JPS6342330Y2 - - Google Patents

Info

Publication number
JPS6342330Y2
JPS6342330Y2 JP1981003548U JP354881U JPS6342330Y2 JP S6342330 Y2 JPS6342330 Y2 JP S6342330Y2 JP 1981003548 U JP1981003548 U JP 1981003548U JP 354881 U JP354881 U JP 354881U JP S6342330 Y2 JPS6342330 Y2 JP S6342330Y2
Authority
JP
Japan
Prior art keywords
operational amplifier
output
capacitors
inverting input
input side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981003548U
Other languages
Japanese (ja)
Other versions
JPS57116825U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981003548U priority Critical patent/JPS6342330Y2/ja
Publication of JPS57116825U publication Critical patent/JPS57116825U/ja
Application granted granted Critical
Publication of JPS6342330Y2 publication Critical patent/JPS6342330Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【考案の詳細な説明】 この考案は変位、圧力などの被測定量に応じて
容量が変化するコンデンサのその容量を直流の電
気信号に変換する容量電気信号変換装置に関す
る。
[Detailed Description of the Invention] This invention relates to a capacitive electrical signal conversion device that converts the capacitance of a capacitor whose capacitance changes depending on a measured quantity such as displacement or pressure into a DC electrical signal.

従来このように被測定量に応じて容量が変化す
るコンデンサのその容量を電気信号に変換するた
めに交流電源を用いてそのコンデンサの容量に応
じた交流電流を得、その交流電流を整流回路で整
流して上記容量に対応した直流信号を得ることが
行なわれている。このような従来の容量電気信号
変換装置によると交流電源を必要とし、又整流回
路の直線性や温度特性の影響により安定度が良く
ないなどの欠点があつた。
Conventionally, in order to convert the capacitance of a capacitor whose capacitance changes depending on the quantity to be measured into an electrical signal, an AC power supply is used to obtain an AC current corresponding to the capacitance of the capacitor, and the AC current is passed through a rectifier circuit. Rectification is performed to obtain a DC signal corresponding to the above-mentioned capacitance. Such conventional capacitive electric signal converters require an AC power supply and have disadvantages such as poor stability due to the effects of linearity and temperature characteristics of the rectifier circuit.

このような点より従来において第1図に示すよ
うな容量電気信号変換装置が提案されている。即
ち演算増幅器11の出力をスイツチ12及び13
によりコンデンサ14,15に充電させ、そのス
イツチ12,13をオフにすると共にコンデンサ
14,15の充電電荷をスイツチ16,17を通
じて波回路18,19に供給して平滑してい
る。波回路18,19はそれぞれ演算増幅器2
1,22と、その増幅器の帰還回路に接続された
平滑用コンデンサ23,24及び抵抗器25,2
6とより構成され、更に必要に応じてその波回
路18,19の各入力側に非直線補償用コンデン
サ27,28が共通電位点との間に接続される。
スイツチ12,13は同時にオンとされ、かつス
イツチ16,17はこれらスイツチ12,13と
逆位相で同時にオンとされる。波回路19の出
力は演算増幅器11の反転入力側に供給され、演
算増幅器11の非反転入力側には基準電圧源29
より基準電圧が与えられる。
In view of this, a capacitive electrical signal converter as shown in FIG. 1 has been proposed in the past. That is, the output of the operational amplifier 11 is switched to the switches 12 and 13.
This causes the capacitors 14 and 15 to be charged, and the switches 12 and 13 are turned off, and the charges in the capacitors 14 and 15 are supplied to the wave circuits 18 and 19 through the switches 16 and 17 for smoothing. The wave circuits 18 and 19 are each operational amplifier 2.
1, 22, smoothing capacitors 23, 24 and resistors 25, 2 connected to the feedback circuit of the amplifier.
6, and if necessary, nonlinear compensation capacitors 27 and 28 are connected to each input side of the wave circuits 18 and 19 between them and a common potential point.
Switches 12 and 13 are turned on at the same time, and switches 16 and 17 are turned on at the same time in opposite phases to these switches 12 and 13. The output of the wave circuit 19 is supplied to the inverting input side of the operational amplifier 11, and the reference voltage source 29 is supplied to the non-inverting input side of the operational amplifier 11.
A reference voltage is given by

コンデンサ14,15の少なくとも一方14は
被測定量に応じて変化するものであり、この回路
においてはコンデンサ15の出力は波回路19
で平滑され、その平滑出力が基準電源29の基準
電圧と一致するように動作する。つまり、演算増
幅器11の出力は基準電圧として動作し、その一
定電圧でコンデンサ14,15を周期的に充電さ
せ、そのコンデンサ14,15の出力をそれぞれ
波回路18,19で平滑しており、波回路1
8よりコンデンサ14の容量に比例した出力が得
られる。波回路18の出力は演算増幅器31を
通じて出力端子32に供給される。演算増幅器3
1は例えば電圧・電流の変換などであることもあ
る。この第1図に示した変換装置によれば、交流
電源を使用することなく、又整流回路も必要とし
ない。従つて比較的安定性の良いものが得られ
る。しかしこの装置においては例えば波回路1
8の出力側と、演算増幅器31の入力側との間に
雑音Δεが入力されると、波回路18の出力を
E1とし、演算増幅器31の増幅度をA1とすると、
演算増幅器31の出力は(E1+Δε)A1となる。
このように雑音Δεは信号E1に加算された型で出
力され、この真の信号に対する誤差の割合ε0
Δε/E1となる。
At least one of the capacitors 14 and 15 14 changes depending on the measured quantity, and in this circuit, the output of the capacitor 15 is connected to the wave circuit 19.
The smoothed output is smoothed by the reference voltage source 29, and operates so that the smoothed output matches the reference voltage of the reference power supply 29. In other words, the output of the operational amplifier 11 operates as a reference voltage, and the capacitors 14 and 15 are periodically charged with that constant voltage, and the outputs of the capacitors 14 and 15 are smoothed by the wave circuits 18 and 19, respectively. circuit 1
8, an output proportional to the capacitance of the capacitor 14 can be obtained. The output of the wave circuit 18 is supplied to an output terminal 32 through an operational amplifier 31. Operational amplifier 3
1 may be, for example, voltage/current conversion. According to the converter shown in FIG. 1, neither an AC power source nor a rectifier circuit is required. Therefore, a product with relatively good stability can be obtained. However, in this device, for example, the wave circuit 1
When noise Δε is input between the output side of the wave circuit 8 and the input side of the operational amplifier 31, the output of the wave circuit 18 is
If E 1 and the amplification degree of the operational amplifier 31 are A 1 , then
The output of the operational amplifier 31 is (E 1 +Δε)A 1 .
In this way, the noise Δε is output in the form of being added to the signal E 1 , and the error ratio ε 0 with respect to the true signal is Δε/E 1 .

この考案の目的は交流電源を使用することな
く、又整流回路も使用せず、しかも雑音の影響の
少ない容量電気信号変換装置を提供することにあ
る。
The purpose of this invention is to provide a capacitive electrical signal converter that does not use an AC power supply or a rectifier circuit, and is less affected by noise.

この考案によれば一対の波回路の少なくとも
容量が変化するコンデンサの放電電流が供給され
る波回路の出力信号が一定になるように出力を
発信すると共に、その出力により直流電源を制御
する。このようにして雑音の影響を除去する。
According to this invention, an output is transmitted so that the output signal of the wave circuit to which discharge current of at least a capacitor whose capacitance changes is supplied to a pair of wave circuits becomes constant, and a DC power source is controlled by the output. In this way, the influence of noise is removed.

第2図はこの考案による容量電気信号変換装置
の第1実施例を示し、第1図と対応する部分には
同一符号を付けて示す。この例においては波回
路19の出力は演算増幅器11の反転入力側に供
給され、一方この演算増幅器11の非反転入力側
には演算増幅器31が出力が供給される。演算増
幅器31の反転入力側に波回路18の出力が供
給され、演算増幅器31の非反転入力側に基準電
圧源29が接続される。即ちこの例においては
波回路18の出力E1が基準電圧源29の基準電
圧Esと等しくなるように出力端子32に出力を
発信し、その出力によつて直流電源である演算増
幅器11を制御する。今この図においてコンデン
サ14の電極が被測定量に応じて変化し、その被
測定量がゼロの初期状態における電極間隔をd0
し、変位量をΔdとし、かつコンデンサの電極間
隔がd0のときのコンデンサ14の容量をC0とし、
同様にコンデンサ15の容量は固定容量C0とす
ると、コンデンサ14,15の各容量C1及びC2
はそれぞれ C1=C0d0/d0−Δd,C2=C0 となる。今抵抗器25,26の各抵抗値をRとす
ると、波回路18の出力E1及び波回路19
の出力E2は次のように表わせる。
FIG. 2 shows a first embodiment of the capacitive electric signal converter according to this invention, and parts corresponding to those in FIG. 1 are designated by the same reference numerals. In this example, the output of the wave circuit 19 is fed to the inverting input of an operational amplifier 11, while the output of an operational amplifier 31 is fed to the non-inverting input of this operational amplifier 11. The output of the wave circuit 18 is supplied to the inverting input side of the operational amplifier 31, and the reference voltage source 29 is connected to the non-inverting input side of the operational amplifier 31. That is, in this example, an output is transmitted to the output terminal 32 so that the output E 1 of the wave circuit 18 becomes equal to the reference voltage Es of the reference voltage source 29, and the operational amplifier 11, which is a DC power source, is controlled by the output. . Now, in this figure, the electrodes of the capacitor 14 change according to the measured quantity, the electrode spacing in the initial state when the measured quantity is zero is d 0 , the amount of displacement is Δd, and the electrode spacing of the capacitor is d 0 . The capacitance of the capacitor 14 at that time is C 0 ,
Similarly, if the capacitance of the capacitor 15 is a fixed capacitance C 0 , then each capacitance C 1 and C 2 of the capacitors 14 and 15 is
are respectively C 1 =C 0 d 0 /d 0 −Δd and C 2 =C 0 . Now, if the resistance values of the resistors 25 and 26 are R, then the output E 1 of the wave circuit 18 and the wave circuit 19
The output E 2 of can be expressed as follows.

E1=Ec1/TC1R,E2=Ec1/TC2R こゝでTはスイツチ12,13,16,17の
オンオフ周期であり、Ecは演算増幅器11の出
力電圧である。演算増幅器31の増幅率をA1
演算増幅器11の増幅率をA2とすると、 (Es−E1)×A1=E0, (E0−E2)A2=Ec と表わせる。E0は端子32の出力電圧であり、
増幅率A1,A2はほゞ無限大であるから、前の式
よりEs−E1=E0/A1≒0,E0−E2=Ec/A2≒0とな り、これよりE0=E2/E1・Esが求められる。よつて E0=C2/C1・Es=d0−Δd/d0Es となる。従つて端子32の出力電圧E0は被測定
量の変位Δdに比例することになる。
E 1 = Ec1/TC 1 R, E 2 = Ec1/TC 2 R where T is the on/off cycle of the switches 12, 13, 16, and 17, and Ec is the output voltage of the operational amplifier 11. The amplification factor of the operational amplifier 31 is A 1 ,
When the amplification factor of the operational amplifier 11 is A2 , it can be expressed as (Es- E1A1 = E0 , ( E0 - E2 ) A2 =Ec. E 0 is the output voltage at terminal 32,
Since the amplification factors A 1 and A 2 are almost infinite, from the previous equation, Es−E 1 = E 0 /A 1 ≒0, E 0 −E 2 = Ec / A 2 ≒0, and from this, E 0 = E 2 /E 1・Es is calculated. Therefore, E0 = C2 / C1・Es= d0 −Δd/ d0Es . Therefore, the output voltage E 0 of the terminal 32 is proportional to the displacement Δd of the measured quantity.

第4図はこの考案にある第2実施例を示すもの
である。即ち第2図においてはコンデンサ14の
電極間が被測定量に応じて変化し、コンデンサ1
5は固定容量であるとしたが例えば第3図に示す
ように固定電極34,35間に可動電極36が介
在され、この電極36と固定電極34,35との
各間にコンデンサ14,15が構成され、可動電
極36が被測定量に応じて変位し、コンデンサ1
4,15の容量C1,C2が差動的に変化する場合
にもこの考案は適用できる。今この変位量がゼロ
の状態でこれら可動電極36と固定電極34,3
5との各間隔を等しくd0とすると、この場合は第
4図に示すように波回路18,19の出力E1
E2はそれぞれ抵抗器37,38を通じて演算増
幅器31の反転入力側に供給され、これら出力電
圧E1とE2の和が演算増幅器31に供給され、又
波回路18及び19の出力E1,E2はそれぞれ
抵抗器39,41を通じて演算増幅器11の反転
入力側及び非反転入力側にそれぞれ供給され、そ
れらの差がとられると共に演算増幅器31の出力
E0が抵抗器42を通じて演算増幅器11の非反
転入力側に供給される。演算増幅器11の反転入
力側は抵抗器43を通じて共通電位点に接続され
る。今抵抗器37,38の抵抗値をそれぞれR1
とし、抵抗器39,41,42,43の各抵抗値
をそれぞれR2とすると、 演算増幅器31においては{Es−(E1+E2)}
A2=E0、演算増幅器11においては{1/2(E0+ E2)−1/2E1}A0=Ecとなるようにそれぞれ作用 する。
FIG. 4 shows a second embodiment of this invention. That is, in FIG. 2, the distance between the electrodes of the capacitor 14 changes depending on the amount to be measured, and the capacitor 1
5 is a fixed capacitor, but for example, as shown in FIG. 3, a movable electrode 36 is interposed between the fixed electrodes 34 and 35, and capacitors 14 and 15 are placed between this electrode 36 and the fixed electrodes 34 and 35, respectively. The movable electrode 36 is displaced according to the amount to be measured, and the capacitor 1
This idea can also be applied when the capacitances C 1 and C 2 of 4 and 15 change differentially. Now, when the amount of displacement is zero, these movable electrodes 36 and fixed electrodes 34, 3
Assuming that each interval between the wave circuits 18 and 19 is equal to d 0 , in this case, the outputs E 1 and 5 of the wave circuits 18 and 19 are
E 2 is supplied to the inverting input side of the operational amplifier 31 through resistors 37 and 38, respectively, and the sum of these output voltages E 1 and E 2 is supplied to the operational amplifier 31, and the outputs E 1 , E2 is supplied to the inverting input side and the non-inverting input side of the operational amplifier 11 through resistors 39 and 41, respectively, and the difference between them is taken and the output of the operational amplifier 31 is
E 0 is supplied to the non-inverting input of operational amplifier 11 through resistor 42 . The inverting input side of the operational amplifier 11 is connected through a resistor 43 to a common potential point. Now the resistance values of resistors 37 and 38 are R 1
If the resistance values of the resistors 39, 41, 42, and 43 are R 2 , then in the operational amplifier 31, {Es−(E 1 +E 2 )}
A 2 =E 0 , and in the operational amplifier 11, {1/2(E 0 + E 2 )−1/2E 1 }A 0 =Ec.

増幅率A1,A2は何れも無限大に等しいからEs
=E1+E2,E0=E1−E2となる。
Since the amplification factors A 1 and A 2 are both equal to infinity, Es
= E 1 + E 2 , E 0 = E 1E 2 .

また被測定量に応じて差動的に変化するコンデ
ンサ14,15の容量は第3図から次の関係が得
られる。即ち変位量がゼロの状態で可動電極36
と固定電極34,35の各間隔が等しくd0とし、
この時の容量をC0とする。可動電極36がΔdだ
け例えば左側に変位するとコンデンサ14,15
の容量はC1=C0d0/d0−Δd,C2=C0d0/d0+Δdとな る。
Further, the following relationship can be obtained from FIG. 3 regarding the capacitance of the capacitors 14 and 15, which differentially changes depending on the measured quantity. In other words, when the amount of displacement is zero, the movable electrode 36
and the distance between the fixed electrodes 34 and 35 is equal to d 0 ,
Let the capacity at this time be C 0 . When the movable electrode 36 is displaced by Δd, for example to the left, the capacitors 14 and 15
The capacitance of is C 1 =C 0 d 0 /d 0 −Δd, and C 2 =C 0 d 0 /d 0 +Δd.

よつて先の第2図についての関係と同様にして
出力E0が求められる。即ちE0=E1−E2/E1+E2・Es,E1 =R/TEcC1,E2=R/TEcC2の関係からE0=Δd/d0E
s となり出力はΔdに直線的に比例する。
Therefore, the output E 0 can be determined in the same way as the relationship for FIG. 2 above. That is, from the relationship E 0 = E 1 − E 2 / E 1 + E 2 · Es, E 1 = R/TEcC 1 , E 2 = R/TEcC 2, E 0 = Δd/d 0 E
s, and the output is linearly proportional to Δd.

第1実施例及び第2実施例の回路図(第2図、
第4図)はそれぞれ第5図、第6図に示すように
モデル化して書くことができる。
Circuit diagrams of the first and second embodiments (Fig. 2,
Figure 4) can be modeled and written as shown in Figures 5 and 6, respectively.

第1実施例において例えば波回路18と演算
増幅器31との間にΔεの雑音が入つた場合、第
5図の等価回路に示すように端子32に出力され
る雑音を含む出力をE0′とすると、演算増幅器3
1においては{Es−(E1+Δε}A2=E0′演算増幅
器11においては(E0′−E2)A1=Ecとなるよう
にそれぞれ作用する。増幅率A1,A2は何れもほ
ぼ無限大であるから Es=E1+Δε,E0′=E2の関係が成り立つ。従つ
て出力E0′はE0′=Es/E1+Δε・Esとなる。
In the first embodiment, for example, if a noise of Δε enters between the wave circuit 18 and the operational amplifier 31, the noise-containing output output to the terminal 32 is called E 0 ' as shown in the equivalent circuit of FIG. Then, operational amplifier 3
In the operational amplifier 11, {Es−(E 1 +Δε}A 2 =E 0 ′) acts so that (E 0 ′−E 2 )A 1 =Ec in the operational amplifier 11.The amplification factors A 1 and A 2 are Since both are almost infinite, the relationships Es=E 1 +Δε and E 0 ′=E 2 hold true.Therefore, the output E 0 ′ is E 0 ′=Es/E 1 +Δε·Es.

而して雑音Δεの入らない場合の出力E0に対す
る誤差の割合(ε1)はε1=E0−E0′/E0の式にE0= E2/E1・Es,E0′=E2/E1+Δε・Esをそれぞれ代入し
て 求められる。即ちε1=Δε/E1+Δεとなる。
Therefore, the ratio of error (ε 1 ) to the output E 0 when noise Δε is not included is given by the formula ε 1 = E 0 −E 0 '/E 0 , E 0 = E 2 /E 1・Es, E 0 It is obtained by substituting ′=E 2 /E 1 +Δε·Es, respectively. That is, ε 1 =Δε/E 1 +Δε.

この第1実施例の場合の誤差の割合 ε1=Δε/E1+Δεは従来例の誤差の割合 ε0=Δε/E1との比較において、ε0>ε0となるこ
と から本考案の第1実施例の場合の誤差の割合ε1
小さいことがわかる。
The error ratio ε 1 =Δε/E 1 +Δε in the case of the first embodiment is compared with the error ratio ε 0 =Δε/E 1 in the conventional example, and since ε 00 , the present invention It can be seen that the error ratio ε 1 in the case of the first example is small.

第2実施例において、例えば波回路18,1
9の合成された出力側と演算増幅器31の入力側
との間にΔεの雑音が入つた場合、第6図の等価
回路に示すように端子32に出力される雑音を含
む出力をE0′とすると、第1の実施例の場合と全
く同様な作用をすることから次の関係が得られ
る。
In the second embodiment, for example, the wave circuit 18,1
When a noise of Δε enters between the synthesized output side of the amplifier 9 and the input side of the operational amplifier 31, the noise-containing output output to the terminal 32 is E 0 ' as shown in the equivalent circuit of FIG. If so, the following relationship is obtained since the operation is exactly the same as in the case of the first embodiment.

演算増幅器31においては {Es−(E1+E2+Δε)}A2=E0′ 演算増幅器11においては {K2(E0′+E2)−K1E1}A1=Ec 但しK1,K2は比例係数であり、その値は何れ
も1/2に調整されている。
In the operational amplifier 31, {Es−(E 1 +E 2 +Δε)}A 2 =E 0 ′ In the operational amplifier 11, {K 2 (E 0 ′+E 2 )−K 1 E 1 }A 1 =Ec However, K 1 , K 2 are proportional coefficients, and their values are all adjusted to 1/2.

増幅率A1,A2は何れもほぼ無限大であるから
Es=E1+E2+Δε,E0′=E1−E2の関係が成り立
つ。
Since both the amplification factors A 1 and A 2 are almost infinite,
The relationship Es=E 1 +E 2 +Δε, E 0 ′=E 1 −E 2 holds true.

故にE0′=E1−E2/E1+E2+Δε・Esとなる。 Therefore, E 0 ′=E 1 −E 2 /E 1 +E 2 +Δε·Es.

従つて第2実施例において雑音Δεが入らない
場合の出力E0に対する誤差の割合ε2はε2
E0−E0′/E0として求められる。
Therefore, in the second embodiment, the ratio of error ε 2 to the output E 0 when noise Δε is not included is ε 2 =
It is calculated as E 0 −E 0 ′/E 0 .

即ちε2=1−E0′/E0=Δε/E1+E2+Δεとなる
That is, ε 2 =1−E 0 ′/E 0 =Δε/E 1 +E 2 +Δε.

この実施例の誤差の割合ε2は第1実施例の誤差
の割合ε1との比較においてε1−ε2>0となること
から第2実施例の場合の誤差の割合ε2が小さくな
ることがわかる。
The error ratio ε 2 of this example is compared with the error ratio ε 1 of the first example, and ε 1 −ε 2 >0, so the error ratio ε 2 of the second example is smaller. I understand that.

よつてこの考案による容量電気信号変換装置は
第1図に示した従来のものに対して雑音による影
響を少なくすることができ、しかも被測定量に応
じて一方の容量が変化する一対のコンデンサを設
けた第1実施例よりも被測定量に応じて容量が差
動的に変化する一対のコンデンサを設けた第2実
施例のものが更らに雑音による影響を少なくする
ことができ、かつ交流電源を用いず整流回路も使
用しない安定した精度の高いものである。
Therefore, the capacitive electrical signal converter according to this invention can reduce the influence of noise compared to the conventional device shown in Fig. 1, and moreover, it uses a pair of capacitors whose capacitance changes depending on the quantity to be measured. The second embodiment, which includes a pair of capacitors whose capacitance differentially changes depending on the measured quantity, can further reduce the influence of noise than the first embodiment. It is stable and highly accurate as it does not require a power supply or a rectifier circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の容量電気信号変換装置を示す接
続図、第2図はこの考案による容量電気信号変換
装置の一例を示す接続図、第3図は差動容量の構
造例を示す図、第4図はこの考案による容量電気
信号変換装置の他の例を示す接続図、第5図は第
2図の接続図の等価回路図、第6図は第4図の接
続図の等価回路図である。 11:演算増幅器、12,13,16,17:
スイツチ、14,15:コンデンサ、18,1
9:波回路、31:演算増幅器、32:出力端
子、39:基準電圧源。
Fig. 1 is a connection diagram showing a conventional capacitive electric signal converter, Fig. 2 is a connection diagram showing an example of a capacitive electric signal converter according to this invention, Fig. 3 is a diagram showing an example of the structure of a differential capacitor, Figure 4 is a connection diagram showing another example of the capacitive electric signal converter according to this invention, Figure 5 is an equivalent circuit diagram of the connection diagram of Figure 2, and Figure 6 is an equivalent circuit diagram of the connection diagram of Figure 4. be. 11: Operational amplifier, 12, 13, 16, 17:
Switch, 14, 15: Capacitor, 18, 1
9: wave circuit, 31: operational amplifier, 32: output terminal, 39: reference voltage source.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定量に応じて少なくとも一方の容量が変化
する一対のコンデンサと、これらコンデンサを充
電するための直流電源と、上記一対のコンデンサ
の放電電流を平滑してそれぞれの容量に応じた直
流の電気信号を得る一対の波回路と、上記一対
のコンデンサをそれぞれ上記直流電源と上記波
回路とに交互に接続し、周期的にそれらコンデン
サに対して充放電させるためのスイツチとを具備
し、上記直流電源として演算増幅器が設けられ、
その演算増幅器の反転入力側に容量が変化しない
コンデンサの放電電流が供給される波回路の出
力が入力され、上記容量が変化するコンデンサの
放電電流が供給される波回路の出力と基準電圧
との差が上記演算増幅器の非反転入力側に入力さ
れ、又は上記演算増幅器の反転入力側及び非反転
入力側にそれぞれ上記一対の波回路の出力が入
力され、上記波回路の出力が入力され、上記一
対の波回路の出力の和と基準電圧との差が上記
演算増幅器の非反転入力側に入力されてなる容量
電気信号変換装置。
A pair of capacitors whose capacitance at least one changes depending on the quantity to be measured, a DC power source for charging these capacitors, and a DC electrical signal that smoothes the discharge current of the pair of capacitors and corresponds to each capacitance. and a switch for alternately connecting the pair of capacitors to the DC power supply and the wave circuit, respectively, and periodically charging and discharging the capacitors. An operational amplifier is provided as
The output of the wave circuit that supplies the discharge current of the capacitor whose capacitance does not change is input to the inverting input side of the operational amplifier, and the output of the wave circuit that supplies the discharge current of the capacitor whose capacitance changes is connected to the reference voltage. The difference is input to the non-inverting input side of the operational amplifier, or the outputs of the pair of wave circuits are input to the inverting input side and the non-inverting input side of the operational amplifier, respectively, and the outputs of the wave circuits are input, A capacitive electrical signal conversion device in which the difference between the sum of the outputs of a pair of wave circuits and a reference voltage is input to the non-inverting input side of the operational amplifier.
JP1981003548U 1981-01-14 1981-01-14 Expired JPS6342330Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981003548U JPS6342330Y2 (en) 1981-01-14 1981-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981003548U JPS6342330Y2 (en) 1981-01-14 1981-01-14

Publications (2)

Publication Number Publication Date
JPS57116825U JPS57116825U (en) 1982-07-20
JPS6342330Y2 true JPS6342330Y2 (en) 1988-11-07

Family

ID=29801986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981003548U Expired JPS6342330Y2 (en) 1981-01-14 1981-01-14

Country Status (1)

Country Link
JP (1) JPS6342330Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444542B2 (en) * 1975-03-19 1979-12-26
JPS5537900U (en) * 1978-09-05 1980-03-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444542U (en) * 1977-09-02 1979-03-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444542B2 (en) * 1975-03-19 1979-12-26
JPS5537900U (en) * 1978-09-05 1980-03-11

Also Published As

Publication number Publication date
JPS57116825U (en) 1982-07-20

Similar Documents

Publication Publication Date Title
CA2174900A1 (en) Method and Apparatus for Measuring the Change in Capacitance Values in Dual Capacitors
JPS6342330Y2 (en)
JPS6139330Y2 (en)
JPS62121312A (en) Electrostatic capacity/voltage converting circuit
JP3025837B2 (en) Capacitance measuring device
JPH0122085Y2 (en)
JPH0346332Y2 (en)
JPS6098328A (en) Temperature and static pressure compensating method of pressure and differential pressure transmitter
JPS5916835Y2 (en) Input circuit of electronic equipment
JPH0120647Y2 (en)
JPH0374324B2 (en)
JPS6020004Y2 (en) capacitive converter
JPS5830178Y2 (en) capacitive displacement transducer
JPH0692996B2 (en) Capacitance sensor circuit
JP3265807B2 (en) Capacitive sensor
JPS5912311A (en) Capacitor type converter
JPS60203864A (en) Detector
JPH0120648Y2 (en)
JPS5819966B2 (en) displacement converter
JP2653823B2 (en) Reactor loss measurement circuit
JPH0353180Y2 (en)
JPH0122086Y2 (en)
JPH0431327B2 (en)
JPS60164211A (en) Capacitor type converter
JPS5935769Y2 (en) capacitive converter