JPS59112223A - Capacity type converter - Google Patents

Capacity type converter

Info

Publication number
JPS59112223A
JPS59112223A JP22339482A JP22339482A JPS59112223A JP S59112223 A JPS59112223 A JP S59112223A JP 22339482 A JP22339482 A JP 22339482A JP 22339482 A JP22339482 A JP 22339482A JP S59112223 A JPS59112223 A JP S59112223A
Authority
JP
Japan
Prior art keywords
pulse width
width signal
duty ratio
circuit
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22339482A
Other languages
Japanese (ja)
Inventor
Terutaka Hirata
平田 輝孝
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP22339482A priority Critical patent/JPS59112223A/en
Publication of JPS59112223A publication Critical patent/JPS59112223A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To compensate the nonlinearity of a sensor part by using a pulse width signal which has a duty ratio corresponding to the capacities of a couple of capacitors and a pulse width signal which has a constant duty ratio. CONSTITUTION:A capacity and pulse width converting circuit C/P detects the capacities of a couple of variable capacitors C1 and C2 and a reference capacitor C3 and outputs pulse width signals PW1-PW3 having corresponding duty ratios. The circuit which includes an inverting amplifier IA1 and switches SW1 and SW2 generates an output regarding the product of the difference in duty ratio between the pulse width signals PW1 and PW2 and a set voltage Vr and the circuit which includes an inverting amplifier IA2 and switches SW2 and SW4 generates an output regarding the product of the difference in duty ratio between the pulse width signals PW2 and PW3 and the set voltage Vr. The set voltage Vr is controlled on the basis of those voltages. An output is obtained from a filter circuit FC.

Description

【発明の詳細な説明】 本発明は、圧力、差圧等の被測定量に応じて可動電極が
変位し少なくともいずれか一方の容量が変化する一対の
コンデンサを用いた容量式変換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitive transducer using a pair of capacitors in which a movable electrode is displaced in accordance with a measured quantity such as pressure or differential pressure, and the capacitance of at least one of the capacitors is changed.

一般に容量式変換器においては、一対のコンデンサに並
列に存在するストレイ容量の影響を受けて直線性が悪い
欠点があった。また差圧変換器や圧力変換器のように可
動電極が被測定量に応じて変位する金属ダイヤフラムの
場合には、被測定量と容量変化との関係が双曲線で表わ
せるものが多く、センサ部にも非直線性があった。。
In general, capacitive converters have the disadvantage of poor linearity due to the influence of stray capacitance that exists in parallel with a pair of capacitors. Furthermore, in the case of metal diaphragms such as differential pressure transducers and pressure transducers in which the movable electrode is displaced according to the amount to be measured, the relationship between the amount to be measured and the change in capacitance can often be expressed as a hyperbola, and the sensor section There was also nonlinearity. .

本発明は、被測定量に応じていずれか一方の容積が変化
する一対のコンデンサを用い、一対のコンデンサの一方
の容量に応じたデユティレシオの第1のパルス幅信号と
他方の容量に応じたデユティレシオの第2のパルス幅信
号およびデユティレシオが一定な第5のパルス幅信号を
得、第1のパルス幅信号と第2のパルス幅信号のデーテ
ィレシオの差と設定電圧との積に関連した出力電圧を得
るとともに、第1.第2の・シルス幅信号のいずれか一
方と第5のパルス幅信号のデユティレシオの差と前記設
定電圧との積に関連した電流と前記出力電圧に関連した
電流および基準電流の総和が零になるように前記設定電
圧を制御することによって、上述の如き非直線性を有効
に補償できる容量式変換器を実現したものである。
The present invention uses a pair of capacitors in which the volume of one of the capacitors changes depending on the quantity to be measured, and provides a first pulse width signal with a duty ratio corresponding to the capacitance of one of the pair of capacitors and a duty ratio corresponding to the capacitance of the other capacitor. obtain a second pulse width signal and a fifth pulse width signal with a constant duty ratio, and obtain an output voltage related to the product of the difference in duty ratio of the first pulse width signal and the second pulse width signal and the set voltage. In addition to obtaining the first. The sum of the current related to the product of the duty ratio difference between one of the second sills width signals and the fifth pulse width signal and the set voltage, the current related to the output voltage, and the reference current becomes zero. By controlling the set voltage as described above, a capacitive converter is realized which can effectively compensate for the above-mentioned nonlinearity.

第1図り本発明変換器の一実施例を示す接続図である。FIG. 1 is a connection diagram showing an embodiment of the first embodiment of the present invention converter.

図において、C1,C2は一対の可変コンデンサで、差
圧等の被測定量に応じて変位する可動電極10とこの可
動電極10に対向配置されている固 一定電極11.1
2とで構成されている6、C3は容量が二定な基準コン
デンサである。 C/Pは容量パルス幅変換回路で、一
対の可変コンデンサCCと基準1′  2 コンデンサC3の容量を検出し、C1,C2,C3の容
量にそれぞれ応じたデユティレシオのパルス幅信号pw
1. pw2. pw3を出力するものである。
In the figure, C1 and C2 are a pair of variable capacitors, including a movable electrode 10 that is displaced according to a measured quantity such as differential pressure, and a fixed electrode 11.1 that is disposed opposite to this movable electrode 10.
2 and 6, C3 is a reference capacitor with a constant capacitance. C/P is a capacitive pulse width conversion circuit that detects the capacitances of a pair of variable capacitors CC and a reference 1' 2 capacitor C3, and generates a pulse width signal pw with a duty ratio corresponding to the capacitances of C1, C2, and C3, respectively.
1. pw2. It outputs pw3.

C/Pの具体的な構成の一例を第5図および第5図に示
す。第3図において、5w11,5W12,5W13は
そ第1ぞわコンデンサC1,C2,C3に並列に接続さ
れた電界効果トランジスタ等のスイッチ、pGは周期T
および時間幅t8が一定なパルスPcを出力するパルス
発生器、BAl、 BA2. BA3は各々バッファア
ンプ、cpl、 cp2. cpsは各々コンパレータ
、G1.G2.G3は各々ノアゲートである。、 5W
11.8W12,5W13はPGからの第4図(イ)に
示す如き一定周期Tで一定パルス幅tのパルスPcによ
って同時に駆動され、tの期間S          
                         
         Sオンになる3、オylcなるとC
□、C2−Caに充電されていた電荷が放電し、オフに
なると抵抗R11’ R1□。
An example of a specific configuration of the C/P is shown in FIGS. In Figure 3, 5w11, 5W12, and 5W13 are switches such as field effect transistors connected in parallel to the first capacitors C1, C2, and C3, and pG is the period T.
and a pulse generator that outputs a pulse Pc with a constant time width t8, BAl, BA2. BA3 is a buffer amplifier, cpl, cp2. cps is a comparator, G1. G2. Each G3 is a Noah gate. , 5W
11.8W12 and 5W13 are simultaneously driven by a pulse Pc from the PG with a constant period T and a constant pulse width t as shown in FIG.

S turns on 3, Oylc turns C
□, when the charge charged in C2-Ca is discharged and turned off, the resistor R11' R1□.

R13を介して直流電源Vaよりの電流でC1,C2,
C3が充1)1.される。その結果C1,C2,C3の
充電電圧vc1.vc2.vc3は第4図(ロ)K示す
ようになる。コンパレータCp1.Cp2.Cp3でB
Al、 BA2. BA3を介して与えられるvCl、
vC2,vc3を監視し、vc11vc2.vc3が一
定値’VbK達するとCpl、C20,cpsの出力が
第4図(ハ)、に)、に)に示すように反転する。vc
l、vc2.vc3がvbに達するまでの時間すなわち
C1,C2,C3が充、電されている時間をtx、t2
y ts とすると、ノアゲして、t1* t2* t
sは抵抗R□1.R1□、R□3の値をR1□−R12
=R13=Rとすると、t1= kC□       
        (1)t2= kC2(2) ts−hc3(3) ただし、k = −R11’n (1−Vb/Va )
で与えられるので、pwl、 pw2. pw3のデユ
ティレシオはそれぞれC□、 C2,C3,の容量に応
じたものとなる。
C1, C2, with the current from the DC power supply Va via R13.
C3 is full 1) 1. be done. As a result, the charging voltage vc1 of C1, C2, and C3. vc2. vc3 becomes as shown in FIG. 4(b)K. Comparator Cp1. Cp2. B at Cp3
Al, BA2. vCl given via BA3,
vC2, vc3 are monitored, vc11vc2. When vc3 reaches a certain value 'VbK, the outputs of Cpl, C20 and cps are inverted as shown in FIG. vc
l, vc2. The time until vc3 reaches vb, that is, the time during which C1, C2, and C3 are charged, is tx, t2
If y ts, then t1* t2* t
s is the resistance R□1. The values of R1□ and R□3 are R1□-R12
=R13=R, then t1= kC□
(1) t2=kC2(2) ts-hc3(3) However, k=-R11'n (1-Vb/Va)
Since pwl, pw2. The duty ratio of pw3 corresponds to the capacities of C□, C2, and C3, respectively.

第5図の容量パルス幅変換回路c1pは、コンパレータ
CP2の出力でセットされ、コンパレータCP1の出力
でリセットされるフリップフロップFF□を用い、FF
1の出力Qでスイッチsw1□を駆動し、FF□の出力
4でスイッチsw1□を駆動することにより、一対のコ
ンデンサC□、C2が第6図(イ)、←)に示すように
充放電を繰り返して自励振動するようにしたものである
。自励振動の周期Tl−1:clが充電されている時間
t1とC2が充電されている時間t2とのオD(=t1
+t2 )となυ、FF□の出力Qには第6図(ハ)に
示す如きclの容量に応じたデユティレゾオー1のパル
ス幅信号P’l11が生じ、FF1の出方Qには第5図
に)K示す如きC2の容量に応じだデユティレシオSの
パルス幅信号Pwが生ずる。−2 方コンハレータCP2の出力でセ、トサレ、コンパレー
タCp3の出力でリセットされるフリップ70ツブFF
2の出力ζでスイッチsw□3を駆動し、コンデンサC
3を第6図に)に示す如く充放電させ、FF2の出力Q
に第6図(へ)に示す如くコンデンサc3の容量に応じ
たデユティレジオニのパルス幅信号PW3を得るよう圧
したものである。
The capacitive pulse width conversion circuit c1p in FIG.
By driving the switch sw1□ with the output Q of FF1 and driving the switch sw1□ with the output 4 of FF□, the pair of capacitors C□ and C2 are charged and discharged as shown in Figure 6 (A), ←). It is made to repeat and cause self-excited oscillation. Period of self-excited vibration Tl-1: O D between time t1 when cl is charged and time t2 when C2 is charged (=t1
+t2), υ, the output Q of FF□ generates a pulse width signal P'l11 of duty resolution 1 according to the capacitance of CL as shown in Figure 6 (c), and the output Q of FF1 generates a pulse width signal P'l11 as shown in Figure 5. ) A pulse width signal Pw with a duty ratio S is generated depending on the capacitance of C2 as shown by K. -Flip 70-tub FF that is reset by the output of the two-way comparator CP2 and reset by the output of the comparator Cp3
The output ζ of 2 drives the switch sw□3, and the capacitor C
3 is charged and discharged as shown in Figure 6), and the output Q of FF2 is
As shown in FIG. 6(f), pressure is applied to obtain a duty register pulse width signal PW3 corresponding to the capacitance of the capacitor c3.

再び第1図にオイテ、swl、 8w2.8w3.5w
41′を各々スイッチで、SW はパルス幅信号pw1
で、8w2と5W4Uパルス幅信号pw2で、8w3は
パルス幅信号pW3でそれぞね駆動され、8w2と8w
4は設定電圧Vrをそれぞれオンオフし、swlと8w
3は設定電圧Vrを各々反転増幅器IA1. IA2で
反転した電圧−Vrをオンオフするものである。なおス
イッチsw  〜SW4としても電界効果トランジスタ
等の電子スイッチが好適である。FCは演算増幅器Op
を用いたフィルタ回路で、swlでオンオフされた電圧
とSW2でオンオフされた電圧とを平滑してその和に応
じた出力電圧■0を得るものである。ICは演算増幅器
Op2を用いた積分回路で、入力(−)に加えられる電
流を加算積分して設定電圧Vrを得るものである。そし
て入力(−)には、抵抗R4を介して設定電圧Vrtス
イッチSW4でオンオフした電圧が加えらハ、可変抵抗
R5を介して設定電圧VrをIA2で反転した電圧−V
rをスイッチSW3でオンオフした電圧が加えられ、可
変抵抗R6を介して出力電圧Voが加えられ、抵抗R7
を介して基準電圧Vsが加えられている。
Oite again in Figure 1, swl, 8w2.8w3.5w
41' are switches, SW is the pulse width signal pw1
8w2 and 5W4U pulse width signal pw2, 8w3 is driven by pulse width signal pW3, respectively, 8w2 and 8w
4 turns on and off the set voltage Vr, swl and 8w
3 are inverting amplifiers IA1 . It turns on and off the voltage -Vr inverted by IA2. Note that electronic switches such as field effect transistors are also suitable as the switches sw to SW4. FC is operational amplifier Op
This is a filter circuit using a filter circuit that smoothes the voltage turned on and off by swl and the voltage turned on and off by SW2 to obtain an output voltage 0 corresponding to the sum thereof. The IC is an integrating circuit using an operational amplifier Op2, which adds and integrates the currents applied to the input (-) to obtain the set voltage Vr. Then, the voltage turned on and off by the set voltage Vrt switch SW4 is applied to the input (-) via the resistor R4, and the voltage -V obtained by inverting the set voltage Vr by IA2 is applied via the variable resistor R5.
A voltage that turns r on and off with switch SW3 is applied, an output voltage Vo is applied via variable resistor R6, and resistor R7
A reference voltage Vs is applied via.

このよりに構成した本発明変換器において、パルス幅信
号の周期Tが積分回路ICの時定数ClR4゜CXR5
に比して十分に短かく、定常状態に達しているときの積
分回路ICの出力電圧の直流分をVrとすると、積分回
路ICの平均入力電流は零となるので、フィルタ回路F
Cの出力電圧の直流分をvOとすると次式の関係が成立
する。
In the converter of the present invention configured as above, the period T of the pulse width signal is equal to the time constant ClR4°CXR5 of the integrating circuit IC.
If Vr is the DC component of the output voltage of the integrating circuit IC when it is sufficiently short compared to , and reaches a steady state, the average input current of the integrating circuit IC is zero, so the filter circuit F
When the DC component of the output voltage of C is vO, the following relationship holds true.

同様にパルス幅信号の周期Tがフィルタ回路FCの時定
数CFR3に比して十分に短か、いので、定常状態に達
しているときのフィルタ回路FCの出力電圧の直流分v
Oは、 となる(+ (4)式と(5)式からvOは、4 5 となり、パルス幅信号の周期Tが変化してもその影響を
受けない。(6)式に(1)式、(2)式および(3)
式を代入/すると、Voは次式で表わすことができる。
Similarly, if the period T of the pulse width signal is sufficiently short compared to the time constant CFR3 of the filter circuit FC, then the DC component v of the output voltage of the filter circuit FC when the steady state is reached is
O becomes (+ From equations (4) and (5), vO becomes 4 5 and is not affected by changes in the period T of the pulse width signal. Equation (6) and equation (1) , (2) and (3)
By substituting/substituting the formula, Vo can be expressed by the following formula.

一方可変コンデ/ザC1,C2の容量は変位量Xに対し
、初期容量をCo、可動電極10と固定電極11(12
)間の基準間隔をd(y=0のとき)およびストレイ容
量をC5とすると、 の関係で変化するので、出力電圧vOは、となる。ここ
で、可変抵抗R5を調整してαをに選ぺば、出力電圧V
l)は、 とな9、ストレイ容量Csの影響を除去できる3、よっ
て、 を満足するように可変抵抗R6の抵抗値を調整すれば、
出力電圧vOは、 となり、R7、RA l dr Vsは一定値であるの
で、出力電圧Voは第2図(イ)に示すように変位Jt
 xに正確にすれば、第2図(ロ)に示すように出力電
圧■0の増力口になるように調整すれば、第2図(ハ)
に示すように変位量xが大きくなる程増加率が減少する
ようになり、入出力関係を非直線にできる。しかもその
非直線性の大きさは抵抗値R6の値を変えることによっ
て設定できる1、シたがって、例えば金属ダイヤフラム
で差圧や圧力を変位に変換する場合には、被測定量と可
動電極10の変位量Xとの非直線性を補正できる3、す
なわちセンサ部の非直線性を補正できる。
On the other hand, the capacitance of the variable capacitors C1 and C2 is determined by setting the initial capacitance to Co and the movable electrode 10 and the fixed electrode 11 (12
) is the reference interval between d (when y=0) and the stray capacitance is C5, the output voltage vO changes as follows. Here, if the variable resistor R5 is adjusted and α is selected, the output voltage V
l) is 9, the influence of the stray capacitance Cs can be removed3. Therefore, if the resistance value of the variable resistor R6 is adjusted to satisfy the following,
The output voltage vO is as follows, and since R7 and RA l dr Vs are constant values, the output voltage Vo is determined by the displacement Jt as shown in Figure 2 (A).
If x is set accurately, if the output voltage is adjusted to be 0 as shown in Figure 2 (B), then Figure 2 (C)
As shown in the figure, the increase rate decreases as the displacement amount x increases, making the input-output relationship non-linear. Moreover, the magnitude of the nonlinearity can be set by changing the value of the resistance value R61. Therefore, when converting differential pressure or pressure into displacement using a metal diaphragm, for example, the amount to be measured and the movable electrode 1 3, that is, the nonlinearity of the sensor section can be corrected.

なお−上述では、パルス幅信号PW2でスイッチSW4
を、パルス幅信号PW3でスイッチSW3を駆動する場
合を例示したが、第7図に示すようにパルス幅信号PW
  をインバーターVを介してノアゲートGの一方の入
力端に加え、G4の他方の入力端にパルス幅信号pw 
を加えて、Gの出力端にパルス幅4 信号PW2とpw3の差に応じたパルス幅信号pw4(
第4図曲参照)を得、このパルス幅信号PW4 でスイ
ッチSW を駆動するようにすれば、反転増幅器工A2
とスイッチSW3を省略できる。この場合は、基準コン
デンサ5の容量をC3t” Csに選ぶことによってス
トレイ容tcsの影響を除去でき、可変抵抗R6の値を
調整することによって非直線性を補正できる。また上述
では、可変抵抗R6を調整して非直線性の補正を行う場
合を例示したが、第8図に示すように出力電圧vOを増
幅器Aで増幅した後抵抗R6を介17て積分回路ICに
与えるようにすれば、出力型、圧Voは、増幅善人のゲ
インをβ、C3−CBとすると、 となり、増幅器Aのゲインβを調整することによって非
直線性を補正できる。なお第8図においては増幅器Aと
して、演算増幅器OP3と分圧抵抗器R8からなる非反
転形のものが示されており、そのゲインβは、分圧抵抗
器R8の分圧比で与えられ、分圧抵抗器R8の刷子の位
置によって調整できる。
Note that in the above, the pulse width signal PW2 causes the switch SW4 to
, the case where the switch SW3 is driven by the pulse width signal PW3 has been exemplified, but as shown in FIG.
is applied to one input terminal of the NOR gate G via the inverter V, and the pulse width signal pw is applied to the other input terminal of G4.
is added to the output terminal of G, and a pulse width signal pw4 (
4) and drive the switch SW with this pulse width signal PW4, the inverting amplifier A2
and switch SW3 can be omitted. In this case, the influence of the stray capacitance tcs can be removed by selecting the capacitance of the reference capacitor 5 as C3t''Cs, and the nonlinearity can be corrected by adjusting the value of the variable resistor R6. The case where the non-linearity is corrected by adjusting is illustrated as an example, but if the output voltage vO is amplified by the amplifier A and then applied to the integrating circuit IC via the resistor R6 17 as shown in FIG. For the output type, the pressure Vo is as follows, where the gain of the good amplifier is β and C3-CB.The nonlinearity can be corrected by adjusting the gain β of amplifier A.In addition, in Fig. 8, amplifier A is used as the amplifier A, and the calculation A non-inverting version consisting of an amplifier OP3 and a voltage dividing resistor R8 is shown, the gain β of which is given by the voltage dividing ratio of the voltage dividing resistor R8 and can be adjusted by the position of the brush of the voltage dividing resistor R8. .

また上述では、スイッチSW をパルス幅信号pW2ま
たはpw で駆動する場合を例示したが、第9図に示す
ように増幅善人を反転形にすれば、パルス幅信号pwで
駆動できる。この場合の出力電圧V。
Furthermore, in the above description, the case where the switch SW is driven by the pulse width signal pW2 or pw has been exemplified, but if the amplification driver is inverted as shown in FIG. 9, it can be driven by the pulse width signal pw. Output voltage V in this case.

は、 α冨C6/C3とすると、 となり、抵抗R6捷たは増幅器Aのゲインβを調整する
ことによってリニアライズができる。この場合もコンデ
ンサC1の容aと基準コンデンサC3の容量の差に応じ
たデーティレシオ tl−3(第4図a)参照)のパル
ス幅信号pWでスイッチSW4を駆動するようにすれば
反転増幅器IA2とスイッチSW  を省略できる。さ
らに上述では、スイッチswl、 sw2をパルス幅信
号pw1. pw2で駆動する場合いことは言うまでも
ない。なお第8図および第9図において、スイッチSW
1〜SW4の一端と基準点間に接続17た抵抗R1曾 
1(21,R41,R51はsw、〜sw4の素子や配
線のストレイ容量の影響を除くためのものである。なお
抵抗R1° R2+、 R41,R51の代りにSW、
SW4と逆位相でオンオフするスイッチを用いてもよく
、また8W1〜SW4をトランスファスイッチとしても
よい。
Assuming α-value C6/C3, it becomes as follows, and can be linearized by adjusting the resistor R6 or the gain β of the amplifier A. In this case as well, if the switch SW4 is driven by the pulse width signal pW with a duty ratio tl-3 (see Figure 4a)) corresponding to the difference between the capacitance a of the capacitor C1 and the capacitance of the reference capacitor C3, the inverting amplifier IA2 Switch SW can be omitted. Furthermore, in the above description, the switches swl and sw2 are connected to the pulse width signals pw1. Needless to say, it is difficult to drive with pw2. In addition, in FIGS. 8 and 9, switch SW
1~Resistor R1 connected between one end of SW4 and the reference point
1 (21, R41, R51 are for eliminating the influence of stray capacitance of elements and wiring of sw, ~sw4. In addition, instead of resistors R1° R2+, R41, R51, SW,
A switch that turns on and off in the opposite phase to SW4 may be used, or 8W1 to SW4 may be used as transfer switches.

また上述では基準コンデンサC3を用いて、6ルス幅t
3が一定なパルス幅信号pW3を得る場合を例示したが
、第3図および第5図に点線で示すようにパルス発生器
PGおよびコンパレータCp2の出力で駆動さね一定時
間オンとなるモノマルチ等のワンシチ、ト回路MM  
を用いて得るようにすれば、基準コンデンサC3を省略
することができる。この場合は、αt3ヨkC1,l″
lたはt3ヨkCsになるようにαまたはt3が選ばれ
る。
In addition, in the above description, using the reference capacitor C3, the 6 rus width t
3 to obtain a constant pulse width signal pW3, as shown by the dotted line in FIGS. 3 and 5, a monomulti, etc., which is driven by the output of the pulse generator PG and the comparator Cp2 and is turned on for a certain period of time, is illustrated. One circuit, circuit MM
If the reference capacitor C3 is obtained by using the reference capacitor C3, the reference capacitor C3 can be omitted. In this case, αt3yokC1,l″
α or t3 is selected so that l or t3 becomes kCs.

さらに上述では、一対のコンデンサC□、C2の零変位
に対してコンデンサC1の容量が(8)式に示す関係で
変化し、コンデンサC2の容量がC2I!ICO+C8
に固定されていてもよい。この場合出力電圧vOはRA
  x ただし、C3=C8 となるので、 を満足するように可変抵抗R6の抵抗値を調整すれば、
出力電圧vOは センサ部の非直線性を補正できる。仁の場合は第11図
に示すようにパルス幅信号PW2をインノく一タIVを
介してノアゲートG5の一方の入力端に加え、G5の他
方の入力端にパルス幅信号pw工を加え、G5の出力端
にパルス幅信号PW1.とPW2のデユティレシオの差
に応じたパルス幅信号pw6(第4図O0参照)を得、
このパルス幅信号PW  でスイッチSW2を駆動する
ようにすれば、反転増幅器IA1とスイ、チSWiを省
略できる。なおコンデンサC1をCx ”Co+Csに
固定し、コンデンサC2の容量を(9)式の関係で変化
させる場合には、出力電圧vOを反転形の増幅器を介し
て積分回路ICに与えるようにすればよい。
Furthermore, in the above description, the capacitance of the capacitor C1 changes according to the relationship shown in equation (8) with respect to zero displacement of the pair of capacitors C□ and C2, and the capacitance of the capacitor C2 becomes C2I! ICO+C8
may be fixed. In this case, the output voltage vO is RA
x However, since C3=C8, if you adjust the resistance value of variable resistor R6 to satisfy
The output voltage vO can correct the nonlinearity of the sensor section. In the case of 2, as shown in FIG. 11, the pulse width signal PW2 is applied to one input terminal of the NOR gate G5 through the input terminal IV, and the pulse width signal PW is applied to the other input terminal of G5, A pulse width signal PW1. Obtain a pulse width signal pw6 (see O0 in FIG. 4) corresponding to the difference in duty ratio between PW2 and PW2,
If the switch SW2 is driven by this pulse width signal PW, the inverting amplifier IA1 and the switches and switches SWi can be omitted. Note that when capacitor C1 is fixed to Cx "Co + Cs and the capacitance of capacitor C2 is changed according to the relationship in equation (9), the output voltage vO may be applied to the integrating circuit IC via an inverting amplifier. .

以上説明したように本発明においては、簡単な構成で有
効に非直線性を補正できる容量式変換器が得られる。
As explained above, the present invention provides a capacitive converter that can effectively correct nonlinearity with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明変換器の一実施例を示す接続図、第2図
はその動作説明図、第3図は本発明変換器に用いる容量
パルス幅変換回路の具体的な構成の一例を示す接続図、
第4図はその動作説明のための波形図、第5図は容量パ
ルス幅変換回路の具体的な構成の他の例を示す接続図、
第6図はその動作説明のための波形図、第7図〜第11
図は本発明変換器の他の実施例を示す接続図である。 C1,C2・・・一対のコンデンサ、C3・・・基準コ
ンデンサ、C/P・・・容量パルス幅変換回路、SW、
SW4・・・スイッチ、IC・・・積分回路、FC・・
・フィルタ回路、op1〜OPa・・・演算増幅器、I
A□、 IA2・・・反転増幅器、A・・・増幅器、V
s・・・基準電圧。
Fig. 1 is a connection diagram showing an embodiment of the converter of the present invention, Fig. 2 is an explanatory diagram of its operation, and Fig. 3 is an example of a specific configuration of a capacitive pulse width conversion circuit used in the converter of the present invention. Connection diagram,
FIG. 4 is a waveform diagram for explaining its operation, and FIG. 5 is a connection diagram showing another example of a specific configuration of the capacitive pulse width conversion circuit.
Figure 6 is a waveform diagram for explaining its operation, Figures 7 to 11
The figure is a connection diagram showing another embodiment of the converter of the present invention. C1, C2...pair of capacitors, C3...reference capacitor, C/P...capacitance pulse width conversion circuit, SW,
SW4...Switch, IC...Integrator circuit, FC...
・Filter circuit, op1 to OPa... operational amplifier, I
A□, IA2...Inverting amplifier, A...Amplifier, V
s...Reference voltage.

Claims (1)

【特許請求の範囲】[Claims] 被測定量に応じて少なくともいずれか一方の容量が変化
する一対のコンデンサと、この一対のコンデンサの一方
の容量に応じたデユティレシオの第1のパルス幅信号と
他方の容量に応じたデユティレシオの第2のパルス幅信
号およびデユティレシオが一定な第3のパルス幅信号を
発生する回路と、前記第1のパルス幅信号と第2のパル
ス幅信号のデユティレシオの差と設定電圧との積に関連
した出力電圧を得る回路と、前記第1.第2のパルス幅
信号のいずilか一方と第3のパルス幅信号とのデユテ
ィレシオの差と前記設定電圧との積に関連する電流と前
記出力電圧に関連する電流および基準電流との総和が零
になるように前記設定電圧を制御する回路とを有してな
る容量式変換器。
A pair of capacitors, the capacitance of at least one of which changes depending on the measured quantity, a first pulse width signal with a duty ratio corresponding to the capacitance of one of the pair of capacitors, and a second pulse width signal with a duty ratio corresponding to the capacitance of the other capacitor. a circuit for generating a pulse width signal and a third pulse width signal with a constant duty ratio, and an output voltage related to the product of the difference in duty ratio of the first pulse width signal and the second pulse width signal and a set voltage. a circuit for obtaining the first. The sum of the current related to the product of the duty ratio difference between one of the second pulse width signals and the third pulse width signal and the set voltage, the current related to the output voltage, and the reference current is A capacitive converter comprising a circuit for controlling the set voltage so that it becomes zero.
JP22339482A 1982-12-20 1982-12-20 Capacity type converter Pending JPS59112223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22339482A JPS59112223A (en) 1982-12-20 1982-12-20 Capacity type converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22339482A JPS59112223A (en) 1982-12-20 1982-12-20 Capacity type converter

Publications (1)

Publication Number Publication Date
JPS59112223A true JPS59112223A (en) 1984-06-28

Family

ID=16797453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22339482A Pending JPS59112223A (en) 1982-12-20 1982-12-20 Capacity type converter

Country Status (1)

Country Link
JP (1) JPS59112223A (en)

Similar Documents

Publication Publication Date Title
US4862382A (en) Arrangement for processing the output signals of a resistance bridge
JPH07181094A (en) Method and device for feedback control for asymmetrical differential-pressure transducer
US4091683A (en) Single channel electrical comparative measuring system
US5155445A (en) Vernier voltage-to-digital converter with a storage capacitance selectable in magnitude
JPH08327677A (en) Detection circuit and detection method for capacitive sensor
JPH04345321A (en) Dual slope integrating a/d converter
JPH03501915A (en) analog to digital converter
JPS59112223A (en) Capacity type converter
JPS59133422A (en) Capacity type converter
JPS5912311A (en) Capacitor type converter
JPS6352686B2 (en)
JPS59133421A (en) Capacity type converter
JPS5977311A (en) Capacitor type converter
KR950002080B1 (en) Signal processing circuit of micro integrated moisture sensor
JPS59197818A (en) Physical quantity converter
JPS59176622A (en) Capacity type converter
JPH0122085Y2 (en)
JP3036561B2 (en) A / D converter
JPS6020004Y2 (en) capacitive converter
SU1525619A1 (en) Transducer of parameters of capacitive pick-ups to time interval and voltage
JPH0438289B2 (en)
JPH0512728Y2 (en)
JPS6355109B2 (en)
JPH0425771A (en) Capacitance detecting circuit
JPH0448280B2 (en)