JPS6236088Y2 - - Google Patents

Info

Publication number
JPS6236088Y2
JPS6236088Y2 JP12143380U JP12143380U JPS6236088Y2 JP S6236088 Y2 JPS6236088 Y2 JP S6236088Y2 JP 12143380 U JP12143380 U JP 12143380U JP 12143380 U JP12143380 U JP 12143380U JP S6236088 Y2 JPS6236088 Y2 JP S6236088Y2
Authority
JP
Japan
Prior art keywords
compensation
current
voltage
pair
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12143380U
Other languages
Japanese (ja)
Other versions
JPS5744419U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12143380U priority Critical patent/JPS6236088Y2/ja
Publication of JPS5744419U publication Critical patent/JPS5744419U/ja
Application granted granted Critical
Publication of JPS6236088Y2 publication Critical patent/JPS6236088Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 本考案は、圧力、差圧等の被測定量に対応する
変位量に応じて容量が差動的に変化する一対の可
変コンデンサを用いて被測定量を電気信号に変換
する容量式変換装置に関するものである。
[Detailed description of the invention] This invention uses a pair of variable capacitors whose capacitance changes differentially depending on the amount of displacement corresponding to the quantity to be measured, such as pressure or differential pressure, to convert the quantity to be measured into an electrical signal. The present invention relates to a capacitive conversion device that performs conversion.

一般に容量式変換装置は、例えば実公昭44−
15398号公報に示されているように、変位量に応
じて差動的に変化する容量の和に対応した直流電
流が一定になるように発振器を制御し、容量の差
に対応した直流電流を出力とすることにより被測
定量を電気信号に変換している。このような構成
においては容量の和に対応した直流電流を一定に
制御しているため、変換回路部分では整流用ダイ
オードの温度係数の影響を受けないが、しかし変
位量を検出する一対の可変コンデンサを含む検出
器部分に温度係数があるため、容量の差に対応し
た信号電流には温度依存性がある。しかも検出器
部分は、例えば差圧や圧力を金属ダイヤフラムで
変位に換えて一対の可変コンデンサの容量を差動
的に変化させる場合でも、差圧変換器と圧力変換
器とでは温度係数が異つている。このため従来は
変換回路部分にサーミスタを含む温度補償用の抵
抗回路網を設けて信号電流の温度依存性を補償し
ているが、特別な温度補償用の抵抗回路網を設け
なければならず構成が複雑になる欠点があつた。
In general, capacitive converters are, for example,
As shown in Publication No. 15398, the oscillator is controlled so that the DC current corresponding to the sum of capacitances that differentially changes depending on the amount of displacement is constant, and the DC current corresponding to the difference in capacitance is By outputting it, the measured quantity is converted into an electrical signal. In such a configuration, the DC current corresponding to the sum of capacitances is controlled to be constant, so the conversion circuit part is not affected by the temperature coefficient of the rectifier diode. Since the detector portion including the capacitance has a temperature coefficient, the signal current corresponding to the difference in capacitance has temperature dependence. Moreover, the temperature coefficient of the detector part is different between the differential pressure transducer and the pressure transducer, even when, for example, differential pressure or pressure is converted into displacement using a metal diaphragm to differentially change the capacitance of a pair of variable capacitors. There is. For this reason, conventionally, a temperature compensation resistance network including a thermistor was provided in the conversion circuit section to compensate for the temperature dependence of the signal current, but a special temperature compensation resistance network had to be provided. The disadvantage was that it was complicated.

ところでこの種の容量式変換装置においては、
可変コンデンサに並列に存在するストレイ容量の
影響による直線性の悪化や、差圧変換器や圧力変
換器のように被測定量を金属ダイヤフラムで変位
に換える場合の非直線性を補償するために、補償
用コンデンサを設け、発振器から一対の可変コン
デンサに印加する電圧と等しい電圧を印加してそ
の容量に応じた補償電流を得、この補償電流を基
準電流に加えることによつて、一対の可変コンデ
ンサの容量の和に対応した電流と補償電流との差
が一定になるように発振器を制御し、前記補償電
流の値を調整して直線化を行うものがある。
By the way, in this type of capacitive converter,
In order to compensate for the deterioration of linearity due to the influence of stray capacitance that exists in parallel with the variable capacitor, and for the nonlinearity when converting the measured quantity into displacement using a metal diaphragm, such as in differential pressure transducers and pressure transducers, A compensation capacitor is provided, a voltage equal to the voltage applied to the pair of variable capacitors is applied from an oscillator to obtain a compensation current according to the capacitance, and by adding this compensation current to the reference current, the pair of variable capacitors is There is a device that controls an oscillator so that the difference between the current corresponding to the sum of the capacitances and the compensation current is constant, and adjusts the value of the compensation current to perform linearization.

本考案は、上述の如き直線化を行う回路を有効
に利用することによつて、特別な温度補償回路を
用いることなく、温度依存性を補償できる容量式
変換装置を実現したものである。
The present invention realizes a capacitive converter that can compensate for temperature dependence without using a special temperature compensation circuit by effectively utilizing the linearization circuit described above.

第1図は本考案装置の一実施例を示す接続図で
ある。図において、C1,C2は変位量に応じて容
量が差動的に変化する一対の可変コンデンサで、
図には被測定量に応じて変位する可動電極10
と、この可動電極10を挟んで対向配置されてい
る固定電極11,12とで構成されている。C3
は補償用の固定コンデンサ、Aは高利得の差動増
幅器、Oは発振器、Tはトランスで、1次コイル
n1と3個の2次コイルn2,n3,n4とを有してお
り、n4は巻数を調整できるようになつている。
Vrは安定化された直流電源、D1〜D6は各々整流
用ダイオード、R0〜R5は各々抵抗、Cf0〜Cf2
各々平滑用コンデンサ、C4は直流分阻止用コン
デンサである。
FIG. 1 is a connection diagram showing one embodiment of the device of the present invention. In the figure, C 1 and C 2 are a pair of variable capacitors whose capacitance changes differentially depending on the amount of displacement.
The figure shows a movable electrode 10 that is displaced according to the amount to be measured.
and fixed electrodes 11 and 12 which are arranged opposite to each other with the movable electrode 10 in between. C 3
is a fixed capacitor for compensation, A is a high-gain differential amplifier, O is an oscillator, T is a transformer, and the primary coil
It has n 1 and three secondary coils n 2 , n 3 , n 4 , and the number of turns of n 4 can be adjusted.
Vr is a stabilized DC power supply, D 1 to D 6 are each a rectifying diode, R 0 to R 5 are each a resistor, C f0 to C f2 are each a smoothing capacitor, and C 4 is a DC blocking capacitor. .

このように構成した本考案装置において、一対
の可変コンデンサC1,C2にはトランスTを介し
て発振器Oの発振出力が与えられているので、そ
れぞれその容量に応じた交流電流i1,i2が流れ
る。交流電流i1,i2はダイオードD1〜D4および平
滑用コンデンサCf0〜Cf2によつて整流平滑され
る。したがつて、抵抗R0には電流i1,i2の差に対
応した平均値電流Ioが流れ、その両端に生ずる出
力電圧Eoは、トランスTの1次巻線n1の巻数を
N1,2次巻線n2,n3の巻数をN2、発振器Oの発
振出力の片振幅をEa、周波数を、整流用ダイ
オードD1〜D4の順方向電圧降下をEd1および可変
コンデンサC1,C2に並列に存在するストレイ容
量をCs1,Cs2とすると、近似的に次式で表わす
ことができる。
In the device of the present invention configured as described above, since the oscillation output of the oscillator O is given to the pair of variable capacitors C 1 and C 2 via the transformer T, alternating currents i 1 and i corresponding to their capacitances are generated respectively. 2 flows. The alternating currents i 1 and i 2 are rectified and smoothed by diodes D 1 to D 4 and smoothing capacitors C f0 to C f2 . Therefore, an average current Io corresponding to the difference between the currents i 1 and i 2 flows through the resistor R 0 , and the output voltage Eo generated across the resistor R 0 is equal to the number of turns of the primary winding n 1 of the transformer T.
N 1 , the number of turns of the secondary windings n 2 and n 3 is N 2 , the half amplitude of the oscillation output of the oscillator O is Ea, the frequency is variable, and the forward voltage drop of the rectifier diodes D 1 to D 4 is variable as E d1 Letting Cs 1 and Cs 2 be the stray capacitances existing in parallel with capacitors C 1 and C 2 , it can be approximately expressed by the following equation.

Eo=2R0f{(C1+Cs1)−(C2+Cs2)} (N/NEa−Ed1) (1) また抵抗R1,R2にはそれぞれ電流i1,i2に対応
した平均値電流I1,I2が図示の極性で流れる。さ
らに抵抗R1,R2は抵抗R4,R5とともに直流電源
Vrに直列に接続され、一定の直流電流Irが前記平
均値電流I1,I2とは逆方向に供給されている。一
方、補償用の固定コンデンサC3にもトランスT
を介して発振器Oの発振出力が与えられているの
で、その容量に応じた交流電流i3が流れる。この
交流電流i3はダイオードD5,D6で整流される。そ
して補償用コンデンサC3の容量に対応した電流
がボリユーム抵抗R3によつて補償電流I3とバイパ
ス電流I4とに分けられる。よつて補償電流I3はボ
リユーム抵抗R3の分圧比をα、トランスTの22
次巻線n4の巻数をN3およびダイオードD5,D6
順方向電圧降下をEd2とすれば、 I3=2α(N/NEa−Ed2)fC3 (2) で与えられる。この補償電流I3が抵抗R1,R2の直
列回路に前記平均値電流I1,I2とは逆方向に供給
される。したがつて、抵抗R1,R2の直列回路の
両端には次式に示す如き帰還電圧Efが生ずる。
Eo=2R 0 f {(C 1 +Cs 1 )−(C 2 +Cs 2 )} (N 2 /N 1 Ea−E d1 ) (1) Also, the resistors R 1 and R 2 have currents i 1 and i 2 , respectively. Average value currents I 1 and I 2 corresponding to the currents flow with the polarities shown. Furthermore, resistors R 1 and R 2 are connected to the DC power supply along with resistors R 4 and R 5 .
It is connected in series with Vr, and a constant DC current Ir is supplied in the opposite direction to the average value currents I 1 and I 2 . On the other hand, the fixed capacitor C3 for compensation also has a transformer T.
Since the oscillation output of the oscillator O is applied through the oscillator O, an alternating current i3 corresponding to its capacity flows. This alternating current i3 is rectified by diodes D5 and D6 . A current corresponding to the capacitance of the compensation capacitor C3 is divided into a compensation current I3 and a bypass current I4 by the volume resistor R3 . Therefore, the compensation current I 3 is calculated using the voltage dividing ratio α of the volume resistor R 3 and 22 of the transformer T.
If the number of turns of the next winding n 4 is N 3 and the forward voltage drop of diodes D 5 and D 6 is E d2 , then I 3 = 2α (N 3 /N 1 Ea - E d2 ) fC 3 (2) Given. This compensation current I 3 is supplied to the series circuit of resistors R 1 and R 2 in the opposite direction to the average value currents I 1 and I 2 . Therefore, a feedback voltage E f as shown in the following equation is generated across the series circuit of resistors R 1 and R 2 .

f=2R{Ir+2αfC3(N/NEa−Ed2) −f(C1+C2+Cs1+Cs2)(N/NEa−Ed2)}(3
) ただし、R=R1=R2 この帰還電圧Efが差動増幅器Aに加えられ、
f=0になるように発振器Oの例えば電源電圧
を制御するので、発振出力の振幅Eaは次式で与
えられる。
E f =2R {Ir+2αfC 3 (N 3 /N 1 Ea−E d2 ) −f(C 1 +C 2 +Cs 1 +Cs 2 )(N 3 /N 1 Ea−E d2 )}(3
) However, R = R 1 = R 2 This feedback voltage E f is applied to the differential amplifier A,
For example, the power supply voltage of the oscillator O is controlled so that E f =0, so the amplitude Ea of the oscillation output is given by the following equation.

よつて、出力電圧Eoは(1)式と(4)式とから次式
で与えられる。
Therefore, the output voltage Eo is given by the following equation from equations (1) and (4).

そしてダイオードの順方向電圧降下Ed1,Ed2
は負の温度係数を持つており次式で近似できる。
And the forward voltage drops of the diodes E d1 , E d2
has a negative temperature coefficient and can be approximated by the following equation.

d1=mEd2=Ed0(1−βt) (6) ここで、mは図示のようにD1〜D4およびD5
D6をそれぞれ1個のダイオード素子で構成した
場合には1であり、もしD1〜D4側のみ2個のダ
イオード素子でそれぞれ構成した場合にはm=2
となる。(6)式を(5)式に代入すると、出力電圧Eo
は、 となり、トランスTの2次巻線n2(n3)とn4の巻
線比N/Nを選ぶことによつて、Eoの温度係数を 正、負に調整できる。すなわち温度係数は、m
/N>1に選べば負になり、mN/N<1に
選べば正 になる。なおmN/N=1に選べば温度係数は零に なる。したがつて、検出器部分の温度係数に応じ
て巻線比を選べば、温度依存性を有効に補償でき
る。
E d1 = mE d2 = E d0 (1-βt) (6) Here, m is D 1 to D 4 and D 5 as shown,
If each of D 6 is configured with one diode element, it is 1, and if only D 1 to D 4 sides are each configured with two diode elements, m = 2.
becomes. Substituting equation (6) into equation (5), the output voltage Eo
teeth, By selecting the winding ratio N 3 /N 2 of the secondary windings n 2 (n 3 ) and n 4 of the transformer T, the temperature coefficient of Eo can be adjusted to be positive or negative. That is, the temperature coefficient is m
If N 3 /N 2 >1 is chosen, it will be negative, and if mN 3 /N 2 <1 is chosen, it will be positive. Note that if mN 3 /N 2 =1 is selected, the temperature coefficient becomes zero. Therefore, temperature dependence can be effectively compensated by selecting the winding ratio according to the temperature coefficient of the detector portion.

一方、一対の可変コンデンサC1,C2は対称に
作られており、ストレイ容量をCs1=Cs2=Csと
みなすことができるので、 Cs=αC3/N (8) になるようにボリユーム抵抗R3の分圧比αを調
整すれば、出力電圧Eoは Eo=2R0−C/C+C{Ir+2αfC3Ed0 (N/N−1)(1−βt)} (9) となり、ストレイ容量Csの影響を除去でき直線
性を向上できる。またα<Cs/C・N/Nにな
るように αを調整すればC−C/C+Cが大きくなるほ
ど増加率 を増大でき、α>Cs/C・N/Nになるように
調整すれ ばC−C/C+Cが大きくなるほど増加率を減
少できる ので、検出器部分の非直線性をボリユーム抵抗
R3の分圧比を適宜選定することによつて補正で
きる。なおコンデンサC3の容量を調整できるよ
うにして、巻線比N/Nを変えたときN/NC3
が一定に なるようにすれば、温度係数の補償動作による直
線比への影響を除去できる。
On the other hand, the pair of variable capacitors C 1 and C 2 are made symmetrically, and the stray capacitance can be considered as Cs 1 = Cs 2 = Cs, so Cs = αC 3 N 3 /N 2 (8) If the voltage division ratio α of the volume resistor R 3 is adjusted as shown in FIG. βt)} (9) Therefore, the influence of stray capacitance Cs can be removed and linearity can be improved. Moreover, if α is adjusted so that α<Cs/C 3・N 3 /N 2 , the increase rate can be increased as C 1 −C 2 /C 1 +C 2 becomes larger, and α>Cs/C 3・N 3 / N2 , the increase rate can be reduced as C1 - C2 / C1 + C2 becomes larger.
This can be corrected by appropriately selecting the partial pressure ratio of R 3 . Note that when the capacitance of capacitor C 3 is made adjustable and the winding ratio N 3 /N 2 is changed, N 3 /N 2 C 3
By making it constant, it is possible to eliminate the influence of the temperature coefficient compensation operation on the linear ratio.

第2図は本考案装置の別の実施例を示す接続図
で、第1図の実施例と異るところは2線式に構成
した点である。第2図において、R0はスパン調
整用の可変抵抗、A1は高利得の差動増幅器で、
その入力端子(+)には抵抗R1,R2の接続点の
電位E1と抵抗R0の両端電圧Eoの和が抵抗R6を介
して加えられるとともに、帰還抵抗Rfの両端電
圧E2が抵抗R7を介して加えられ、他方の入力端
子(−)には一定電圧を零点調整用の分圧抵抗
R10で分圧した電圧E3が抵抗R8,R9の分圧回路を
介して加えられる。なお抵抗R6〜R9は信号源抵
抗に比して充分に大きく選ばれている。Qは出力
トランジスタで増幅器A1の出力で駆動され、出
力電流Ioを帰還抵抗Rfおよび一対の伝送線lを
介して受信側に配置された負荷RLに供給するも
のである。そして出力電流Ioによつて抵抗Rf
両端に生ずる電圧降下が前記電圧E2となる。CC
は定電流回路で、例えば図示のようにトランジス
タと電界効果トランジスタよりなり、ツエナーダ
イオードDZに一定電流を供給しその両端に安定
化した直流電圧Vrを得る。この安定化された直
流電圧Vrが抵抗R4,R1,R2,R5の直流回路と零
点調整用の分圧抵抗R10にそれぞれ加えられると
ともに、トランジスタを介して増幅器A,A1
電源端子に加えられる。Eは直流電源で、この装
置唯一の電源で負荷RLに直列に接続され、受信
側に配置されている。
FIG. 2 is a connection diagram showing another embodiment of the device of the present invention, which differs from the embodiment of FIG. 1 in that it is configured in a two-wire system. In Figure 2, R 0 is a variable resistor for span adjustment, A 1 is a high gain differential amplifier,
The sum of the potential E 1 at the connection point of the resistors R 1 and R 2 and the voltage Eo across the resistor R 0 is applied to its input terminal (+) via the resistor R 6 , and the voltage E across the feedback resistor R f is applied to the input terminal (+). 2 is applied via resistor R7 , and the other input terminal (-) is connected to a voltage dividing resistor for zero point adjustment with a constant voltage.
A voltage E 3 divided by R 10 is applied via a voltage dividing circuit including resistors R 8 and R 9 . Note that the resistors R 6 to R 9 are selected to be sufficiently large compared to the signal source resistance. Q is an output transistor driven by the output of the amplifier A1 , and supplies an output current Io to a load R L placed on the receiving side via a feedback resistor R f and a pair of transmission lines l. The voltage drop produced across the resistor R f by the output current Io becomes the voltage E 2 . CC
is a constant current circuit, which is made up of, for example, a transistor and a field effect transistor as shown in the figure, and supplies a constant current to a Zener diode D Z to obtain a stabilized DC voltage Vr across it. This stabilized DC voltage Vr is applied to the DC circuit of resistors R 4 , R 1 , R 2 , R 5 and the voltage dividing resistor R 10 for zero point adjustment, and is applied to the amplifiers A and A 1 via transistors. Added to power terminal. E is a DC power supply, which is the only power supply in this device, and is connected in series to the load R L and placed on the receiving side.

このように構成した本考案装置においては、一
対の伝送線lを介して受信側の負荷RLに伝送さ
れる出力電流Ioは、 Io=1/R{Eo+(R5Ir−γVr)} (10) ただし、R6=R7=R8=R9 γ=分圧抵抗R10の分圧比 となり、信号電圧Eoに対応したものとなる。(10)
式から明らかなように分圧抵抗R10の分圧比βを
調整すると、Eoの0%時の出力電流Ioの値を所
望値(例えば4mA)にでき、零点の調整ができ
る。また抵抗R0の値を調整すると、変位量xの
100%時の出力電流Ioの値を所望値(例えば
20mA)にでき、スパン調整ができる。しかも可
変抵抗R0の値を変更しても零点には何ら影響を
与えず、また分圧抵抗R10の分圧比βを変更して
もスパンには何ら影響を与えない。すなわち2線
式の変換装置において、零点の調整とスパン調整
を互いに独立に行うことができる。
In the device of the present invention configured in this way, the output current Io transmitted to the load R L on the receiving side via the pair of transmission lines l is Io = 1/R f {Eo + (R 5 Ir - γVr)} (10) However, R 6 = R 7 = R 8 = R 9 γ = voltage dividing ratio of the voltage dividing resistor R 10 , which corresponds to the signal voltage Eo. (Ten)
As is clear from the equation, by adjusting the voltage dividing ratio β of the voltage dividing resistor R10 , the value of the output current Io when Eo is 0% can be set to a desired value (for example, 4 mA), and the zero point can be adjusted. Also, by adjusting the value of resistance R 0 , the amount of displacement x
Set the output current Io value at 100% to the desired value (e.g.
20mA) and the span can be adjusted. Furthermore, changing the value of the variable resistor R 0 does not affect the zero point, and changing the voltage dividing ratio β of the voltage dividing resistor R 10 does not affect the span. That is, in a two-wire converter, zero point adjustment and span adjustment can be performed independently of each other.

またこの実施例では、補償用コンデンサとして
C31,C32の2個用い、C31の一端をトランスTの
2次巻線n4の巻数N31の点P1に、C32の一端をn4
巻数N32の点P2にそれぞれ接続し、C31,C32の他
端を切換手段Jで切換接続するとともに、その容
量をN31C31=N32C32を満足するように選定してあ
る。なおN31の値を差圧変換器の温度係数に応じ
て定め、N32の値を圧力変換器の温度係数に応じ
て定めれば、切換手段JでC31側かC32側を選択す
るだけで温度依存性の補償ができる。
In addition, in this example, the compensation capacitor is
Use two C 31 and C 32 , one end of C 31 is connected to point P 1 where number of turns N 31 of secondary winding n 4 of transformer T is N 31 , and one end of C 32 is connected to point P 2 where number of turns N 32 of transformer T is n 4 . The other ends of C 31 and C 32 are connected to each other by a switching means J, and their capacities are selected so as to satisfy N 31 C 31 =N 32 C 32 . If the value of N 31 is determined according to the temperature coefficient of the differential pressure converter and the value of N 32 is determined according to the temperature coefficient of the pressure converter, the C 31 side or the C 32 side can be selected by the switching means J. Temperature dependence can be compensated for only by

なお上述では、補償用コンデンサに発振器Oか
ら印加する電圧をトランスTの2次巻線n4の巻数
を変えて行う場合を例示したが、2次巻線n4を分
圧抵抗器で分圧して変えるようにしてもよい。
In the above example, the voltage applied from the oscillator O to the compensation capacitor is applied by changing the number of turns of the secondary winding n4 of the transformer T, but it is also possible to divide the voltage of the secondary winding n4 with a voltage dividing resistor. You may also change it accordingly.

以上説明したように本考案によれば、直線化を
行う回路を有効に利用しているので、温度補償の
ための特別な回路を必要とせず、簡単な構成で温
度依存性を補償できる容量式変換装置が得られ
る。
As explained above, according to the present invention, since the linearization circuit is effectively used, a capacitive type that can compensate for temperature dependence with a simple configuration does not require a special circuit for temperature compensation. A conversion device is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の一実施例を示す接続図、
第2図は本考案装置の他の実施例を示す接続図で
ある。 C1,C2……一対の可変コンデンサ、C3……補
償用コンデンサ、A……高利得の差動増幅器、O
……発振器、T……トランス。
FIG. 1 is a connection diagram showing an embodiment of the device of the present invention;
FIG. 2 is a connection diagram showing another embodiment of the device of the present invention. C 1 , C 2 ... A pair of variable capacitors, C 3 ... Compensation capacitor, A ... High gain differential amplifier, O
...oscillator, T...transformer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定量に応じて容量が差動的に変化する一対
の可変コンデンサと、補償用の固定コンデンサ
と、前記一対の可変コンデンサおよび固定コンデ
ンサにトランスを介して発振出力を印加する発振
器と、前記一対のコンデンサの容量の和に対応し
た電流と基準電流との差が流れる抵抗回路と、前
記補償用のコンデンサの容量に応じて流れる補償
電流を調整する手段と、この補償電流を前記容量
の和に対応した電流とは逆方向に前記抵抗回路に
流す手段と、前記抵抗回路の両端電圧が零になる
ように前記発振器を制御する手段と、前記一対の
可変コンデンサの容量の差に対応した電流に関連
する出力信号を得る手段とを有しなる容量式変換
装置において、発振器より補償用コンデンサに印
加する電圧を調整可能とし、一対の可変コンデン
サに印印される電圧との比を変えて温度係数を調
整できるようにしたことを特徴とする容量式変換
装置。
a pair of variable capacitors whose capacitance differentially changes depending on the measured quantity; a fixed capacitor for compensation; an oscillator that applies an oscillation output to the pair of variable capacitors and the fixed capacitor via a transformer; a resistor circuit through which a difference between a current corresponding to the sum of the capacitances of the capacitors and a reference current flows; a means for adjusting a compensation current flowing according to the capacitance of the compensation capacitor; and a means for adjusting the compensation current to the sum of the capacitances. means for causing the current to flow in the opposite direction to the resistor circuit; means for controlling the oscillator so that the voltage across the resistor circuit becomes zero; and a current corresponding to the difference in capacitance of the pair of variable capacitors. In a capacitive conversion device, the voltage applied from the oscillator to the compensation capacitor can be adjusted, and the temperature coefficient can be adjusted by changing the ratio of the voltage applied to the pair of variable capacitors. A capacitive conversion device characterized by being able to adjust.
JP12143380U 1980-08-27 1980-08-27 Expired JPS6236088Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12143380U JPS6236088Y2 (en) 1980-08-27 1980-08-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12143380U JPS6236088Y2 (en) 1980-08-27 1980-08-27

Publications (2)

Publication Number Publication Date
JPS5744419U JPS5744419U (en) 1982-03-11
JPS6236088Y2 true JPS6236088Y2 (en) 1987-09-14

Family

ID=29482097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12143380U Expired JPS6236088Y2 (en) 1980-08-27 1980-08-27

Country Status (1)

Country Link
JP (1) JPS6236088Y2 (en)

Also Published As

Publication number Publication date
JPS5744419U (en) 1982-03-11

Similar Documents

Publication Publication Date Title
JPS6237440B1 (en)
JPH03501885A (en) linear variable differential transformer
JPH0258830B2 (en)
JPS6236088Y2 (en)
US4618862A (en) Mechanical displacement transducer
JPS5818678B2 (en) Displacement electrical signal converter
JPS5935769Y2 (en) capacitive converter
JP3808038B2 (en) Frequency output type hot-wire flow meter
KR800002012Y1 (en) Capacity type convertiing device
JPH0120648Y2 (en)
JPS59132309A (en) Capacity type conversion device
JPS6139199A (en) Convertor circuit for converting capacitance to dc current signal
CN108365759B (en) Current/voltage conversion circuit
JPH05259753A (en) Feedback type switching power amplifier
JPH0157400B2 (en)
JPH0120647Y2 (en)
SU696287A1 (en) Displacement-to-dc transducer
SU1112299A1 (en) Device for converting current to voltage
SU1403121A1 (en) Instrument transformer
SU1013926A1 (en) Dc voltage stabilizer
SU1673998A1 (en) Ac/dc sensor
SU1010609A1 (en) Stabilized power supply source
JPH0412466Y2 (en)
JPH0138718Y2 (en)
JPH0779563A (en) Detector for output voltage of switching power supply