fluctuations in a conventional differential pressure transmitter. 1 shows a cross section of the main body of a differential pressure transmitter with a one-chamber structure,
Diamond 72 receives pressure PH+PL to be measured on both end faces
The diaphragms 2 and 3 are arranged with their peripheral edges welded to the main body, and a through hole 4 formed in the main body and a hollow chamber surrounded by these diaphragms are filled with a sealing liquid 5 such as silicone oil. There is.

中空室中央部には拡大された電極室が形成され、この電
極室内には本体に嵌合した絶縁材6に片側が支持された
移動電極7及びこれに対向して静電容icm、C2を形
成するだめの固定電極8,9が配置されている。10拡
中空室を介して両ダイヤフラム2.3の中央部を連結す
るロッドで、その中央部は電極室内において移動電極7
に固定されており、差圧に応動したダイヤフラムの変位
を移動電極に演算が施され、直流出力信号e。K変換さ
れる。この信号e。は出力回路12に導かれて、遠隔点
の負荷PL、電源EBの直列回路に対し、4〜20 m
A スパンの出力電流工。に変換される。13は本体1
の温度Tを測定する温度センサ、14は封液5の圧力即
ち静圧P8を測定する圧力センサであシ、これらセンサ
の出力は、補償電圧発生回路15.16に導かれ、ゼロ
点補償用温度信号GT Hゼロ点補償用静圧信号epに
変換され、加算点i7.18で演算回路11の出力信号
e。に加算又は減算されて温度変動又は静圧変動に対す
るゼロ点の変動が補償される。温度又は静圧変動に対し
てダイヤフラム2,3のバネ定数変化等によシ生ずるス
パン変動が問題になる場合は、補償電圧発生回路15.
1.6よシ点線で示すスパン変動補償用温度信号、静圧
信号 ° ゛ を発生さeT、 eP せ、出力回路12の電圧−電流変換利得を変化させてス
パンの変動を補償する。
An enlarged electrode chamber is formed in the center of the hollow chamber, and in this electrode chamber, a movable electrode 7 supported on one side by an insulating material 6 fitted to the main body and an electrostatic capacitor icm, C2 are formed opposite to this. Further fixed electrodes 8 and 9 are arranged. 10 is a rod that connects the central parts of both diaphragms 2.3 through an enlarged hollow chamber, and the central part is connected to the movable electrode 7 in the electrode chamber.
The displacement of the diaphragm in response to the differential pressure is calculated on the moving electrode, and the DC output signal e. K-transformed. This signal e. is led to the output circuit 12 and connected to the series circuit of the load PL at the remote point and the power supply EB at a distance of 4 to 20 m.
A span output current. is converted to 13 is main body 1
14 is a pressure sensor that measures the pressure of the sealing liquid 5, that is, the static pressure P8, and the outputs of these sensors are led to compensation voltage generation circuits 15 and 16 for zero point compensation. The temperature signal GTH is converted into the static pressure signal ep for zero point compensation, and the output signal e of the arithmetic circuit 11 at the addition point i7.18. is added to or subtracted from to compensate for zero point fluctuations due to temperature fluctuations or static pressure fluctuations. If span fluctuations caused by changes in the spring constants of the diaphragms 2 and 3 due to temperature or static pressure fluctuations become a problem, the compensation voltage generation circuit 15.
1.6 The temperature signal and static pressure signal ° ゛ for compensating for span fluctuations shown by dotted lines in 1.6 are generated, and the voltage-current conversion gain of the output circuit 12 is changed to compensate for the fluctuation in span.

このような補償方式をとる場合は、温度センサ13及び
圧力センサ14を本体1内に設ける必要がある。本体内
に温度センサを設けた従来技術は例えば実開昭55−1
3317号に、又本体内に圧力センサを設けた従来技術
は例えば特開昭54−67480号に示されている。
If such a compensation method is used, it is necessary to provide the temperature sensor 13 and the pressure sensor 14 inside the main body 1. Conventional technology that installed a temperature sensor inside the main body is, for example, Utility Model Application No. 55-1
3317, and a conventional technique in which a pressure sensor is provided inside the main body is disclosed in, for example, Japanese Patent Laid-Open No. 54-67480.

このように1温度センサ、圧力センサを特別に設ける構
成は、特に圧力センサを本体内に設ける場合、伝送器の
構造が複雑高価となる欠点を有する。
This configuration in which one temperature sensor and one pressure sensor are specially provided has the disadvantage that the structure of the transmitter is complicated and expensive, especially when the pressure sensor is provided inside the main body.

〈本発明の構成〉 本発明は上記従来技術の欠点を解消する温度。<Configuration of the present invention> The present invention overcomes the drawbacks of the prior art described above.

静圧の補償方法を提供するものであって、その特徴点は
、封液の訪′rrL率の変化が温度又は静圧によって変
化することを利用し、防電率変化を検出して温度変動及
ブ゛静圧変動の両方又は一方を補償するととKある。
This method provides a static pressure compensation method, and its feature is that it uses the fact that the rate of contact of the sealing liquid changes with temperature or static pressure, detects changes in electrical resistance, and compensates for temperature fluctuations. There are two ways to compensate for both or one of static pressure fluctuations and static pressure fluctuations.

実施例の説明に先立ち、ゼロ点変動の発生要因並びに本
発明補償方法の原理につき、第2図〜第4図を用いて説
明する。第2図は、第1図の一室構造の差圧伝送器を横
形的に示したものであって、ダイヤフラム2.3.4>
j液5、ロッド1oよりなる。
Prior to explaining the embodiments, the causes of zero point fluctuation and the principle of the compensation method of the present invention will be explained using FIGS. 2 to 4. FIG. 2 is a horizontal view of the one-chamber structure differential pressure transmitter shown in FIG.
It consists of J liquid 5 and rod 1o.

AH+ ALはダイヤフラム2,3の有効面積、FH2
FLはダイヤフラム2,3よυロッド10に与えられる
力、■は封液5の容積、p□は封液5の内圧、pSは静
圧を夫々示す。−室構造の差圧伝送器のゼロ点変動の要
因のほとんどは、ダイヤフラム2,3の有効面積AH”
Lに製造過程でわずかの差が生じることに起因する。
AH+AL is the effective area of diaphragms 2 and 3, FH2
FL indicates the force applied to the diaphragms 2 and 3 and the υ rod 10, ■ indicates the volume of the sealing liquid 5, p□ indicates the internal pressure of the sealing liquid 5, and pS indicates the static pressure. - Most of the causes of zero point fluctuation in a differential pressure transmitter with a chamber structure are the effective area AH of the diaphragms 2 and 3.
This is due to slight differences in L during the manufacturing process.

今、有効面積AH>ALの場合に温度変化ΔTによシ封
液の体積VがΔV増加し、その結果封液の内圧PiがΔ
P1□上昇する(P□〉Pの状態となる)と、FF の
変化ΔF 、ΔFL□は、夫々H’ L H1 ΔFH1=AH×Δp□□ (左方向に発生)Δ・FL
□=AL×ΔP□□ (右方向に発生)、となる。ここ
でAH> ALであるから、ΔF 〉ΔF となシ、左
方向のゼロ点食HI Ll 動が発生する。
Now, when the effective area AH>AL, the volume V of the sealing liquid increases by ΔV due to the temperature change ΔT, and as a result, the internal pressure Pi of the sealing liquid increases by ΔV.
When P1□ rises (it becomes the state of P□>P), the changes in FF ΔF and ΔFL□ are respectively H' L H1 ΔFH1=AH×Δp□□ (occurs in the left direction) Δ・FL
□=AL×ΔP□□ (occurs in the right direction). Here, since AH>AL, ΔF>ΔF, and a leftward zero point eclipse HI Ll movement occurs.

次に静圧PがΔp上昇することによシ封液の容S 積がΔV減少しく非圧縮性の封液でも実際にはわずかな
圧縮特性を有する)、内圧がΔpi2減少する(p <
pの状態となる)と、FH2FLの変化ΔF 、ΔFL
2 は、夫々 2 ΔFH2=AH×ΔP (右方向に発生)2 ΔFL2 ”” AL XΔPi2 (左方向に発生)
となる。ここでAH>ALであるから、ΔF 〉ΔF 
となシ、右方向のゼロ点食H2L2 動が発生する。
Next, as the static pressure P increases by Δp, the volume S of the sealing liquid decreases by ΔV (even incompressible liquid actually has slight compressive properties), and the internal pressure decreases by Δpi2 (p <
p state) and changes in FH2FL ΔF, ΔFL
2 are respectively 2 ΔFH2=AH×ΔP (occurs to the right) 2 ΔFL2 ”” AL XΔPi2 (occurs to the left)
becomes. Here, since AH>AL, ΔF > ΔF
Then, a zero-pointing H2L2 movement to the right occurs.

有効面積の関係が逆の場合、即ちAH< ALの場合は
温度及び静圧変動による変動の発生方向は上記とは逆方
向となる。
When the relationship between the effective areas is reversed, that is, when AH<AL, the direction of variation due to temperature and static pressure variation is opposite to that described above.

即ち、有効面積差に起因するゼロ点変動の発生方向は、
温度上昇によるものと静圧上昇によるものとは反対方向
となることがわかる。第3図(4)。
In other words, the direction of zero point fluctuation due to the difference in effective area is
It can be seen that the increase in temperature and the increase in static pressure are in opposite directions. Figure 3 (4).

(B)はこれらの関係を図示したものであって、温度誤
差が(4)のごとく負方向であれば、静圧誤差はの)の
ごとく正方向となる。(4)、(B)において点線で示
したものが有効面積差に起因する誤差であり、これを補
償することによシ、ゼロ点変動を大幅に減少させると七
ができる。
(B) illustrates these relationships; if the temperature error is in the negative direction as in (4), the static pressure error is in the positive direction as in (). In (4) and (B), the error shown by the dotted line is the error caused by the difference in effective area, and by compensating for this, the zero point fluctuation can be significantly reduced.

上記ゼロ点変動は、封液の体積変化(密度変化)に基く
内圧変化に起因して発生している。ここで封液の温度変
化及び静圧変化に対する変化率と、封液の防電率εの温
度変化及び静圧変化に対する変化率との関係をみると、
例えば一般的なシリコンオイルでは、 工、4EL−−上、!L8工 (2) V Δp ′ ε ΔP 1.30 と表わされ、誘電率εの温度又は静圧による変化率と封
液の温度又は静圧による体積変化率とはほぼ等しいこと
がわかる。このことは、誘電率6の変化を検出して封液
の温度又は静圧による体積変化を検出することが可能で
あることを示している。
The above-mentioned zero point fluctuation occurs due to an internal pressure change based on a volume change (density change) of the sealing liquid. Here, looking at the relationship between the rate of change of the sealing liquid with respect to temperature changes and static pressure changes, and the rate of change of the sealing liquid's electrical resistance ε with respect to temperature changes and static pressure changes,
For example, with common silicone oil, 4EL--upper,! L8 (2) It is expressed as V Δp ′ ε ΔP 1.30, and it can be seen that the rate of change in dielectric constant ε due to temperature or static pressure is almost equal to the rate of change in volume due to temperature or static pressure of the sealing liquid. This indicates that it is possible to detect changes in volume due to temperature or static pressure of the sealing liquid by detecting changes in dielectric constant 6.

ゼロ変動は封液の体積変化に起因して有効面積差がある
場合に生ずるのであるから、U電率の変化によりn液の
体析変化が検出できれば、この検出信号にミル)てゼロ
点変動の補償が可能である。
Since zero fluctuation occurs when there is a difference in effective area due to a change in the volume of the sealing liquid, if a change in the composition of the n liquid can be detected by a change in the U electric rate, the zero point fluctuation can be calculated by using this detection signal. compensation is possible.

ここて−、誘電率εは一般に基準状態CT=2oC。Here, the dielectric constant ε is generally in the reference state CT=2oC.

p = Okg/am )の誘電率6に対してT、Po
p化ΔT、ΔPに対し、α、βを定数としてa=js(
1−αΔT十βΔP ) (3)で表わされ、温度に対
する変化方向と静圧に対する変化方向とが逆の特性を有
している。
T, Po for the dielectric constant 6 of p = Okg/am
For p conversion ΔT and ΔP, a=js(
1 - αΔT + βΔP ) (3) It has a characteristic that the direction of change with respect to temperature and the direction of change with respect to static pressure are opposite.

一方第3図のようにゼロ点誤差は温度、静圧では逆極性
に発生するから、誘電率に比例する信号に適当な係数(
極性を含む)を乗じて、第1図における出力信号e。に
加算するようKすれば、温度変動によるゼロ点変動と静
圧変動によるゼロ点変動を同時に補正することが可能で
ある・即ち、誘電率の変化を検出して補償する方法をと
れば、変動の発生要因がダイヤ72ムの有効面積差に起
因する場合は、従来技術のように、W液センサ、圧力セ
ンサを本体内に設けることなく、ゼロ点変動を有効に補
償することができる。
On the other hand, as shown in Figure 3, the zero point error occurs with opposite polarity at temperature and static pressure, so an appropriate coefficient (
(including polarity) to produce the output signal e in FIG. By adding K to If the cause of this is due to a difference in the effective area of the diamond 72, the zero point fluctuation can be effectively compensated for without providing a W liquid sensor or a pressure sensor in the main body as in the prior art.

誘電率εの検出の具体的手段は、封液5内に基準静電容
量を設け、この容量変化を検出する方法でもよいが、差
圧に応動して変化する静電容1kc 。
A specific means for detecting the dielectric constant ε may be a method of providing a reference capacitance in the sealing liquid 5 and detecting a change in this capacitance, but the capacitance 1kc changes in response to the differential pressure.

C2に基いても演算で容易にめることができ、特別なセ
ンサを必要としない構成が可能である。
It can be easily calculated based on C2, and a configuration that does not require a special sensor is possible.

第4図は本発明の補償方法を適用した差圧・圧力伝送器
の原理的プロ、り線図であシ、第1図と対応する要素1
同−信号で示す。演算回路11を介して得られるC□、
C2に関連した信号は、誘電率演算回路19に導かれて
U電率6に比例したゼロ点変動補償信号eTPが算出さ
れ、加算点2oで演算回路11の出力信号e。と加算さ
れて温度、静圧の変動によるゼロ点変動が同時に補償さ
れる。21社封液5内に設けた基準静電容量手段であシ
、この静電容量CsK基いて誘電率5を演算するようK
してもよい。eTpIは誘電率演算回路19で演算され
る、スパン変動補償信号であp1加算点21でe。に加
算する方法で補償することができる。スパン変動の補償
については後の実施例で具体的に説明する。
Figure 4 is a diagram showing the principle of a differential pressure/pressure transmitter to which the compensation method of the present invention is applied, and elements 1 corresponding to Figure 1.
This is indicated by the same signal. C□ obtained through the arithmetic circuit 11,
The signal related to C2 is guided to the dielectric constant calculation circuit 19, where a zero point fluctuation compensation signal eTP proportional to the U electric constant 6 is calculated, and the output signal e of the calculation circuit 11 is obtained at the addition point 2o. is added to compensate for zero point fluctuations due to temperature and static pressure fluctuations. It is a reference capacitance means provided in the sealing liquid 5 of 21 companies, and K is used to calculate the dielectric constant 5 based on this capacitance CsK.
You may. eTpI is a span variation compensation signal calculated by the dielectric constant calculation circuit 19; Compensation can be done by adding to the amount. Compensation for span fluctuations will be specifically explained in later embodiments.

第5図は、ゼロ点変動を本発明方法で補償した差圧伝送
器の回路の具体例を示すものであって、差圧に関連して
変化する静電容量C□、c2は演算回路11に導かれて
、デユーティがC□、C2に関連したパルス信号に変換
された後、平滑されて直流出力信号e。K変換される。
FIG. 5 shows a specific example of a circuit of a differential pressure transmitter in which zero point fluctuation is compensated by the method of the present invention. The duty is converted into a pulse signal related to C□, C2, and then smoothed to form a DC output signal e. K-transformed.

11内の構成要素はコンパレータを形成する増幅器G工
、G2、切換スイッチを形成するゲート03〜G5、カ
ウンタCT1、インバータG6.C7及び双方向性定電
流回路cc1を組合せた自己発振回路で、C工に関連す
る周期の発振パルスがカウンタCT□でn個計数される
とC2に関連する発振に切換わシ、このパルスが同様に
n個計数され間が02(又はその逆)に関連し、振幅が
基準電圧Vのデユーティサイクル信号を得る(この演算
回路の詳細についてtま特開昭57−14714号に説
明されて因る)。
11 includes an amplifier G and G2 forming a comparator, gates 03 to G5 forming a changeover switch, a counter CT1, an inverter G6 . This is a self-oscillation circuit that combines C7 and bidirectional constant current circuit cc1. When n oscillation pulses with a period related to C are counted by counter CT□, the oscillation is switched to related to C2, and this pulse In the same way, n pieces are counted to obtain a duty cycle signal whose interval is related to 02 (or vice versa) and whose amplitude is the reference voltage V. ).

第6図■はカウンタCT□の出力波形で、オン時間T□
が01に、オフ時間T2が02に関連する。■はインバ
ータG7の出力で、■と逆位相の信号である。
Figure 6 ■ is the output waveform of the counter CT□, and the on time T□
is associated with 01, and off time T2 is associated with 02. 2 is the output of the inverter G7, and is a signal with the opposite phase to 2.

この信号が抵抗R1、コンデンサc3のフィルタで平滑
されて直流出力(fi号e。に変換され、出力回路12
の増幅器A□の非反転入力端子Y点に加算抵抗R2を介
して供給される。VRlはゼーAI!整手段で、その出
力は加算抵抗It3を介してY点に接続されている。V
H2は増@器A□の帰還回路に設けたスパン調整手段で
、増幅器A2により、基準電圧V、の1/2 Kバイア
スされている。従って増幅器A□の入力e。は幅器A3
に導かれて、出力電流工。が与えられる帰還抵抗RLに
発生する帰還電圧eFと比較増幅され、出力トランジス
タTRを駆動して出力電流工。を制御する。
This signal is smoothed by a filter consisting of a resistor R1 and a capacitor c3 and converted into a DC output (fi No. e.
The signal is supplied to the non-inverting input terminal Y of the amplifier A□ via the adding resistor R2. VRl is Zee AI! The output is connected to the Y point via the summing resistor It3. V
H2 is a span adjustment means provided in the feedback circuit of the amplifier A□, and is biased by 1/2 K of the reference voltage V by the amplifier A2. Therefore, the input e of amplifier A□. is width gauge A3
Guided by the output current engineer. is compared and amplified with the feedback voltage eF generated in the feedback resistor RL given to it, and drives the output transistor TR to generate an output current. control.

次にこのような構成に付加される、本発明方法を適用し
た誘電率演算回路19について説明する。
Next, a dielectric constant calculation circuit 19 to which the method of the present invention is applied, which is added to such a configuration, will be explained.

M□は単安定回路で、第6図■のデー−ティサイクル信
号を受け、その立上りでトリガされてT□+T2よシは
短い■のごとき一定時間T。の出力パルスを発生させる
。RCはTを決定する時定数回路で4p 4 0 ある。SW□は信号のを信号■で開閉するスイッチ、R
5,C5はスイッチSW□の出力信号を平滑するフィル
タである。従って、このフィルタの出力信号Oの電圧は
・”” 1−KJp (K’定数 7P゛差圧C:定数
)とすると、 となる。この電圧は更に■の信号で開閉するスイッチS
W2を介してフィルタR6,C6を充電する。
M□ is a monostable circuit which receives the data cycle signal shown in Fig. 6 (■) and is triggered at the rising edge of the signal, and the circuit operates for a certain period of time T (2), which is shorter than T□+T2. generates an output pulse of RC is a time constant circuit that determines T and has 4p 4 0. SW□ is a switch that opens and closes the signal with the signal ■, R
5 and C5 are filters that smooth the output signal of the switch SW□. Therefore, the voltage of the output signal O of this filter is 1-KJp (K' constant 7P, differential pressure C: constant). This voltage is further increased by the switch S, which opens and closes with the signal ■.
Filters R6 and C6 are charged via W2.

SW3は同じく■の信号で8w2と逆位相で開閉し、コ
ノフィルタの充電々荷を放電するスイッチである。この
構成によりフィルタR6,C6の出力■の電圧Vθは、 °vz =c−■ 、ε“A、ε (A:定数)(5)Toz となシ、vθは誘電率εに比例する。この電圧はバッフ
ァ増幅器A その出力を受ける反転増幅器A54′ によシ正負の電圧v0+、’ Vθ−に変換され、極性
選択及び係数設定用のポテンショメータvR3で適当な
係数と極性のゼロ点変動補償信号。TPに変換され、加
算抵抗R6を介してY点に導かれ、出力信号eoに加算
され、温度及び静圧変動によるゼロ点変動が補償される
。vR4は信号eTpに適当なバイアスを供給するため
の調整手段である。
SW3 is a switch that similarly opens and closes in the opposite phase to 8w2 with the signal ■, and discharges the charge of the cono filter. With this configuration, the voltage Vθ of the output (■) of the filters R6, C6 becomes °vz = c - ■, ε"A, ε (A: constant) (5) Toz, and vθ is proportional to the dielectric constant ε. The voltage is converted into positive and negative voltages v0+ and 'Vθ- by an inverting amplifier A54' which receives the output of the buffer amplifier A, and a zero point fluctuation compensation signal with an appropriate coefficient and polarity is generated by a potentiometer vR3 for polarity selection and coefficient setting. It is converted to TP, guided to point Y via the addition resistor R6, and added to the output signal eo to compensate for zero point fluctuations due to temperature and static pressure fluctuations.vR4 supplies an appropriate bias to the signal eTp. It is a means of adjustment.

第7図は、−に比例するゼロ点変動補償信号eTpを得
るための演算回路の例であり、M2.II(3は単安定
回路で、時定数はT□、T2の最短周期よりは短い一定
時間T。で同一とされ、M2は信号■で、M3は信号■
でトリガされ、その出力が信号■、■で駆動されるスイ
ッチsw、、 sw5で開閉された後フィルタで平滑さ
れる。各フィルタの出力8号[F]、◎の電圧は、 これら電圧が抵抗R8,R9を介して加算された信号■
の電圧■θは、 VB=(p)十〇=(1+に、JP +’に、Kal 
P )’ro−v72vz、I CTo ε −B・−(B:定数)(6) となり、土に比例したものとなる。これ以後の回路構成
は第5図の場合と同様でおる。7を演算する構成は、ε
を演算する構成に比較してスイッチが少なく簡素となる
利点がある。6の変化範囲は小さいので、−も温瓜、静
圧に対して直線的に変化し、この信号を補償信号として
も第5図の場合と補償効果は変らない。
FIG. 7 is an example of an arithmetic circuit for obtaining a zero point fluctuation compensation signal eTp proportional to -M2. II (3 is a monostable circuit, the time constant is T□, constant time T is shorter than the shortest period of T2. They are the same, M2 is the signal ■, and M3 is the signal ■
The output is opened and closed by switches sw, sw5 driven by signals ① and ②, and then smoothed by a filter. The voltage of output No. 8 [F] and ◎ of each filter is the signal ■
The voltage ■θ is VB = (p) 10 = (1+, JP +', Kal
P)'ro-v72vz, ICTo ε -B・-(B: constant) (6), which is proportional to the soil. The subsequent circuit configuration is the same as that shown in FIG. The configuration for calculating 7 is ε
This has the advantage of being simpler with fewer switches than a configuration that calculates . Since the variation range of 6 is small, - also varies linearly with respect to the temperature and static pressure, and even if this signal is used as a compensation signal, the compensation effect is the same as in the case of FIG. 5.

第5図、第7図の実施例はゼロ点変動補償の場合のみの
適用例であるが、スパン変動の補償信号をゼロ点変動補
償信号に重畳させて得ることも容易に出来る。第8図は
6に比例した信号よシ、ゼロ点変動補償信号とスパン変
動補償信号を同時に得る例であシ、フィルタR6”6の
出力に上記(5)式のV、を得るまでの構成は第5図と
同様である。この信号v、に更にスイッチsw6. s
w7によシ信号■を乗算してR8”7のフィルタで平滑
した電圧■θ′は、人を定数として となる。この電圧を演算増幅器へ〇の非反転入力端子に
加え、A6の出力電圧V。とVθとを、ポテンショメー
タvR5によシ(1−α):αの比率に分配して八〇の
反転入力端子に加えると、出力電圧■。は、にΔP2α
−1(8) =εA ’ 2. + a A (2a)となる。(8
)式の第1項はスパン変動補償信号成分、第2項がゼロ
点変動補償信号成分を表わし、αを調整することによシ
、両成分の比率を変えることができる。Vo夏以後構成
は第5図と同様である。
Although the embodiments shown in FIGS. 5 and 7 are applied only to zero point variation compensation, it is also possible to easily obtain a span variation compensation signal by superimposing it on the zero point variation compensation signal. Figure 8 is an example in which a signal proportional to 6 is obtained, a zero point fluctuation compensation signal and a span fluctuation compensation signal at the same time, and the configuration is until the output of the filter R6''6 obtains V in equation (5) above. is the same as in Fig. 5.This signal v is further connected to a switch sw6.s
The voltage ■θ' obtained by multiplying w7 by the signal ■ and smoothing it with the filter of R8''7 becomes the voltage ■θ', where the value is a constant.This voltage is applied to the non-inverting input terminal of 〇 to the operational amplifier, and the output voltage of A6 is When V. and Vθ are distributed to the ratio of (1-α):α by potentiometer vR5 and applied to the inverting input terminal of 80, the output voltage ■ is ΔP2α.
-1(8) = εA' 2. + a A (2a). (8
) The first term in the equation represents the span fluctuation compensation signal component, and the second term represents the zero point fluctuation compensation signal component, and the ratio of both components can be changed by adjusting α. The configuration after Vo summer is the same as that shown in FIG.

又−に比例した電圧を得る第8図の出力■、に対しても
同様の演算でゼロ点変動補償信号とスパン変動補償信号
を同時に得ることが可能である。
Furthermore, it is possible to simultaneously obtain a zero point fluctuation compensation signal and a span fluctuation compensation signal using the same calculation for the output (2) in FIG. 8, which obtains a voltage proportional to -.

このようなスパン変動補償の方法は、第1図において説
明した、出力回路12内の電圧−電流変換利得を変える
方法とは異なシ、入力にスパン変動補償信号を重畳させ
る方法であシ、ゼロ点変動の補償方法と基本的に同一構
成とすることができ、第9図のように1共通の回路手段
で、両補償信号を重畳して扱うことができ、補償回路の
構成を簡素化することが可能である。
This method of span variation compensation is different from the method of changing the voltage-to-current conversion gain in the output circuit 12 explained in FIG. The configuration can be basically the same as the point fluctuation compensation method, and as shown in FIG. 9, both compensation signals can be handled in a superimposed manner using one common circuit means, simplifying the configuration of the compensation circuit. Is possible.

第9図は、第4図において説明した基準静電容量手段2
1を設けてuL率6を別途検出する場合の誘電率演算回
路の構成例を示す。C8は21の一端をその入力に受け
る比較増幅器で入出力間に双方向性定電流回路CC2が
接続され、その出力がインバータG9を介して21の他
端に接続されて、基準容量Csに比例しだ周期Ts□の
パルス信号を発生する自己発振回路が形成されている。
FIG. 9 shows the reference capacitance means 2 explained in FIG.
An example of the configuration of a dielectric constant calculation circuit in the case where a uL ratio of 6 is provided and a uL ratio of 6 is separately detected is shown. C8 is a comparator amplifier that receives one end of 21 at its input, and a bidirectional constant current circuit CC2 is connected between the input and output, and its output is connected to the other end of 21 via inverter G9, and the output is proportional to the reference capacitance Cs. A self-oscillation circuit is formed that generates a pulse signal with a period Ts□.

このパルス−の周期T8□は、CC2の定電流を11電
源電圧をV、とすると、 Ta2”]ジC8 となる。このパルスをカウンタCT2でn個カウントし
て得られるパルスの周期Tは、 z T2モnT1子n+TC8=AC8(A:定数)(9)
となる。この信号により単安定回路Mをトリガして得ら
れる一定パルス幅Toの信号でスイッチSW6フイルタ
で平滑して得られる電圧Vθは、C8−6Cとすると、 =B・ε (B:定数) αQ となシ、誘電率に比例しだものとなる。この信号を適当
な係数設定手段22を介して・加算点2oに供給してゼ
ロ点変動補償が行なわれる。
The period T8□ of this pulse is given by Ta2'']C8, where the constant current of CC2 is 11 and the power supply voltage is V.The period T of the pulse obtained by counting n pulses with the counter CT2 is: z T2mon T1 child n + TC8 = AC8 (A: constant) (9)
becomes. The voltage Vθ obtained by smoothing the signal with a constant pulse width To by triggering the monostable circuit M with this signal by the switch SW6 filter is, assuming C8-6C, =B・ε (B: constant) αQ and However, it is proportional to the dielectric constant. This signal is supplied to the addition point 2o via an appropriate coefficient setting means 22 to compensate for zero point fluctuation.

このように、誘電率εを検出するだめの手段を別途設け
る方法でも本発明を実現することができ、力平衡式の差
圧伝送器や、半導体ストレンゲージ等で差圧又は圧力を
取出す方式の伝送器のごとく、静電容量変化を用いない
伝送器ににも本発明を適用することが可能である。
In this way, the present invention can also be realized by providing a separate means for detecting the dielectric constant ε, and it is possible to realize the present invention by separately providing a means for detecting the dielectric constant ε. The present invention can also be applied to a transmitter that does not use capacitance change, such as a transmitter.

第10図は差圧検出用の静電容量c1.c2を交流発振
器で励振し、各容量を流れる電流の差から差圧又は圧力
を検出する方式の伝送器に本発明を適用の振幅は増幅器
A7で制御される。cpはC□、C2と同−m境に設置
される基準静電容量で、e、で励振され、これを流れる
電流はダイオードD□で整流され、抵抗R9,静電容量
C8のフィルタ回路で直流電圧に変換され、この電圧と
一定電圧V8とが増幅器A7で比較増幅され、O20の
出力e、が制御される。従って ■S′″ejm R9CP (’1 となる。静電容i C,、C2もejで励振され、これ
らを流れる電流は夫々ダイオードD2.D3で整流され
、抵抗R工。、静電容量Cc:、、抵抗R工0.静電容
量C工。
FIG. 10 shows capacitance c1 for differential pressure detection. The amplitude of the present invention is applied to a transmitter that excites c2 with an AC oscillator and detects the differential pressure or pressure from the difference in current flowing through each capacitor.The amplitude is controlled by the amplifier A7. cp is a reference capacitance installed at the same -m border as C□ and C2, excited by e, the current flowing through it is rectified by diode D□, and is filtered by a filter circuit of resistor R9 and capacitance C8. This voltage is converted into a DC voltage, and this voltage and a constant voltage V8 are compared and amplified by an amplifier A7, and the output e of O20 is controlled. Therefore, ■S'''ejm R9CP ('1).The capacitances i C, and C2 are also excited by ej, and the currents flowing through them are rectified by diodes D2 and D3, respectively, and the resistor R and capacitance Cc: ,,Resistance R work 0.Capacitance C work.

のフィルタ回路で夫々電圧V1.V2に変換される。The filter circuits each have a voltage V1. Converted to V2.

こ℃ような構成により、 Vl” CI RIO′ejO’I V2 ′:C2R11(11ej となる。ここで、+19”’ Rlo−R□□とすれば
、01〜(ロ)式及びC1=“”1−にΔp・C2=“
” 1+に、戸−より、 が得られる。これら電圧は演算回路23によシ、の演算
が施され、出力信号e。が発生する。
With this configuration, Vl"CI RIO'ejO'I V2':C2R11(11ej).Here, if +19"'Rlo-R□□, then 01~(b) formula and C1=" 1- to Δp・C2=“
``1+'' and ``1+'' are obtained from the door-.These voltages are subjected to the calculation of ``2'' by the arithmetic circuit 23, and an output signal e is generated.

誘電率6を算出する手段はブロック24〜26で実現さ
れる。プロ、り24はC□に関連する電圧V□を受を比
較する。この結果A8の出力のデー−ティサイクルD1
は、 と力る。このデー−ティ信号で更にスイッチSW8を開
閉し、一定電圧V、をサンプルしてフィルタで平滑した
出力v3は、 となる。
Means for calculating the dielectric constant 6 are implemented in blocks 24-26. 24 compares the voltage V□ associated with C□. As a result, the data cycle D1 of the output of A8
, I say. This data signal further opens and closes the switch SW8, and the constant voltage V is sampled and smoothed by a filter, resulting in the output v3.

ブロック25はブロック24と同様構成で、C2に関連
する電圧v2を受け、 α力 ■ −一・−−vF 2v2 なる電圧Vを発生する。これら電圧V3.v4は力U算
回路26で加算され、その出力Vθは、ve = V3
+V4−2 、V3HVF(v〒−+v、 )となる。
The block 25 has the same configuration as the block 24, receives the voltage v2 related to C2, and generates the voltage V expressed as α force -1·-vF 2v2 . These voltages V3. v4 is added by the force U calculation circuit 26, and its output Vθ is ve = V3
+V4-2, V3HVF (v〒-+v, ).

これにα◆、θQ式を代入すると、となり、−に比例す
る。
Substituting the α◆ and θQ equations into this, we get, which is proportional to -.

従って、この信号を係数設定手段22を介してゼロ点変
動補償信号GPTに変換して加算点20に与えれば、温
度、静圧によるゼロ点変動補償が同時にできる。同様に
第8図で説明したごとき付カロ的回路手段によシ、スパ
ンの温度、静圧変動の補償も容易に実現できる。
Therefore, by converting this signal into a zero point fluctuation compensation signal GPT via the coefficient setting means 22 and applying it to the addition point 20, zero point fluctuation compensation due to temperature and static pressure can be performed simultaneously. Similarly, compensation for span temperature and static pressure fluctuations can be easily realized by means of the Caloric circuit shown in FIG.

静電容量c1. C2の内一方が固定容量、例えばC2
=co(固定)の場合は、64.O’)式のv□、v2
は、夫■ΔPの演算を行なうことによ請求められ、誘電
率εに関してはv2の信号を利用して、の演算で容易に
算出することができ′る。
Capacitance c1. One of C2 has a fixed capacity, e.g. C2
=co (fixed), 64. O') v□, v2 of formula
can be determined by calculating ΔP, and the dielectric constant ε can be easily calculated by using the signal of v2.

上記した実施例は、いずれも差圧又は圧力を測定する本
体の基本構造が、2枚の測定ダイヤフラムをロッドで連
結した、いわゆる−室構造のゼロ点変動、静圧変動の補
償に本発明を適用した例であるが、・受圧ダイヤスラム
を介して一枚の測定ダイヤフラムの両側に測定すべき圧
力を受け、この測定ダイヤフラムの変位よシ差圧又は圧
力上測定する、いわゆる二室構造の伝送器の場合にも、
封液の誘電率変化を演算又は誘電率変化検出のためのセ
/すを用いて、温度′、静圧変動に基〈ゼロ点食動、ス
パン変動を補償することができる。二室構造の場合は、
その構造上の特徴から、静圧変動によって測定ダイヤス
ラムのバネ定数が変化し、スパン変動の原因となシやす
い。従って静圧変動のみを精密に補償する場合は、誘電
率に関する信号より温度変動に関する成分を引いた信号
を補償信号として用いればよい。温度成分を引くために
は、温度センサを別途設ける必要があるが、温度センサ
は静圧変動を測定する圧力センサに比較すると構造的に
も簡単に本体内に設置できるので、全体構造はさtなど
複雑にはならないで済む0この5ような構成にした場合
でも圧力センサが不要である点、本発明の効果は充分に
維持される。
In all of the above embodiments, the basic structure of the main body for measuring differential pressure or pressure is a so-called -chamber structure in which two measurement diaphragms are connected by a rod.The present invention is used to compensate for zero point fluctuations and static pressure fluctuations. This is an example of application: - A so-called two-chamber structure transmission in which the pressure to be measured is received on both sides of a single measuring diaphragm via a pressure receiving diaphragm, and the differential pressure or pressure is measured depending on the displacement of this measuring diaphragm. Also in the case of vessels,
By calculating the dielectric constant change of the sealing liquid or using a device for detecting the dielectric constant change, it is possible to compensate for zero point deviation and span fluctuation based on temperature and static pressure fluctuations. In the case of a two-chamber structure,
Due to its structural characteristics, the spring constant of the measuring diaphragm changes due to static pressure fluctuations, which tends to cause span fluctuations. Therefore, if only static pressure fluctuations are to be compensated precisely, a signal obtained by subtracting a component related to temperature fluctuations from a signal related to dielectric constant may be used as the compensation signal. In order to subtract the temperature component, it is necessary to separately install a temperature sensor, but compared to a pressure sensor that measures static pressure fluctuations, the temperature sensor can be installed inside the main body more easily, so the overall structure is simpler. Even in the case of a configuration like this, which does not become complicated, the effect of the present invention is sufficiently maintained in that a pressure sensor is not required.

く効果〉 以上説明したように、本発明は封液を有する差圧・圧力
伝送器であればどのような形式のものでも、その封液の
誘電率の変化を検出することにより温度変動又は静圧変
動の一方又は両方に起因するゼロ点変動又はスパン変動
を、少なく共圧力センサのごとき複雑な構造を本体内に
内蔵させることなく簡単に実現する仁とかできる。
Effects> As explained above, the present invention can be applied to any type of differential pressure/pressure transmitter that has a sealing liquid, by detecting changes in the dielectric constant of the sealing liquid, and thereby suppressing temperature fluctuations or static electricity. Zero point fluctuations or span fluctuations caused by one or both of pressure fluctuations can be easily realized without incorporating a complicated structure such as a pressure sensor into the main body.

−室構造の差圧・圧力伝送器の場合は、変動の発生要因
が封液の体積変化(密度変化)に基づく2枚の測定ダイ
ヤフラムの有効面積差によシ発生する割合が大きいので
、本発明の補償方法によシ、温度変動並びに静圧変動に
よるゼロ点食動、スパン変動を、−個の加算点への補償
信号の供給という極めて簡単な回路構成で実現できる。
- In the case of a differential pressure/pressure transmitter with a chamber structure, a large proportion of fluctuations are caused by the effective area difference between the two measurement diaphragms based on changes in the volume (density change) of the sealing liquid. According to the compensation method of the invention, zero point deviation and span fluctuation due to temperature fluctuations and static pressure fluctuations can be realized with an extremely simple circuit configuration in which compensation signals are supplied to - number of addition points.

〜しかも静電容量変化を利用して変位を測定する形式で
あれば、特別な誘電率検出用のセンサを一切用いること
なく補償が可能であシ、高精度、高信頼度の製品を低コ
ストで実現できる。
~Moreover, if the displacement is measured using capacitance changes, compensation can be performed without using any special permittivity detection sensor, making it possible to produce high-precision, highly reliable products at low cost. This can be achieved with

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の差圧伝送器のゼロ点変動補償。 スパン変動補償を説明する構成図、第2図、第3図は温
度、静圧の変動による誤差発生のメカニズムを説明する
楔形図及び特性図、第4図は第1図に本発明補償方法を
適用した場合の基本構成を示すブロック線図、第5図は
第4図を具体化した場合の回路構成図、第6図はその動
作説明図、第7図は主要部の他の実施例を示す回路構成
図、第8図はスパン変動の補償も同時に行なう場合の実
施例を示す回路構成図、第9図は誘電率の変化を検出す
るセンサを別途設けた構成に本発明を適用した場合の回
路構成図、第10図は交流励振される静電容量変化を利
用する形の差圧・圧力伝送器に本発明を適用した場合の
回路構成図を示す。 C□、C2・・・静電容量、1・・・本体、2,3・・
・ダイヤフラム、5・・・封液、11・・・演算回路、
12・・・出力回路、19・・・誘電率演算回路、21
・・・基準静電容量手段、6・・・誘電率、eTp・・
・ゼロ点変動補償信号、eTp′・・・スパン変動補償
信号。
Figure 1 shows zero point fluctuation compensation for a conventional differential pressure transmitter. 2 and 3 are wedge diagrams and characteristic diagrams illustrating the mechanism of error generation due to fluctuations in temperature and static pressure. FIG. FIG. 5 is a block diagram showing the basic configuration when applied, FIG. 5 is a circuit configuration diagram embodying FIG. 4, FIG. 6 is an explanatory diagram of its operation, and FIG. 8 is a circuit diagram showing an embodiment in which span fluctuation compensation is also performed at the same time, and FIG. 9 is a circuit diagram showing a case where the present invention is applied to a configuration in which a sensor for detecting changes in dielectric constant is separately provided. FIG. 10 shows a circuit diagram in which the present invention is applied to a differential pressure/pressure transmitter that utilizes alternating current excited capacitance changes. C□, C2...Capacitance, 1...Body, 2,3...
・Diaphragm, 5...Sealing liquid, 11...Arithmetic circuit,
12... Output circuit, 19... Dielectric constant calculation circuit, 21
...Reference capacitance means, 6...Dielectric constant, eTp...
- Zero point fluctuation compensation signal, eTp'...Span fluctuation compensation signal.

Claims (1)

【特許請求の範囲】[Claims] 測定すべき圧力又は差圧を受けて変位する受圧要素及び
封液を有する圧力・差圧伝送器において、上記封液の誘
電率を検出し、この誘電率変化に基いて温度および/又
は静圧変動に起因するゼロ点変動および/又はスパン変
動を補償することを特徴とする圧力・差圧伝送器の温度
・静圧補償方法。
In a pressure/differential pressure transmitter that has a pressure receiving element and a sealing liquid that are displaced in response to the pressure or differential pressure to be measured, the dielectric constant of the sealing liquid is detected, and the temperature and/or static pressure is determined based on the change in the dielectric constant. A temperature/static pressure compensation method for a pressure/differential pressure transmitter, characterized by compensating for zero point fluctuations and/or span fluctuations caused by fluctuations.
JP58206725A 1983-11-02 1983-11-02 Temperature and static pressure compensating method of pressure and differential pressure transmitter Granted JPS6098328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206725A JPS6098328A (en) 1983-11-02 1983-11-02 Temperature and static pressure compensating method of pressure and differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206725A JPS6098328A (en) 1983-11-02 1983-11-02 Temperature and static pressure compensating method of pressure and differential pressure transmitter

Publications (2)

Publication Number Publication Date
JPS6098328A true JPS6098328A (en) 1985-06-01
JPH047460B2 JPH047460B2 (en) 1992-02-12

Family

ID=16528070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206725A Granted JPS6098328A (en) 1983-11-02 1983-11-02 Temperature and static pressure compensating method of pressure and differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS6098328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267636A (en) * 1986-05-05 1987-11-20 テキサス インスツルメンツ インコ−ポレイテツド Sensor
JP2007155566A (en) * 2005-12-07 2007-06-21 Yokogawa Electric Corp Pressure transmitter
JP2011089773A (en) * 2009-10-20 2011-05-06 Yokogawa Electric Corp Electronic differential-pressure/pressure transmitter
CN102168994A (en) * 2010-12-29 2011-08-31 沈阳仪表科学研究院 Silicon capacitive differential pressure transducer with multi-parameter and compensation method of static pressure influence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267636A (en) * 1986-05-05 1987-11-20 テキサス インスツルメンツ インコ−ポレイテツド Sensor
JP2007155566A (en) * 2005-12-07 2007-06-21 Yokogawa Electric Corp Pressure transmitter
JP2011089773A (en) * 2009-10-20 2011-05-06 Yokogawa Electric Corp Electronic differential-pressure/pressure transmitter
CN102168994A (en) * 2010-12-29 2011-08-31 沈阳仪表科学研究院 Silicon capacitive differential pressure transducer with multi-parameter and compensation method of static pressure influence

Also Published As

Publication number Publication date
JPH047460B2 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
US4193063A (en) Differential capacitance measuring circuit
JP3339974B2 (en) Feedback control method and apparatus for asymmetric differential pressure transducer
GB2222686A (en) Inclinometers
GB1575167A (en) Capacitance-to-voltage transformation circuit
JPH0412814B2 (en)
JPH0465330B2 (en)
JPS6098328A (en) Temperature and static pressure compensating method of pressure and differential pressure transmitter
JPS5928845B2 (en) displacement converter
JPH0672901B2 (en) Capacitance-voltage conversion circuit
JPS60138435A (en) Pressure and differential pressure transmitter
JPH0377938B2 (en)
JPH0377936B2 (en)
JPS6342330Y2 (en)
JPS6236087Y2 (en)
JPS60203864A (en) Detector
JPH0370767B2 (en)
JPS61178629A (en) Differential pressure transmitter
JPS601403Y2 (en) Detection part structure of differential pressure transmitter
JPS6351250B2 (en)
KR830000922Y1 (en) Capacitive Differential Pressure Transmitter
JPS6138811B2 (en)
JPH0142237Y2 (en)
JPS60203810A (en) Physical quantity converter
JPS61140834A (en) Pressure transducer
RU2037770C1 (en) Measuring converter of nonelectric values