JPH0412466Y2 - - Google Patents

Info

Publication number
JPH0412466Y2
JPH0412466Y2 JP18557883U JP18557883U JPH0412466Y2 JP H0412466 Y2 JPH0412466 Y2 JP H0412466Y2 JP 18557883 U JP18557883 U JP 18557883U JP 18557883 U JP18557883 U JP 18557883U JP H0412466 Y2 JPH0412466 Y2 JP H0412466Y2
Authority
JP
Japan
Prior art keywords
current
pair
compensation
variable capacitors
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18557883U
Other languages
Japanese (ja)
Other versions
JPS6092113U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18557883U priority Critical patent/JPS6092113U/en
Publication of JPS6092113U publication Critical patent/JPS6092113U/en
Application granted granted Critical
Publication of JPH0412466Y2 publication Critical patent/JPH0412466Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【考案の詳細な説明】 <考案の属する技術分野> 本考案は、圧力、差圧等の被測定量に応じて可
動電極が変位し電極間の容量が差動的に変化する
一対の可変コンデンサを有する検出器を用いた容
量式変換装置に関するものである。
[Detailed description of the invention] <Technical field to which the invention pertains> The invention is a pair of variable capacitors in which a movable electrode is displaced in accordance with a measured quantity such as pressure or differential pressure, and the capacitance between the electrodes is differentially changed. The present invention relates to a capacitive conversion device using a detector having the following characteristics.

<従来技術> 一対の可変コンデンサを有する検出器は、例え
ば第1図の断面図に示すように構成されている。
両側面がシールダイヤフラム4と5で封鎖されて
いる容器内を測定ダイヤフラム1で測定室7と8
の2部分に分離し、かつ測定室7,8内を封入液
6で満している。そして測定ダイヤフラム1を可
動電極とし、その両面に対向する測定室の内壁面
にそれぞれ固定電極2と3を配置して、一対の可
変コンデンサC1,C2を形成している。この検出
器では容器の両側面のシールダイヤフラム4,5
に外部から高圧PHと低圧PLが加わると、両圧は
封入液6を介して測定ダイヤフラム1に伝達さ
れ、測定ダイヤフラムすなわち可動電極1を変位
させる。この結果一対の可変コンデンサC1、C2
の容量が被測定量(PH−PL)に応じて差動的に
変化する。このような検出器を用いた容量式変換
装置においては、一般に一対の可変コンデンサに
発振器より発振出力を印加し、被測定量に応じて
差動的に変化する容量の和に対応した電気信号が
一定になるように前記発振器を制御し、差動的に
変化する容量の差に対応した電気信号を出力する
ことにより、被測定量を電気信号に変換してい
る。しかしながら、このように構成された容量式
変換装置では、一対の可変コンデンサの電極間に
存在するストレイ容量等の影響をうけ、直線性が
悪かつた。
<Prior Art> A detector having a pair of variable capacitors is configured as shown in the cross-sectional view of FIG. 1, for example.
Measuring diaphragm 1 moves measuring chambers 7 and 8 into the container, which is closed on both sides by sealing diaphragms 4 and 5.
The measurement chambers 7 and 8 are filled with the liquid 6. The measurement diaphragm 1 is used as a movable electrode, and fixed electrodes 2 and 3 are arranged on the inner wall surfaces of the measurement chamber facing both sides of the movable electrode, forming a pair of variable capacitors C 1 and C 2 . In this detector, seal diaphragms 4, 5 on both sides of the container
When high pressure PH and low pressure PL are applied from the outside to , both pressures are transmitted to the measuring diaphragm 1 through the sealed liquid 6 and displace the measuring diaphragm, that is, the movable electrode 1 . This results in a pair of variable capacitors C 1 , C 2
The capacitance changes differentially depending on the measured quantity (PH-PL). In a capacitive conversion device using such a detector, an oscillation output is generally applied from an oscillator to a pair of variable capacitors, and an electrical signal corresponding to the sum of the capacitances that differentially changes depending on the measured quantity is generated. The amount to be measured is converted into an electrical signal by controlling the oscillator so that the capacitance remains constant and outputting an electrical signal corresponding to the differentially varying capacitance difference. However, the capacitive converter configured in this manner has poor linearity due to the influence of stray capacitance existing between the electrodes of a pair of variable capacitors.

このため従来は補償用の固定コンデンサを用い
て直線性を向上させており、その一例を第2図に
示す。第2図において、一対の可変コンデンサ
C1,C2および補償用の固定コンデンサC3にはト
ランスTを介して発振器OSCの発振出力があた
えられているので、それぞれの容量に応じた交流
電流i1,i2,i3が流れる。交流電流i1,i2,i3は整
流用ダイオードD1,D2,D3,D4,D5,D6および
平滑用コンデンサCf0,Cf1,Cf2によつて整流平
滑される。したがつて、電流電圧変換器CON1
の入力には交流電流i1,i2の差すなわち容量C1
C2の差に対応した平均値電流Ioが与えられる。
CON1は演算増幅器OP1とその帰還回路に接続
された抵抗Roとからなり、平均値電流Ioを出力
電圧Eo(=−Io・Ro)に変換する。交流電流i2
なわち容量C2に応じた平均値電流I2は電流電圧変
換器CON2の入力に与えられる。CON2は演算
増幅器OP2とその帰還回路に接続された抵抗R1
からなり、その入力に与えられるC2の容量に応
じた平均値電流I2をR2,I2なる電圧E2に変換す
る。交流電流i1すなわち容量C1に応じた平均値電
流I1は積分器INTの入力に与えられる。INTは演
算増幅器OP3とその帰還回路に接続されたコンデ
ンサCIとからなり、その入力にはC1の容量に応
じた平均値電流I1の他に、CON2の出力電圧E2
が抵抗R2を介して与えられ、かつ負の基準電圧
Erが抵抗R3を介して与えられている。さらに交
流電流i3すなわちC3の容量に応じた平均値電流を
抵抗R4で分流して得た補償電流I4も平均値電流I1
とは逆極性にINTの入力に与えられている。な
お補償電流I4は抵抗R4の刷子位置αを移動させる
ことにより調整できる。積分器INTはC1の容量
に応じた平均値電流I1と、CON2の出力電圧E2
に応じたE2/R2なる電流I3と、基準電圧Erに応
じたEr/R3なる基準電流Irおよび補償電流I4とを
加算積分する。そして抵抗R1とR2の値を等しく
選べば、電流I3はI2を反転した電流となり、図示
の如くI1と同極性でかつ基準電流Irとは逆極性と
なる。すなわち積分器INTはC1,C2の容量の和
に応じた平均値電流(I1+I2)と基準電流Irおよ
び補償電流I4の総和が零になるように発振器OSC
の発振出力を制御して、電流電圧変換器CON1
の出力端に次式に示す如き出力電圧Eoを得てい
る。
For this reason, linearity has conventionally been improved by using a fixed capacitor for compensation, an example of which is shown in FIG. In Figure 2, a pair of variable capacitors
Since the oscillation output of the oscillator OSC is applied to C 1 , C 2 and the compensation fixed capacitor C 3 via the transformer T, alternating currents i 1 , i 2 , i 3 flow according to their respective capacities. . The alternating currents i 1 , i 2 , i 3 are rectified and smoothed by rectifying diodes D 1 , D 2 , D 3 , D 4 , D 5 , D 6 and smoothing capacitors Cf 0 , Cf 1 , Cf 2 . Therefore, the current voltage converter CON1
The input of is the difference between alternating currents i 1 and i 2 , that is, the capacitance C 1 ,
An average current Io corresponding to the difference in C 2 is given.
CON1 consists of an operational amplifier OP1 and a resistor Ro connected to its feedback circuit, and converts the average current Io into an output voltage Eo (=-Io·Ro). The alternating current i 2 , that is, the average value current I 2 corresponding to the capacitance C 2 is applied to the input of the current-voltage converter CON2. CON2 consists of an operational amplifier OP 2 and a resistor R 1 connected to its feedback circuit, and converts the average current I 2 according to the capacitance of C 2 applied to its input into a voltage E 2 equal to R 2 and I 2 . do. The alternating current i 1 , that is, the average value current I 1 according to the capacitance C 1 is given to the input of the integrator INT. INT consists of an operational amplifier OP 3 and a capacitor CI connected to its feedback circuit, and its input includes an average current I 1 corresponding to the capacitance of C 1 as well as an output voltage E 2 of CON 2.
is given through resistor R 2 and the negative reference voltage
Er is given through resistor R3 . Furthermore, the compensation current I 4 obtained by dividing the AC current i 3, that is, the average current according to the capacity of C 3 with the resistor R 4 , is also the average value current I 1
and is given to the input of INT with the opposite polarity. Note that the compensation current I 4 can be adjusted by moving the brush position α of the resistor R 4 . The integrator INT calculates the average value current I 1 according to the capacity of C 1 and the output voltage E 2 of CON 2.
A current I 3 of E 2 /R 2 corresponding to the reference voltage Er and a reference current Ir and a compensation current I 4 of Er/R 3 corresponding to the reference voltage Er are added and integrated. If the values of the resistors R 1 and R 2 are chosen to be equal, the current I 3 becomes a current that is the inversion of I 2 and has the same polarity as I 1 and the opposite polarity to the reference current Ir as shown in the figure. In other words, the integrator INT controls the oscillator OSC so that the sum of the average value current (I 1 + I 2 ) corresponding to the sum of the capacitances of C 1 and C 2 , the reference current Ir, and the compensation current I 4 becomes zero.
Control the oscillation output of current-voltage converter CON1
An output voltage Eo as shown in the following equation is obtained at the output terminal of .

Eo=C1−C2/C1+C2−αC3Ir・Ro (1) そして、一対の可変コンデンサC1,C2の容量
は、可動電極1の変位量xに対し、x=0のとき
の初期容量をCo、可動電極1と固定電極2,3
間の基準間隔(X=0のときの間隔)をd,電極
間に並列に存在するストレイ容量をCsとすると
それぞれ次式で与えられる。
Eo=C 1 −C 2 /C 1 +C 2 −αC 3 Ir・Ro (1) Then, the capacitance of the pair of variable capacitors C 1 and C 2 is calculated as follows: When the initial capacitance is Co, movable electrode 1 and fixed electrodes 2 and 3
Letting d be the reference interval between the electrodes (the interval when X=0) and Cs be the stray capacitance existing in parallel between the electrodes, they are given by the following equations.

C1=Cod/d−x+Cs (2) C2=Cod/d+x+Cs (3) (1)式、(2)式および(3)式から出力電圧Eoは、 Eo=2x/2d+(2Cs−αC3)AIr・Ro (4) ただし、A=(d2−x2)/Co・d となる。ここで、 α=2Cs/C3 (5) を満足するように分流比αを調整すれば、出力電
圧Eoは Eo=x/dIr・Ro (6) となり、ストレイ容量Csの影響を除去でき、直
線性を向上させることができる。
C 1 = Cod/d−x+Cs (2) C 2 = Cod/d+x+Cs (3) From equations (1), (2), and (3), the output voltage Eo is: Eo=2x/2d+(2Cs−αC 3 ) AIr・Ro (4) However, A=(d 2 −x 2 )/Co・d. Here, if the shunt ratio α is adjusted to satisfy α=2Cs/C 3 (5), the output voltage Eo becomes Eo=x/dIr・Ro (6), and the influence of the stray capacitance Cs can be removed. Linearity can be improved.

ところで、一対の可変コンデンサC1,C2のス
トレイ容量Csは温度係数をもつているので、補
償用の固定コンデンサC3の容量の温度係数を合
せる必要がある。しかしながら固定コンデンサは
温度係数の限られたものしかなく、一対の可変コ
ンデンサの温度係数に合せることが困難で、周囲
温度の変化による影響を受けるという問題があつ
た。また補償用コンデンサC3に流れる電流を利
用しているので、C3に並列にストレイ容量が存
在すると、その影響を受ける。
By the way, since the stray capacitance Cs of the pair of variable capacitors C 1 and C 2 has a temperature coefficient, it is necessary to match the temperature coefficient of the capacitance of the fixed capacitor C 3 for compensation. However, fixed capacitors have only a limited temperature coefficient, making it difficult to match the temperature coefficient of a pair of variable capacitors, and there are problems in that they are affected by changes in ambient temperature. Furthermore, since the current flowing through the compensation capacitor C3 is used, if there is stray capacitance in parallel with C3 , it will be affected.

<本考案の目的> 本考案は、周囲温度の変化の影響や補償回路の
ストレイ容量の影響を受けることなく、直線性の
補償ができる容量式変換装置を実現するにある。
<Purpose of the present invention> The purpose of the present invention is to realize a capacitive converter that can compensate for linearity without being affected by changes in ambient temperature or stray capacitance of a compensation circuit.

<本考案の構成> 本考案は、発振器の発信出力を整流して補償用
抵抗に与えて補償電流を得るように直線性の補償
回路を構成することにより、上述のような欠点の
ない容量式変換装置を実現したものである。
<Configuration of the present invention> The present invention has a linear compensation circuit that rectifies the oscillation output of an oscillator and supplies it to a compensation resistor to obtain a compensation current. This realizes a conversion device.

<実施例> 第3図は本考案装置の一実施例を示す接続図で
ある。第3図において、第2図と異なるところ
は、トランスTの巻線n4に生じる電圧をダイオー
ドD5および平滑用コンデンサCf3で整流平滑して
補償用抵抗Rsに与え、抵抗Rsをながれる直流電
流を抵抗R4で分流して補償用電流を得るように
して、補償用コンデンサを用いないようにした点
である。
<Embodiment> FIG. 3 is a connection diagram showing an embodiment of the device of the present invention. In Fig. 3, the difference from Fig. 2 is that the voltage generated in the winding n 4 of the transformer T is rectified and smoothed by a diode D 5 and a smoothing capacitor Cf 3 and applied to a compensation resistor Rs, and the direct current flowing through the resistor Rs is The point is that the current is divided by resistor R4 to obtain the compensation current, and no compensation capacitor is used.

このように構成した本考案においては、出力電
圧Eoは次式で与えられる。
In the present invention configured in this manner, the output voltage Eo is given by the following equation.

Eo=2x/2d+(2Cs−α/2fRs)A Ir・Ro (7) よつて、 α=4Cs・f・Rs (8) を満足するようにαを調整すれば、出力電圧Eo
は(6)式と同じになり、ストレイ容量Csの影響を
除去でき、直線性を向上させることができる。し
かも抵抗は種々の温度係数のものがあり、一対の
可変コンデンサのストレイ容量の温度係数にあつ
たものを選ぶのが容易にできるので、周囲温度の
変化の影響を受けがたい。また、トランスTの巻
線の近くで直流に整流しているため、補償回路の
ストレイ容量の影響も受けない。
Eo=2x/2d+(2Cs-α/2fRs)A Ir・Ro (7) Therefore, if α is adjusted to satisfy α=4Cs・f・Rs (8), the output voltage Eo
is the same as equation (6), the influence of stray capacitance Cs can be removed, and linearity can be improved. Furthermore, there are resistors with various temperature coefficients, and it is easy to select one that matches the temperature coefficient of the stray capacitance of the pair of variable capacitors, so that it is less susceptible to changes in ambient temperature. Furthermore, since the direct current is rectified near the winding of the transformer T, it is not affected by the stray capacitance of the compensation circuit.

なお、上述では補償用抵抗Rsに発振出力を整
流平滑した電圧を与える場合を例示したが、第4
図に示すように平滑用コンデンサCf3を省略して
整流しただけのものを与えてもよい。この場合第
5図に示すようにCf3の代りにダイオードD6を接
続すればノイズにつよくできる。
In addition, although the case where the voltage obtained by rectifying and smoothing the oscillation output is applied to the compensation resistor Rs is illustrated above, the fourth
As shown in the figure, the smoothing capacitor Cf 3 may be omitted to provide only rectification. In this case, noise resistance can be improved by connecting a diode D 6 instead of Cf 3 as shown in FIG.

<本考案の効果> 本考案においては、直線性を補償用抵抗を用い
て向上させているので、周囲温度の変化の影響や
補償回路のストレイ容量の影響を受けがたい容量
式変換装置を実現できる。
<Effects of the present invention> In the present invention, linearity is improved using a compensation resistor, so a capacitive conversion device is realized that is less susceptible to the effects of changes in ambient temperature and stray capacitance of the compensation circuit. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一対の可変コンデンサを用いた検出器
の一例を示す断面図、第2図は従来の容量式変換
装置の一例を示す接続図、第3図は本考案装置の
一実施例を示す接続図、第4,5図は本考案装置
の他の実施例を示す接続図である。 C1,C2……可変コンデンサ、C3……固定コン
デンサ、Rs……補償用の抵抗、OSC……発振器、
CON1,CON2……電流電圧変換器、D1〜D6
…整流用ダイオード、T……トランス、OP1
OP3……演算増幅器、INT……積分器。
Fig. 1 is a sectional view showing an example of a detector using a pair of variable capacitors, Fig. 2 is a connection diagram showing an example of a conventional capacitive conversion device, and Fig. 3 is an example of an embodiment of the device of the present invention. 4 and 5 are connection diagrams showing other embodiments of the device of the present invention. C 1 , C 2 ... variable capacitor, C 3 ... fixed capacitor, Rs ... compensation resistor, OSC ... oscillator,
CON1, CON2...Current voltage converter, D 1 ~ D 6 ...
... Rectifier diode, T...Transformer, OP 1 ~
OP 3 ...Operation amplifier, INT...Integrator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定量に応じて容量が差動的に変化する一対
の可変コンデンサを有する検出器と、前記一対の
可変コンデンサに発振出力を印加する発振器と、
この発振器の発振出力を整流した電圧が与えられ
る補償用抵抗と、この補償用抵抗に基づいて流れ
る電流を分流して補償電流を得る回路と、前記一
対の可変コンデンサの容量の和に対応した平均値
電流が基準電流と補償電流との和に等しくなるよ
うに前記発振器を制御する回路と、前記一対の可
変コンデンサの容量の差に対応した平均値電流に
関連した出力信号を得る回路とを具備してなる容
量式変換装置。
a detector having a pair of variable capacitors whose capacitance differentially changes depending on the measured quantity; an oscillator applying an oscillation output to the pair of variable capacitors;
A compensation resistor to which a voltage obtained by rectifying the oscillation output of this oscillator is applied, a circuit that divides the current flowing based on this compensation resistor to obtain a compensation current, and an average corresponding to the sum of the capacitances of the pair of variable capacitors. A circuit for controlling the oscillator so that the value current is equal to the sum of a reference current and a compensation current, and a circuit for obtaining an output signal related to an average value current corresponding to a difference in capacitance of the pair of variable capacitors. Capacitive conversion device.
JP18557883U 1983-11-30 1983-11-30 capacitive converter Granted JPS6092113U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18557883U JPS6092113U (en) 1983-11-30 1983-11-30 capacitive converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18557883U JPS6092113U (en) 1983-11-30 1983-11-30 capacitive converter

Publications (2)

Publication Number Publication Date
JPS6092113U JPS6092113U (en) 1985-06-24
JPH0412466Y2 true JPH0412466Y2 (en) 1992-03-25

Family

ID=30401075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18557883U Granted JPS6092113U (en) 1983-11-30 1983-11-30 capacitive converter

Country Status (1)

Country Link
JP (1) JPS6092113U (en)

Also Published As

Publication number Publication date
JPS6092113U (en) 1985-06-24

Similar Documents

Publication Publication Date Title
US4389646A (en) Displacement converting circuit arrangement
US4381677A (en) Reactance measurement circuit
JPH0412466Y2 (en)
US4793187A (en) Circuit arrangement for the compensation of temperature-dependent and temperature-independent drift and for the compensation of the sensitivity of a capacitive sensor
US4618862A (en) Mechanical displacement transducer
KR830000922Y1 (en) Capacitive Differential Pressure Transmitter
JPH0370767B2 (en)
JPH0120647Y2 (en)
JPH0430527B2 (en)
JPH047460B2 (en)
JPS5935769Y2 (en) capacitive converter
JPH0377936B2 (en)
JPH0120648Y2 (en)
JPS6219938Y2 (en)
JPS59112224A (en) Capacity type converting device
JPH0430529B2 (en)
JPS6138811B2 (en)
SU737777A1 (en) Rating transducer
JPH0136083Y2 (en)
JPS601403Y2 (en) Detection part structure of differential pressure transmitter
JPS6236088Y2 (en)
KR800002012Y1 (en) Capacity type convertiing device
SU1566303A1 (en) Transducer of informative parameter of quasi-differential pickup
JPS59132309A (en) Capacity type conversion device
JPS6245485B2 (en)