JPH0377938B2 - - Google Patents

Info

Publication number
JPH0377938B2
JPH0377938B2 JP58237088A JP23708883A JPH0377938B2 JP H0377938 B2 JPH0377938 B2 JP H0377938B2 JP 58237088 A JP58237088 A JP 58237088A JP 23708883 A JP23708883 A JP 23708883A JP H0377938 B2 JPH0377938 B2 JP H0377938B2
Authority
JP
Japan
Prior art keywords
signal
output
pressure
temperature
pulse signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58237088A
Other languages
Japanese (ja)
Other versions
JPS60128321A (en
Inventor
Atsushi Kimura
Megumi Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP23708883A priority Critical patent/JPS60128321A/en
Publication of JPS60128321A publication Critical patent/JPS60128321A/en
Publication of JPH0377938B2 publication Critical patent/JPH0377938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0005Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はプロセス制御装置に用いられるベロー
ズ又はダイヤフラムなどの受圧要素を用いた差
圧・圧力伝送器において問題とされる、温度又は
静圧変動に起因するゼロ点変動を補償する回路に
関する。
Detailed Description of the Invention <Industrial Application Field> The present invention addresses temperature or static pressure fluctuations that are a problem in differential pressure/pressure transmitters using pressure receiving elements such as bellows or diaphragms used in process control devices. This invention relates to a circuit that compensates for zero point fluctuations caused by.

<従来技術> 第1図は差圧伝送器の従来の温度、静圧変動に
よるゼロ点変動、スパン変動補償の概念を説明す
るための構成図である。ここで、静圧変動とは先
圧ΔPはゼロであるが、高圧PH側と低圧PL側に共
に同じ大きさの圧力が印加されたときに出力が変
動を起こす現象をいう。1は一室構造の差圧伝送
器の本体断面を示し、両端面に測定すべき圧力
PH,PLをうけるダイヤフラム2,3がその周縁
をこの本体に溶接されて配置されており、本体に
形成された貫通孔4とこれらダイヤフラムで囲ま
れた中空室内にはシリコン油等の封液5が満たさ
れている。中空室中央部には電極室が形成され、
この電極室内には本体に嵌合した絶縁材6に片側
が支持された移動電極7及びこれに対向して静電
容量C1,C2を形成するための固定電極8,9が
配置されている。10は中空室を介して両ダイヤ
フラム2,3の中央部を連結するロツドで、その
中央部は電極室内において移動電極7に固定され
ており、差圧に応動したダイヤフラムの変位を移
動電極に伝え、静電容量C1,C2を差動的に変化
させる。静電容量C1,C2は演算回路11に導か
れて(C1−C1)/(C1+C2)の演算が施され、
直流出力信号eOに変換される。この信号eOは出力
回路12に導かれて、遠隔点の負荷RL、電源EB
の直列回路に対し、4〜20mAスパンの出力電流
IOに変換される。13は本体1の温度Tを測定す
る温度センサ、14は封液5の圧力即ちPを測定
する圧力センサである。これらセンサの出力は、
補償信号発生回路15,16に導かれ、ゼロ点補
償用温度信号eT、ゼロ点補償用静圧信号ePに変換
され、加算点17,18で演算回路11の出力信
号eOに加算又は減算されて温度又は静圧変動に対
するゼロ点の変動が補償される。温度又は静圧変
動に対してダイヤフラム2,3のバネ定数変化等
により生ずるスパン変動が問題になる場合には、
補償電圧発生回路15,16より点線で示すスパ
ン変動補償用温度信号、静圧信号eT′,eP′を発生
させ、出力回路12の電圧−電流変換利得を変化
させてスパンの変動を補償する。
<Prior Art> FIG. 1 is a configuration diagram for explaining the concept of compensating for zero point fluctuations and span fluctuations due to temperature and static pressure fluctuations in a conventional differential pressure transmitter. Here, static pressure fluctuation refers to a phenomenon in which the output changes when the same pressure is applied to both the high pressure P H side and the low pressure P L side, although the prepressure ΔP is zero. 1 shows the cross section of the main body of a differential pressure transmitter with a one-chamber structure, and the pressure to be measured is shown on both end faces.
Diaphragms 2 and 3 that receive P H and P L are arranged with their peripheral edges welded to this main body, and the through hole 4 formed in the main body and the hollow chamber surrounded by these diaphragms are sealed with silicone oil or the like. It is filled with liquid 5. An electrode chamber is formed in the center of the hollow chamber,
In this electrode chamber, a movable electrode 7 whose one side is supported by an insulating material 6 fitted to the main body, and fixed electrodes 8 and 9 opposite to this for forming electrostatic capacitances C 1 and C 2 are arranged. There is. Reference numeral 10 denotes a rod that connects the central parts of both diaphragms 2 and 3 via a hollow chamber, and the central part is fixed to the movable electrode 7 in the electrode chamber, and transmits the displacement of the diaphragm in response to the differential pressure to the movable electrode. , the capacitances C 1 and C 2 are changed differentially. The capacitances C 1 and C 2 are guided to the calculation circuit 11 and subjected to the calculation of (C 1 −C 1 )/(C 1 +C 2 ),
It is converted into a DC output signal eO . This signal eO is led to the output circuit 12, where it connects the load RL at the remote point and the power supply EB.
Output current of 4~20mA span for series circuit of
Converted to IO . 13 is a temperature sensor that measures the temperature T of the main body 1, and 14 is a pressure sensor that measures the pressure of the sealing liquid 5, that is, P. The output of these sensors is
The signals are guided to compensation signal generation circuits 15 and 16, converted into a temperature signal e T for zero point compensation and a static pressure signal e P for zero point compensation, and added to the output signal e O of the arithmetic circuit 11 at addition points 17 and 18. Subtracted to compensate for zero point variations due to temperature or static pressure variations. If span fluctuations caused by changes in the spring constants of diaphragms 2 and 3 due to temperature or static pressure fluctuations become a problem,
Compensation voltage generation circuits 15 and 16 generate span fluctuation compensation temperature signals and static pressure signals e T ′ and e P ′ shown by dotted lines, and change the voltage-current conversion gain of the output circuit 12 to compensate for span fluctuations. do.

このような補償手段をとる場合は、温度センサ
13及び圧力センサ14を本体内に設ける必要が
ある。
When such compensation means are used, it is necessary to provide the temperature sensor 13 and the pressure sensor 14 inside the main body.

温度及び静圧の両方を補償する場合は2個のセ
ンサを本体内に設ける必要があり、特に圧力セン
サを本体内に設ける構成は、伝送器の構造が複雑
高価となる欠点を有する。
In order to compensate for both temperature and static pressure, it is necessary to provide two sensors within the main body. Particularly, the configuration in which the pressure sensor is provided within the main body has the drawback that the structure of the transmitter is complicated and expensive.

<発明の構成> 本発明は、上述した従来技術の問題点に鑑みて
なされたもので、本体に固定され測定すべき圧力
又は差圧を受けて変位する受圧要素とこの受圧要
素に囲まれ本体内に封入された封液を有する圧
力・差圧伝送器に係り、変位に対応してデユテイ
比が変化するパルス信号を出力する演算手段と、
パルス信号に同期して一定時間幅の定パルス信号
を発生させる定パルス信号発生手段と、パルス信
号とこの定パルス信号とを用いて封液の誘電率の
変化に関連する信号を算出してこれをゼロ点補償
信号として出力する補償信号発生回路と、封液の
温度に対応する温度信号が入力されこれを温度補
償信号として出力する温度補償信号発生手段と、
パルス信号を平滑した平滑信号に対してゼロ点補
償信号と温度補償信号とを用いてゼロ点の変化を
補償して圧力又は差圧に対応する信号を出力する
出力手段とを具備するようにしたものである。
<Structure of the Invention> The present invention has been made in view of the above-mentioned problems of the prior art. A calculation means for outputting a pulse signal whose duty ratio changes in response to displacement, which relates to a pressure/differential pressure transmitter having a sealing liquid sealed therein;
A constant pulse signal generating means for generating a constant pulse signal of a constant time width in synchronization with the pulse signal, and a signal related to a change in the dielectric constant of the sealing liquid is calculated using the pulse signal and the constant pulse signal. a compensation signal generation circuit that outputs a zero point compensation signal; a temperature compensation signal generation means that receives a temperature signal corresponding to the temperature of the sealing liquid and outputs it as a temperature compensation signal;
The device is equipped with an output means for compensating for a change in the zero point using a zero point compensation signal and a temperature compensation signal for a smoothed signal obtained by smoothing a pulse signal, and outputting a signal corresponding to pressure or differential pressure. It is something.

一般にシリコンオイルの誘電率εは基準状態
(温度T=20℃、静圧P=0Kg/cm2)の誘電率εS
に対してT、Pの変化ΔT,ΔPに対してα,β
を定数として、 ε=εS(1−αΔT+βΔP) …(1) で表わされる。従つて封液の温度Tを別途検出し
て温度変化ΔTによるεの変化を補償すれば、(1)
式は静圧変化ΔPのみの関数となるので、εに比
例した信号を静圧補償信号ePとして利用し、温度
に比例した信号を温度補償信号eTとして利用すれ
ば圧力センサを不要とした温度・静圧補償を実現
出来る。
In general, the dielectric constant ε of silicone oil is the dielectric constant ε in the standard state (temperature T = 20℃, static pressure P = 0Kg/cm 2 )
α, β for T, P change ΔT, ΔP
It is expressed as ε=ε S (1−αΔT+βΔP) (1) where is a constant. Therefore, if the temperature T of the sealing liquid is detected separately and the change in ε due to the temperature change ΔT is compensated for, (1)
Since the equation is a function only of the static pressure change ΔP, the pressure sensor can be eliminated by using a signal proportional to ε as the static pressure compensation signal e P and a signal proportional to temperature as the temperature compensation signal e T. Temperature and static pressure compensation can be realized.

第2図はこのような原理に基づく本発明の基本
構成を示すブロツク線図であり、第1図との相違
点は、静圧の補償信号ePを発生する補償信号発生
回路16の入力が静圧を測定する圧力センサでは
なく、静電容量C1,C2の演算回路11の出力に
基づいており、これにより誘電率εに比例又は反
比例した静圧補償信号ePを演算する。一方温度セ
ンサ13により測定される封液の温度Tは第1図
と同様であり、補償信号発生回路15よりの温度
補償信号eTはePと共に加算点17に導かれ、静圧
補償信号ePの有する温度特性の補償ならびに変換
器自身の有するゼロ点の温度変動を同時に補償す
る。スパン変動についても同様であり、eP′,
eT′により出力回路12の電圧−電流変換利得を
変化させることにより実現出来る。
FIG. 2 is a block diagram showing the basic configuration of the present invention based on such a principle. The difference from FIG. 1 is that the input of the compensation signal generation circuit 16 that generates the static pressure compensation signal eP is It is not based on a pressure sensor that measures static pressure, but on the output of a calculation circuit 11 of capacitances C 1 and C 2 , thereby calculating a static pressure compensation signal e P that is proportional or inversely proportional to dielectric constant ε. On the other hand, the temperature T of the sealing liquid measured by the temperature sensor 13 is the same as that shown in FIG . It simultaneously compensates for the temperature characteristics of P and the temperature fluctuations at the zero point of the converter itself. The same is true for span fluctuations, e P ′,
This can be realized by changing the voltage-current conversion gain of the output circuit 12 according to e T '.

第3図は第2図を具体化した場合の回路構成の
例であり、差圧に関連して変化する静電容量C1
C2は演算回路11に導かれて、デユーテイがC1
C2に関連したパルス信号に変換された後、平滑
されて直流出力信号eOに変換される。11内の構
成要素は、コンパレータを形成する増幅器G1
G2、切換スイツチを構成するゲートG3〜G5、カ
ンウンタCT、インバータG6,G7及び双方向性定
電流回路CCを組合せた自己発振回路で、C1に関
連する周期の発振パルスがカウンタCTでn回カ
ウントされると、C2に関連する発振に切換り、
このパルスが同様にn個カウントされると元に戻
る動作を繰返し、カウンタCTの出力又はインバ
ータG7の出力に、オン時間がC1に、オフ時間が
C2(又はその逆)に関連し、振幅が基準電圧VZ
デユーテイサイクル信号を得る(この演算回路の
詳細については特開昭57−14714号に説明されて
いる)。
Fig. 3 is an example of a circuit configuration when Fig. 2 is realized, and the capacitance C 1 , which changes in relation to the differential pressure,
C 2 is led to the arithmetic circuit 11, and the duty is C 1 ,
After being converted into a pulse signal related to C2 , it is smoothed and converted into a DC output signal eO . The components within 11 include an amplifier G 1 , which forms a comparator;
G 2 , gates G 3 to G 5 forming the changeover switch, counter CT, inverters G 6 , G 7 and bidirectional constant current circuit CC are combined. When the counter CT counts n times, it switches to the oscillation related to C2 ,
When n pulses are counted in the same way, the operation to return to the original state is repeated, and the on time becomes C1 and the off time becomes the output of counter CT or the output of inverter G7 .
A duty cycle signal is obtained which is related to C 2 (or vice versa) and whose amplitude is the reference voltage V Z (details of this arithmetic circuit are explained in Japanese Patent Laid-Open No. 14714/1983).

第4図はカウンタCTの出力波形で、オン時
間T1がC1に、オフ時間T2がC2に関連する。は
インバータG7の出力で、と逆位相の信号であ
る。この信号が抵抗R1、静電容量C3のフイルタ
で平滑されて直流出力信号eOに変換され、出力回
路12の増幅器A1の非反転入力端子Y点に加算
抵抗R2を介して供給される。VR1はゼロ点調整
手段で、その出力は加算抵抗R3を介してY点に
接続されている。VR2は増幅器A1の帰還回路に
設けたスパン調節手段で、増幅器A2により、基
準電圧VZの1/2にバイアスされている。従つて増
幅器A1の入力eOは第4図に示すようにVZ/2
を基準にした平滑信号となり、(C1−C2)/(C1
+C2)に比例する。増幅器A1の出力は増幅器A3
に導かれて、出力電流IOが与えられる帰還抵抗RF
に発生する帰還電圧eFと比較増幅され、出力トラ
ンジスタTRを駆動して出力電流IOを制御する。
FIG. 4 shows the output waveform of the counter CT, in which the on-time T 1 is related to C 1 and the off-time T 2 is related to C 2 . is the output of inverter G7 , and is a signal with the opposite phase. This signal is smoothed by a filter with a resistor R 1 and a capacitor C 3 and converted into a DC output signal e O , which is supplied to the non-inverting input terminal Y point of the amplifier A 1 of the output circuit 12 via the summing resistor R 2 . be done. VR 1 is a zero point adjustment means, the output of which is connected to the Y point via an addition resistor R 3 . VR 2 is a span adjustment means provided in the feedback circuit of the amplifier A 1 , and is biased to 1/2 of the reference voltage V Z by the amplifier A 2 . Therefore, the input e O of amplifier A 1 is V Z /2 as shown in FIG.
It is a smooth signal based on (C 1 − C 2 )/(C 1
+C 2 ). The output of amplifier A 1 is the output of amplifier A 3
The feedback resistor R F is guided by the output current I O
It is compared and amplified with the feedback voltage e F generated in the output transistor TR, and controls the output current I O by driving the output transistor TR.

次に補償信号発生回路16について説明する。
M1は単安定回路で、第4図のデユーテイサイ
クル信号を受け、その立上りでトリガされてT1
+T2よりは短いのごとき一定時間TOの出力パ
ルスを発生させる。R4,C4はTOを決定する時定
数回路である。SW1は信号を信号で開閉する
スイツチ、R5,C5はスイツチSW1の出力信号を
平滑するフイルタである。
Next, the compensation signal generation circuit 16 will be explained.
M 1 is a monostable circuit that receives the duty cycle signal shown in Figure 4 and is triggered at the rising edge of the signal to output T 1
Generates an output pulse of T O for a certain period of time, such as shorter than +T 2 . R 4 and C 4 are time constant circuits that determine T O. SW1 is a switch that opens and closes a signal, and R5 and C5 are filters that smooth the output signal of switch SW1 .

既述のように、カウンタCTの出力にはオン時
間が静電容量C1に比例する電圧T1=C1K1(た
だしK1は定数)が発生するが、この静電容量C1
は移動電極7と固定電極8との間で形成される静
電容量であり、圧力PHとPLとの差圧ΔPにより変
化る。同様にしてT2はT2=C2・K1となる。
As mentioned above, the output of the counter CT generates a voltage T1=C1K1 (however, K1 is a constant) whose on time is proportional to the capacitance C1, but this capacitance C1
is the capacitance formed between the moving electrode 7 and the fixed electrode 8, and it changes depending on the differential pressure ΔP between the pressures P H and P L. Similarly, T 2 becomes T 2 =C 2 ·K 1 .

静電容量は一般に移動電極7と固定電極8との
対向面積Sに誘電率εを乗じた値(Sε)を移動
電極7と固定電極8間の距離dで割算した値
(Sε)/dに比例する。
Generally, the capacitance is calculated by dividing the value (Sε) obtained by multiplying the opposing area S between the moving electrode 7 and the fixed electrode 8 by the dielectric constant ε by the distance d between the moving electrode 7 and the fixed electrode 8 (Sε)/d. is proportional to.

いま、移動電極7が固定電極8,9の中央の位
置に配置されているとして移動電極7に対する各
固定電極8と9の距離を各々d0とし、差圧ΔPに
より移動電極7が変位する割合を一定としてこれ
をK2とすれば、距離dは d=d0−K2・ΔP となる。従つて、C1はK3を比例定数として C1=K3・εS/d =K3・εS/(d0−K2・ΔP) =εC/(1−K・ΔP) となる。但し、C、Kは定数であり、C=K3S/
d0、K=K2/d0である。これをC2について同様
に計算すれば、 C2=εC/(1+K・ΔP) となる。符号が+になつているのは、C1とC2
間隙は移動電極が差圧ΔPに対して逆方向に変化
するからである。
Now, assuming that the movable electrode 7 is placed at the center of the fixed electrodes 8 and 9, the distance between each fixed electrode 8 and 9 with respect to the movable electrode 7 is d 0 , and the rate at which the movable electrode 7 is displaced due to the differential pressure ΔP is If K 2 is assumed to be constant, the distance d becomes d=d 0 −K 2 ·ΔP. Therefore, C 1 becomes C 1 =K 3 ·εS/d =K 3 ·εS/(d 0 −K 2 ·ΔP) =εC/(1−K·ΔP) with K 3 as a proportionality constant. However, C and K are constants, and C=K3S/
d 0 , K=K 2 /d 0 . If this is calculated similarly for C 2 , it becomes C 2 =εC/(1+K·ΔP). The reason why the sign is + is that the gap between C 1 and C 2 changes in the opposite direction with respect to the differential pressure ΔP of the moving electrode.

ここで、カウンタCTは基準電圧VZが電源とし
て供給されており、その出力端には第4図に示す
ように(T1+T2)の周期で繰り返すパルス電圧
が出力されており、単安定回路M1はカウンタCT
の出力の立上りに同期して所定の時間幅T0(第4
図を参照)で出力されるパルスでスイツチSW1
開閉するので、C5とR5で構成されるフイルタの
出力端に発生する電圧VCは、 VC=VZ・T1/T0 =VZ・C1・K1/T0 =VZ・K1εC/T0(1-K・ΔP) …(2) なる電圧が発生する。
Here, the counter CT is supplied with the reference voltage V Z as a power supply, and as shown in Figure 4, a pulse voltage that repeats at a period of (T 1 + T 2 ) is output at the output terminal, making it a monostable. Circuit M1 is counter CT
A predetermined time width T 0 (fourth
Since the switch SW 1 is opened and closed by the pulse output from the filter (see figure), the voltage V C generated at the output terminal of the filter consisting of C 5 and R 5 is: V C = V Z・T 1 /T 0 =V Z・C 1・K 1 /T 0 =V Z・K 1 εC/T 0 (1-K・ΔP) …(2) A voltage is generated.

一方、スイツチSW2はカウンタCTの出力を
インバータG7で反転したパルス電圧で電圧VC
開閉するので、C6とR6で構成されるフイルタの
出力端には次式で示す電圧V〓が発生する。
On the other hand, switch SW2 opens and closes voltage V C using a pulse voltage obtained by inverting the output of counter CT with inverter G 7 , so the output terminal of the filter composed of C 6 and R 6 has a voltage V 〓 expressed by the following equation. Occur.

V〓=VC・T2/(T1+T2) =VC・C2/(C1+C2) ここで、 C2/(C1+C2) =[εC/(1+K・ΔP)]/[εC/2] =(1−K・ΔP)/2 であるので、 V〓=[VZ・K1εC/T0(1-K・ΔP)] ・[(1−K・ΔP)/2] =VZ・K1εC/2T0 =A・ε …(3) となり、V〓は誘電率εに比例する。但し、Aは
定数である。
V = V C・T 2 / (T 1 + T 2 ) = V C・C 2 / (C 1 + C 2 ) Here, C 2 / (C 1 + C 2 ) = [εC/(1+K・ΔP)] /[εC/2] = (1-K・ΔP)/2, so V〓=[V Z・K 1 εC/T 0 (1-K・ΔP)] ・[(1-K・ΔP) /2] =V Z・K 1 εC/2T 0 =A・ε (3), and V〓 is proportional to the dielectric constant ε. However, A is a constant.

(1)、(3)式より、V〓は V〓=AεS(1−αΔT+βΔP) =AεS−AεSαΔT+AεSβΔP …(4) となる。 From equations (1) and (3), V〓 becomes V〓=Aε S (1−αΔT+βΔP) =Aε S −Aε S αΔT+Aε S βΔP (4).

この電圧はバツフア増幅器A4その出力を受け
る反転増幅器A5により正負の電圧V+〓,V-〓に変換
され、極性選択及び係数設定用のポテンシヨメー
タVR3で適当な係数と極性のゼロ点変動補償信号
ePに変換され、加算抵抗R7を介してY点に導か
れ、出力信号eOに加算され、温度及び静圧変動に
よるゼロ点変動が補償される。VR4は信号ePに適
当なバイアスを供給するための調整手段である。
This voltage is converted into positive and negative voltages V + 〓, V - 〓 by an inverting amplifier A 5 which receives the output of the buffer amplifier A 4 , and is set to an appropriate coefficient and polarity zero by a potentiometer VR 3 for polarity selection and coefficient setting. Point fluctuation compensation signal
It is converted into eP , guided to point Y via the addition resistor R7 , and added to the output signal eO , thereby compensating for zero point fluctuations due to temperature and static pressure fluctuations. VR 4 is an adjustment means for supplying a suitable bias to the signal e P.

次に温度補償信号発生回路15につき説明す
る。
Next, the temperature compensation signal generation circuit 15 will be explained.

一定電圧VZより、温度センサ13を形成する
ダイオードD1,D2と抵抗R8の直列回路に電流を
流し、R8の電圧降下をポテンシヨメータVR5
より適当に分圧して点に得られる電圧VTは、 VT=(VZ−Vdp) /B+Ccd・Δt/B …(5) となる。ここでBは定数、Vdpは基準状態におけ
るダイオードD1,D2の準方向電圧の和、Cは約
−2.3mV/℃で表わされるダイオードの感温係
数である。この電圧VTはバツフア増幅器A6を介
して取出され、ポテンシヨメータVR6で適当な係
数を乗ぜられて点に温度補償信号eTを得る。
A7はこの温度補償信号eTに対して出力回路12
の動作基準電位VZ/2をバイアスするための手
段である。ポテンシヨメータVR5の調整によつて
基準状態での(5)式の出力を基準電位VZ/2に設
定した後VR6の調整によつて、温度に関連する第
2項に適当な係数kを乗じ、加算抵抗R9を介し
てY点に導く。
A current is applied from a constant voltage V Z to a series circuit of diodes D 1 and D 2 and a resistor R 8 forming the temperature sensor 13, and the voltage drop across R 8 is divided appropriately using a potentiometer VR 5 to obtain a point. The resulting voltage V T is V T =(V Z −V dp )/B+C cd ·Δt/B (5). Here, B is a constant, V dp is the sum of forward voltages of the diodes D 1 and D 2 in the reference state, and C is the temperature sensitivity coefficient of the diode expressed as about -2.3 mV/°C. This voltage V T is tapped off via a buffer amplifier A 6 and multiplied by a suitable coefficient in a potentiometer VR 6 to obtain a temperature compensated signal e T .
A7 is the output circuit 12 for this temperature compensation signal eT.
This is a means for biasing the operating reference potential V Z /2 of. After setting the output of equation (5) in the reference state to the reference potential V Z /2 by adjusting potentiometer VR 5 , set the appropriate coefficient to the second term related to temperature by adjusting VR 6 . It is multiplied by k and led to point Y via the summing resistor R9 .

第5図は1/εに比例する補償信号ePを得るた
めの演算回路を示し、M2,M3は単安定回路であ
り、その時定数はT1,T2の最短周期よりは短い
一定周期T0で同一とされている。
Figure 5 shows an arithmetic circuit for obtaining a compensation signal e P proportional to 1/ε, M 2 and M 3 are monostable circuits, and their time constants are constant and shorter than the shortest period of T 1 and T 2 . They are assumed to be the same at period T 0 .

単安定回路M2はカウンタCTの出力パルスで、
単安定回路M3はカウンタCTの出力パルスを反転
した反転パルスでそれぞれトリガされたこれ等の
出力はカウンタCTの出力パルスとこれの反転パ
ルスで開閉されるスイツチSW4,SW5を介してフ
イルタに出力される。
The monostable circuit M 2 is the output pulse of the counter CT,
The monostable circuit M3 is triggered by an inverted pulse that is the inversion of the output pulse of the counter CT.These outputs are filtered via switches SW4 and SW5 , which are opened and closed by the output pulse of the counter CT and its inverted pulse. is output to.

これ等のフイルタの出力電圧VH,VIは、T1
T0、T2>T0を考慮し、(3)式を導出したときと同
様にして、 VH=T0・VZ/T1 =T0・VZ/C1K1 =T0・VZ(1−K・ΔP)/K1εC VI=T0・VZ/T2 =T0・VZ/C2K1 =T0・VZ(1+K・ΔP)/K1εC となる。
The output voltages V H and V I of these filters are T 1 >
Considering T 0 , T 2 > T 0 and in the same way as when formula (3) was derived, V H =T 0・V Z /T 1 =T 0・V Z /C 1 K 1 =T 0・V Z (1-K・ΔP)/K 1 εC V I =T 0・V Z /T 2 =T 0・V Z /C 2 K 1 =T 0・V Z (1+K・ΔP)/ K 1 εC.

これ等の電圧は抵抗R10,R11を介して加算さ
れ、この加算された加算電圧V〓は V〓=2T0・VZ/εK1C =B/ε …(6) となり、1/εに比例した電圧となる。但し、B
は定数である。
These voltages are added via resistors R 10 and R 11 , and the added voltage V〓 becomes V〓=2T 0・V Z /εK 1 C =B/ε...(6), and 1/ The voltage is proportional to ε. However, B
is a constant.

1/εを演算する構成は、εを演算する構成に
比較してスイツチがすくなく簡素となる利点があ
る。εの変化範囲は小さいので、1/εも温度、
静圧に対して直線的に変化し、この信号を補償信
号としても効果は変らない。
The configuration that calculates 1/ε has the advantage of being simpler and has fewer switches than the configuration that calculates ε. Since the range of change in ε is small, 1/ε is also a function of temperature,
It changes linearly with static pressure, and even if this signal is used as a compensation signal, the effect remains the same.

次に、調整の手段について説明する。 Next, the adjustment means will be explained.

(1) 静圧変動の補償…基準温度、静圧=0でポテ
ンシヨメータVR3,VR6の端子間電圧がゼロに
なるようにVR4,VR5を調整する。この調整に
よつて基準状態における出力IOはVR3,VR6
調整には影響されない状態となる。ここで静圧
を加えて、発生する出力電流IOの変動分をポテ
ンシヨメータVR3で調整し、補償する。
(1) Compensation for static pressure fluctuations: Adjust VR 4 and VR 5 so that the voltage between the terminals of potentiometers VR 3 and VR 6 becomes zero at reference temperature and static pressure = 0. By this adjustment, the output I O in the reference state becomes unaffected by the adjustment of VR 3 and VR 6 . Static pressure is applied here, and the variation in output current I O that occurs is adjusted and compensated for by potentiometer VR 3 .

(2) 温度変動の補償…次に、温度を基準状態より
変化させ(静圧は任意)、発生する出力電流の
変動分をポテンシヨメータVR6を調整して補償
する。温度の変化に対する出力変動は誘電率の
変動即ち静圧補償信号ePの変動による出力変動
と、変換器自身の温度変動の和であるが、これ
ら両者の変動分がこの調整で合せて補償され
る。
(2) Compensation for temperature fluctuations... Next, change the temperature from the reference state (static pressure is arbitrary) and compensate for the fluctuations in the output current that occur by adjusting the potentiometer VR 6 . Output fluctuations due to temperature changes are the sum of output fluctuations due to dielectric constant fluctuations, that is, fluctuations in the static pressure compensation signal eP , and temperature fluctuations of the converter itself, but both of these fluctuations are compensated for together by this adjustment. Ru.

本発明において静圧変動の補償信号ePを演算す
る回路16は、変換器の自身のセンサである静電
容量C1,C2に基いて封液の誘電率を演算する上
記の実施例の場合では特別な誘電率のセンサを必
要としないので、全体の構成がシンプルとなる利
点があるが、変換器における圧力・差圧の検出方
式が静電容量変化を用いない型式のものであつて
も、封液内に一対の固定対向配置した電極を設
け、その静電容量変化で誘電率を演算するように
すれば本発明を実施出来る。その場合でも従来の
ごとく特別な圧力センサを設ける構成よりも変換
器の構造はシンプルとなり、充分本発明の効果を
発揮できる。
In the present invention, the circuit 16 that calculates the static pressure fluctuation compensation signal e P is similar to the above embodiment that calculates the dielectric constant of the sealing liquid based on the capacitances C 1 and C 2 that are the own sensors of the converter. In some cases, there is no need for a special dielectric constant sensor, which has the advantage of simplifying the overall configuration. However, the present invention can be carried out by providing a pair of fixed electrodes arranged opposite each other in the sealing liquid and calculating the dielectric constant based on the change in capacitance of the electrodes. Even in that case, the structure of the converter is simpler than the conventional configuration in which a special pressure sensor is provided, and the effects of the present invention can be fully exhibited.

又、本発明は実施例のごとく一室構造の変換器
のみでなく、電極室中央部に設けたレンジスプリ
ングにより二室とされた構造の変換器にも適用で
きる。
Further, the present invention can be applied not only to a converter having a one-chamber structure as in the embodiment, but also to a converter having a two-chamber structure by a range spring provided in the center of the electrode chamber.

<効果> 以上、実施例と共に具体的に説明したように、
本発明によれば、変位に対応してデユテイ比が変
化するパルス信号を演算手段により演算し、この
パルス信号を平滑して前記変位に対応する平滑信
号として出力する場合に、このパルス信号に同期
した定パルス信号を算出し、この定パルス信号と
パルス信号とを用いて演算により静圧等に起因す
るゼロ点補償信号を求め、これを用いて平滑信号
に対して静圧等に起因して発生するゼロ点誤差を
補償するようにしたので、静圧補正のために特別
に圧力センサを本体内に別途用意するすることな
く、演算により補償することができ、このためシ
ンプルな構造で低コストでしかも高精度の圧力・
差圧伝送器を実現することができる。
<Effects> As specifically explained above along with the examples,
According to the present invention, when a pulse signal whose duty ratio changes in accordance with displacement is calculated by the calculation means, and this pulse signal is smoothed and output as a smoothed signal corresponding to the displacement, synchronization is made with this pulse signal. Calculate the constant pulse signal that has been calculated, use this constant pulse signal and the pulse signal to calculate the zero point compensation signal caused by static pressure, etc., and use this to calculate the zero point compensation signal caused by static pressure etc. for the smooth signal. Since the zero point error that occurs is compensated for, it can be compensated by calculation without the need to separately prepare a pressure sensor inside the main body for static pressure correction, resulting in a simple structure and low cost. Moreover, high precision pressure
A differential pressure transmitter can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力・差圧伝送器のゼロ点変動
補償、スパン変動補償を説明する構成図、第2図
は本発明の一実施例を示す基本構成図、第3図は
その具体的な回路構成図、第4図はその動作説明
図、第5図は本発明主要部の他の実施例を示す回
路構成図である。 C1,C2……静電容量、1……本体、2,3…
…ダイヤフラム、5……封液、11……演算回
路、12……出力回路、15……温度補償信号発
生回路、16……静圧補償信号発生回路、eP……
静圧補償信号、eT……温度補償信号。
Fig. 1 is a block diagram illustrating zero point fluctuation compensation and span variation compensation of a conventional pressure/differential pressure transmitter, Fig. 2 is a basic block diagram showing an embodiment of the present invention, and Fig. 3 is a detailed diagram of the same. FIG. 4 is an explanatory diagram of its operation, and FIG. 5 is a circuit diagram showing another embodiment of the main part of the present invention. C 1 , C 2 ... Capacitance, 1 ... Main body, 2, 3 ...
...Diaphragm, 5...Sealing liquid, 11...Arithmetic circuit, 12...Output circuit, 15...Temperature compensation signal generation circuit, 16...Static pressure compensation signal generation circuit, eP ...
Static pressure compensation signal, e T ...Temperature compensation signal.

Claims (1)

【特許請求の範囲】[Claims] 1 本体に固定され測定すべき圧力又は差圧を受
けて変位する受圧要素とこの受圧要素に囲まれ前
記本体内に封入された封液を有する圧力・差圧伝
送器において、前記変位に対応してデユテイ比が
変化するパルス信号を出力する演算手段と、この
演算手段から出力されるパルス信号に同期して一
定時間幅の定パルス信号を発生させる定パルス信
号発生手段と、前記演算手段から出力されるパル
ス信号とこの定パルス信号発生手段から出力され
る定パルス信号とを用いて前記封液の誘電率の変
化に関連する信号を算出してこれをゼロ点補償信
号として出力する補償信号発生回路と、前記封液
の温度に対応する温度信号が入力されこれを温度
補償信号として出力する温度補償信号発生手段
と、前記演算手段から出力されるパルス信号を平
滑した平滑信号に対して前記補償信号発生回路か
ら出力されるゼロ点補償信号と前記温度補償信号
発生手段から出力される温度補償信号とを用いて
前記ゼロ点の変化を補償して前記圧力又は差圧に
対応する信号を出力する出力手段とを具備するこ
とを特徴とする圧力・差圧伝送器。
1. A pressure/differential pressure transmitter having a pressure receiving element fixed to a main body and displacing in response to the pressure or differential pressure to be measured, and a sealing liquid surrounded by the pressure receiving element and sealed in the main body, which corresponds to the displacement. a calculation means for outputting a pulse signal whose duty ratio changes, a constant pulse signal generation means for generating a constant pulse signal of a fixed time width in synchronization with the pulse signal output from the calculation means, and an output from the calculation means. generating a compensation signal for calculating a signal related to the change in dielectric constant of the sealing liquid using the pulse signal generated by the pulse signal and the constant pulse signal output from the constant pulse signal generating means, and outputting the signal as a zero point compensation signal; a circuit, a temperature compensation signal generating means for receiving a temperature signal corresponding to the temperature of the sealing liquid and outputting it as a temperature compensation signal, and compensating the smoothed signal obtained by smoothing the pulse signal output from the calculation means. Compensating for the change in the zero point using a zero point compensation signal output from the signal generation circuit and a temperature compensation signal output from the temperature compensation signal generation means, and outputting a signal corresponding to the pressure or differential pressure. A pressure/differential pressure transmitter comprising: an output means.
JP23708883A 1983-12-15 1983-12-15 Pressure and differential pressure transmitting device Granted JPS60128321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23708883A JPS60128321A (en) 1983-12-15 1983-12-15 Pressure and differential pressure transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23708883A JPS60128321A (en) 1983-12-15 1983-12-15 Pressure and differential pressure transmitting device

Publications (2)

Publication Number Publication Date
JPS60128321A JPS60128321A (en) 1985-07-09
JPH0377938B2 true JPH0377938B2 (en) 1991-12-12

Family

ID=17010228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23708883A Granted JPS60128321A (en) 1983-12-15 1983-12-15 Pressure and differential pressure transmitting device

Country Status (1)

Country Link
JP (1) JPS60128321A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280878A (en) * 1975-12-27 1977-07-06 Fuji Electric Co Ltd Pressure measuring apparatus
JPS5832154A (en) * 1981-08-19 1983-02-25 Matsushita Electric Ind Co Ltd Detecting apparatus of humidity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280878A (en) * 1975-12-27 1977-07-06 Fuji Electric Co Ltd Pressure measuring apparatus
JPS5832154A (en) * 1981-08-19 1983-02-25 Matsushita Electric Ind Co Ltd Detecting apparatus of humidity

Also Published As

Publication number Publication date
JPS60128321A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
JP3339974B2 (en) Feedback control method and apparatus for asymmetric differential pressure transducer
US4149231A (en) Capacitance-to-voltage transformation circuit
US4193063A (en) Differential capacitance measuring circuit
JPS6237440B1 (en)
US4366716A (en) Pressure transducer
JPS5961709A (en) Detector
US4683754A (en) Capacitive displacement transducer
JPH0377938B2 (en)
JPS6098328A (en) Temperature and static pressure compensating method of pressure and differential pressure transmitter
JP3189987B2 (en) Capacitive sensor
JPH0326322B2 (en)
JPH0142237Y2 (en)
JPH0128324B2 (en)
JPS6236087Y2 (en)
JPS6245485B2 (en)
JPH0130085B2 (en)
JPH0370767B2 (en)
JPH0377936B2 (en)
JPS60138435A (en) Pressure and differential pressure transmitter
JPH068763B2 (en) Differential pressure transmitter
RU2037770C1 (en) Measuring converter of nonelectric values
JPH0439894B2 (en)
JPH0346332Y2 (en)
JPH0412466Y2 (en)
JP3265807B2 (en) Capacitive sensor