JPS5976757A - Welding line follower - Google Patents

Welding line follower

Info

Publication number
JPS5976757A
JPS5976757A JP18749182A JP18749182A JPS5976757A JP S5976757 A JPS5976757 A JP S5976757A JP 18749182 A JP18749182 A JP 18749182A JP 18749182 A JP18749182 A JP 18749182A JP S5976757 A JPS5976757 A JP S5976757A
Authority
JP
Japan
Prior art keywords
welding line
running
robot
along
running unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18749182A
Other languages
Japanese (ja)
Inventor
Yutaka Ueyama
植山 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ZOSEN KIKAI KK
Original Assignee
NIPPON ZOSEN KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ZOSEN KIKAI KK filed Critical NIPPON ZOSEN KIKAI KK
Priority to JP18749182A priority Critical patent/JPS5976757A/en
Publication of JPS5976757A publication Critical patent/JPS5976757A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Copy Controls (AREA)

Abstract

PURPOSE:To automate an opertion by a method wherein a running unit is moved under detecting the protuberance of the welding line with a contact piece in the device moving along the welding line to effect the rust removal operation or the rust-proof paint painting operation of a part along the welding line of the outer surface of a shell plating. CONSTITUTION:A robot 7, constituted so as to be attracted to the surface 8 of the plating for a shell 2 and capable of running transversally and longitudinally along the welding line 10, is equipped with a rectangular frame work 11, four pieces of electromagnets 12, a bar 13 movable upwardly and downwardly on the frame 11 and the running unit 14 movable along the bar 13. The running unit 14 accommodates a main body position control circuit 19, controlling the movement of the robot 7, and is equipped with four sets of the contact pieces 34, one set of which is consisting of three pieces of the contact piece, which are provided on the holding member 14b of the running unit 14. Each switches 36 are put ON or OFF by the advancing and retreating motions of each sets of contact pieces 34 due to the protruding parts of the welding line 10, the movement of the running unit 14 is controlled based on the outputs of each switches 36, and the rust removal operation by a chisel for rust removing, for example, may be effected.

Description

【発明の詳細な説明】 この発明は、船体外板面など構造物の表面に走っている
溶接線をたどりながら、該表面に沿って移動する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that moves along a surface of a structure, such as a ship's outer plate, while tracing a weld line running on the surface.

船体外板面の溶接線に沿った部分について、さびやスケ
ールを落したり、さび止め@料をタッチアップする作業
は、従来、外板面に沿って足場を組み9作業員がその上
に乗って行っており2足場の設置と撤去に多くの労力と
時間が費やされている。また1足場の上での作業は、危
険がつきものであり9作業の能率もよくない。
Traditionally, the work of removing rust and scale or touching up rust preventive materials along the weld lines on the hull's outer skin surface required nine workers to build scaffolding along the hull surface and stand on top of it. A lot of effort and time is wasted in setting up and removing two scaffolds. Furthermore, working on scaffolding is always dangerous and is not very efficient.

この発明は、かかる作業を自動化することのできる装置
を得ることを目的とする。
An object of the present invention is to obtain a device that can automate such work.

すなわちこの発明は、溶接線が縦横に走っている構造物
の表面に沿って移動し得る走行部と、前記構造物の表面
に垂直な方向に動き得るようこの走行部に取り付けられ
、先端が前記構蒔物の表面に接するよう押しやられてい
る4組の触子と、これらの触子に連動しているスイッチ
と、これらスイッチの出力に応じて’fttJk走行部
を前記溶接線に沿って移動させるための制御回路からな
り、前記4組の触子は、前記溶接線が縦横に交差する交
点の上に前記走行部がきたとき、この交点を挟む4つの
位置でこれらの溶接線に乗るよう配N′されており、ま
た、1組の前記触子は少なくとも2個の触子かうなり、
これら2個の触子は、これらの触子が乗っている′f8
接線に直角な方向にわずかに間隔を設けて配置されてい
る溶接線追従装置を提供する。
That is, the present invention includes a running part that can move along the surface of a structure in which welding lines run vertically and horizontally, and a running part that is attached to the running part so as to be able to move in a direction perpendicular to the surface of the structure, and whose tip Four sets of tentacles are pushed into contact with the surface of the structure, switches are linked to these tentacles, and the 'fttJk running section is moved along the welding line according to the outputs of these switches. The four sets of feelers are configured to ride on the welding lines at four positions sandwiching the intersection when the running section comes over the intersection where the welding lines intersect vertically and horizontally. N' are arranged, and each set of said tentacles has at least two tentacles,
These two tentacles are attached to the 'f8
To provide welding line following devices disposed at slight intervals in a direction perpendicular to a tangent line.

この発明の溶接線追従装置は、f8接線の表面が他の部
分より盛り上がっていることに着目し、この盛り上がり
を触子で検出しながら、走行部を溶接線に沿って走らせ
るようにしたものである。
The welding line tracking device of this invention focuses on the fact that the surface of the f8 tangent line is more raised than other parts, and runs the running part along the welding line while detecting this raisedness with a contact. It is.

そしてこの発明によれば、走行部が4組の触子を備え、
縦横に走る溶接線をたどるのに、走行部が回転しなくと
も済むようになっているので、その構造が簡単にできる
。また、走行部がある一本の溶接線をたどっている場合
も、これに垂直な方向に走っている他の溶接線の存在を
知り得るので、走行部がある溶接線から他の溶接線に移
るのに時間がかからない。しかも、1組の触子は少なく
とも2個の触子からなり、たどぢでいる溶接線から走行
部が外れた場合、いずれの側に外れたかがこれら2個の
触子で分かるので、走行部の軌道修正がすぐにできると
いう効果がある。
According to this invention, the traveling section includes four sets of tentacles,
Since the running part does not need to rotate to follow the weld lines that run vertically and horizontally, the structure can be easily constructed. In addition, even when tracing a single weld line with a running part, it is possible to know the existence of other weld lines running in a direction perpendicular to this weld line. It doesn't take long to move. Moreover, one set of probes consists of at least two probes, and if the running part comes off the weld line that is being traced, you can tell which side it has come off to from these two tentacles. The effect is that the trajectory can be corrected immediately.

以下、この発明を磁気吸着ロボットとして具体化した場
合について9図面を参照しながら説明する。
Hereinafter, a case in which the present invention is embodied as a magnetic attraction robot will be described with reference to nine drawings.

第1.第2図は、このロボットの使用状態を示したもの
で、符号1は船体2の側部に置かれた台車であり。
1st. FIG. 2 shows the state in which this robot is used, and reference numeral 1 indicates a cart placed on the side of the hull 2.

これには操作盤3.電源受入装置4.非常用畜電池5が
備えられている。7はロボットであり9台車1の格納部
1aから図示しないクレーンでつり上げられて船体2の
外板面、すなわち被吸着面8まで運ばれ、以後。
This includes operation panel 3. Power supply receiving device 4. An emergency storage battery 5 is provided. A robot 7 is hoisted up by a crane (not shown) from the storage section 1a of the truck 1 and carried to the outer surface of the hull 2, that is, the surface to be attracted 8, and thereafter.

ケーブル9から電源の供給を受け、備えているg磁石で
該表面に吸着する。ロボット7は、後述するように。
It receives power from the cable 9 and is attracted to the surface by the provided g-magnet. The robot 7 will be described later.

被吸着面に沿って横方向に移動することができ、また。It can also move laterally along the adsorbed surface.

これに取り付けられている工具等を、被吸着面8の溶接
線10に沿って縦横に動かすことができるようになって
いる。したがって、これに例えばグラインダを取り付け
れば、溶接線に沿ったさび落し作業ができ、また超音波
探傷装置を積んで溶接部の傷を探すこともできる。さら
に、塗装用スプレーガンを取り付け、これを溶接線に沿
って動かせば、溶接線に沿ってさび止め塗料をタッチア
ップすることができ、また、スプレーガンを溶接線に無
関係にジグザグに動かせば、被吸着面全体を塗装するこ
とが可能である。
Tools and the like attached to this can be moved vertically and horizontally along the welding line 10 of the attracted surface 8. Therefore, if a grinder is attached to this, it is possible to remove rust along the weld line, and an ultrasonic flaw detector can also be installed to search for flaws in the weld. Furthermore, by attaching a paint spray gun and moving it along the weld line, you can touch up the anti-rust paint along the weld line, or by moving the spray gun in a zigzag pattern regardless of the weld line. It is possible to paint the entire surface to be attracted.

第3〜第5図に示すように、各ロボット7は、四角の棒
状フレーム11と、4個の電磁石12と、フレーム上を
上下に動く杆体13と、杆体に沿って動く走行部14を
備えている。
As shown in FIGS. 3 to 5, each robot 7 includes a square bar-shaped frame 11, four electromagnets 12, a rod 13 that moves up and down on the frame, and a running section 14 that moves along the rod. ing.

フレーム11の構成部材である上部および下部フレーム
lla、llbは、内部に案内溝15が形成されており
、電磁石12は、これらの溝に摺動自在に嵌合している
ボールナツト16に取り付けられている。一方、これら
ポールナツトのねじ孔に螺合するねじ軸17が、上部お
よび下部フレームlla、llbに2本づつ、縦に並べ
て支えられており、これらの軸をそれぞれの駆動モータ
18で回転させると、電磁石12が軸17に沿って横移
動するようになっている。
The upper and lower frames lla and llb, which are constituent members of the frame 11, have guide grooves 15 formed therein, and the electromagnet 12 is attached to a ball nut 16 that is slidably fitted into these grooves. There is. On the other hand, two screw shafts 17 that are screwed into the screw holes of these pole nuts are supported vertically in two each on the upper and lower frames lla and llb, and when these shafts are rotated by their respective drive motors 18, Electromagnet 12 is adapted to move laterally along axis 17.

前記走行部14には、ロボットの移動を制御する本体位
置制御回路19が置かれており9次にその働きを説明す
る。ロボットが止っているとき、各電磁石12は、IK
3図に示すように、上部および下部フレーム11a、l
lbの側部にあたる位ff1fAにある。ロボットが例
えば第3図の右方向に移動しようとするときは。
A body position control circuit 19 for controlling the movement of the robot is installed in the traveling section 14, and its function will be explained next. When the robot is at rest, each electromagnet 12
As shown in Figure 3, the upper and lower frames 11a, l
It is located at ff1fA, which corresponds to the side of lb. For example, when the robot tries to move to the right in Figure 3.

まず、左側の2個の電磁石12a、12bを9通電を止
めて消磁しながら右に動かし、上下フレームの中央寄り
の位置Bに移す。この間、ロボットは3個の電磁石で支
えられるよう、2個の電磁石12a、12bの移動は9
時間を前後して行う。
First, the two electromagnets 12a and 12b on the left are de-energized and moved to the right while being demagnetized and moved to position B near the center of the upper and lower frames. During this time, the movement of the two electromagnets 12a and 12b is 9 so that the robot is supported by three electromagnets.
Go back and forth in time.

次いで、制御回路19は、4個全部の電磁石12が本体
に対し左方向に動くよう、駆動モータ18を制御する。
Next, the control circuit 19 controls the drive motor 18 so that all four electromagnets 12 move to the left with respect to the main body.

すると、1!磁石12が被吸着面に吸着しているので、
電磁石は止まったままで、ロボット本体が右に進む。こ
の場合、全部の電磁石を同速度で動かすため。
Then, 1! Since the magnet 12 is attracted to the surface to be attracted,
The electromagnet remains stationary and the robot moves to the right. In this case, to move all electromagnets at the same speed.

4台の駆動モータ18は同期させる必要があり、そのた
めには、同モータにステッピングモータを用いると青酸
がシンプルになる。
It is necessary to synchronize the four drive motors 18, and for this purpose, using a stepping motor for the same motors simplifies hydrocyanic acid.

このようにロボット本体が進むと、左側の2個の電磁石
12a、12bはもとの位!Aにもどるが、右側のもの
12c、1.2dはフレームの中央寄りの位filBに
くる。そこで、これら右側電磁石12c、i2dを右に
動かして1位置Aに移す。この場合の要領は、前に左側
のものについて説明したのと同様である。
As the robot moves forward in this way, the two electromagnets 12a and 12b on the left return to their original positions! Returning to A, the ones on the right side 12c and 1.2d are placed in filB near the center of the frame. Therefore, these right side electromagnets 12c and i2d are moved to the right to the 1 position A. The procedure in this case is the same as that described above for the one on the left.

これまでの操作で、ロボットは、各1!磁石の行程。With the operations so far, each robot has 1! Magnet travel.

すなわち位fllA−B間の距離に相当する距離だけ進
んだわけであり、かかる一連の操作を繰り返すことで。
In other words, by repeating this series of operations, the robot has progressed by a distance corresponding to the distance between points A and B.

所望の位置に達するのである。The desired position is reached.

これまでの説明から明らかなように、このロボットは、
被吸着面に密接する電磁石12で該面に保持され。
As is clear from the explanation so far, this robot is
It is held on the surface to be attracted by an electromagnet 12 that is in close contact with the surface.

しかも、移動中、少なくとも3個の電磁石で支持される
ので、被吸着面から落下のおそれが少ない。また。
Moreover, since it is supported by at least three electromagnets during movement, there is little risk of it falling from the surface to be attracted. Also.

ロボットの移動のために必要な構造は、被吸着面に沿っ
て電磁石12を動かすだけであり、きわめてシンプルで
ある。
The structure required for the movement of the robot is extremely simple, as it only moves the electromagnet 12 along the surface to be attracted.

電磁石は、ll源と切り離した後も、いく分かの残留砒
気を持っているのが普通であり、このため、電磁石12
を前述のように被吸着面に沿って動かすときは。
It is normal for electromagnets to have some residual arsenic even after disconnection from the source, and for this reason electromagnet 12
When moving along the surface to be attracted as described above.

該電磁石を被吸着面から引き離してから行うとよい。It is preferable to perform this after separating the electromagnet from the surface to be attracted.

そこで、この実施例では、電磁石12とボールナツト1
6の間に伸縮シリンダ20が置かれており、これに圧縮
空気等の作動流体を導入することで、被吸着面8に垂直
な方向にS磁石12を動かせるようになっている。
Therefore, in this embodiment, the electromagnet 12 and the ball nut 1
A telescopic cylinder 20 is placed between the magnets 6 and 6, and by introducing a working fluid such as compressed air into this cylinder, the S magnet 12 can be moved in a direction perpendicular to the attracting surface 8.

IIt磁石が被吸着面を走っている溶接線10の上に乗
ったような場合の電磁石と被吸着面との間の密着性を確
保するために、電磁石12は、いずれの方向にもある程
度回動できることが好ましい。このため、電磁石1.2
と伸縮シリンダ20をボール継手(図示しない)で接続
することかできる。
In order to ensure close contact between the electromagnet and the surface to be attracted when the IIt magnet rides on the weld line 10 running on the surface to be attracted, the electromagnet 12 is rotated to some extent in either direction. It is preferable to be able to move. For this reason, electromagnet 1.2
The telescopic cylinder 20 can be connected to the telescopic cylinder 20 by a ball joint (not shown).

前記フレームのうち左右のフレームlie、lidには
、内部に案内溝21が形成されており、これらの溝に、
杆体13の両端に固定されたポールナツト23が摺動自
在に嵌合している。これらポールナツトのねじ孔には、
左右フレーム11c、ildに回転自在に支えられたね
じ軸24が螺合しており、これらねじ軸をそれぞれの駆
動モータ25で回転させると、ポールナツト23および
杆体13が左右フレームに沿って動くようになっている
。なお、2台の駆動モータ25も同期させる必要がある
が、このため、これらモータにステッピングモータを用
いると構成が簡単になる。
Guide grooves 21 are formed inside the left and right frames lie and lid of the frames, and these grooves include
Pole nuts 23 fixed to both ends of the rod 13 are slidably fitted. These pole nut screw holes are
Screw shafts 24 rotatably supported by the left and right frames 11c and ild are screwed together, and when these screw shafts are rotated by respective drive motors 25, the pole nut 23 and rod 13 move along the left and right frames. It has become. Note that the two drive motors 25 also need to be synchronized, but for this reason, the configuration can be simplified if stepping motors are used for these motors.

杆体13には、これに沿って案内溝26が形成されてお
り、この溝に、走行部14と連なるポールナツト27が
摺動自在に嵌合している。このポールナツトのねじ孔に
は、杆体13に沿って軸支されたねじ@28がかみ合っ
ており、このねじ軸を駆動モータ29で回すと走行部1
4が杆体13に沿って動くようになっている。
A guide groove 26 is formed along the rod 13, and a pole nut 27 connected to the running portion 14 is slidably fitted into this groove. A screw @ 28 supported along the rod 13 is engaged with the screw hole of this pole nut, and when this screw shaft is rotated by a drive motor 29, the running section 1
4 is adapted to move along the rod 13.

このように走行部が縦横に動き、四角形の可動範囲をも
っているので、ロボットを横方向に順々と移動させれば
、被吸着面8を帯状にカバーすることができる。
As described above, since the traveling section moves vertically and horizontally and has a rectangular movable range, by sequentially moving the robot in the horizontal direction, the surface to be attracted 8 can be covered in a band shape.

なお、第3図には、走行部14が四角形の可動範囲の頂
点にきたところを鎖線で示しである。
In addition, in FIG. 3, the point where the traveling portion 14 reaches the apex of the rectangular movable range is indicated by a chain line.

前記走行部14は、ポールナツト27に連なる箱体14
aと、この箱体に連なる保持部材14bからなる。
The running portion 14 is a box body 14 connected to the pole nut 27.
a, and a holding member 14b that continues to this box body.

箱体14aは、ポールナツト27との間に伸縮シリンダ
(図示しない)を有し、これに圧縮空気を導入すること
により9M体と保持部材が被吸着面8に垂直な方向に移
動できるようになっており、ロボットの移動時。
The box body 14a has a telescopic cylinder (not shown) between it and the pole nut 27, and by introducing compressed air into this, the 9M body and the holding member can be moved in a direction perpendicular to the surface to be attracted 8. and when the robot moves.

保持部材14bは被吸着面から離した状態に保持される
The holding member 14b is held apart from the surface to be attracted.

保持部材14bは、スプリング30で被吸着面8に向は
押しやられており、裏面の突起31が被吸着面に当接す
ることで、被吸着面との距離が一定に保たれ乙ようにな
っている(第7図)。
The holding member 14b is pushed toward the suction surface 8 by a spring 30, and the protrusion 31 on the back abuts the suction surface to maintain a constant distance from the suction surface. (Figure 7).

この保持部材14bの中央に工具類や検査装置が保持さ
れるようになっており、この実施例では、さび落し用の
だがね32が保持されている。このたがねは。
Tools and inspection equipment are held in the center of this holding member 14b, and in this embodiment, a butt 32 for removing rust is held. This chisel is.

圧縮空気の供給を受けて針束32aがピストン運動し。The needle bundle 32a makes a piston movement in response to the supply of compressed air.

その先で、溶接線]0に沿って被吸着面をたたき、付着
しているさびやスケールをたたき落す。なお、たたき落
したさびやスケールが電磁石12に吸着するのを防止す
るため、これらを針束32aの近くで真空吸引してしま
うことも可能である。
At the tip, tap the surface to be attracted along the weld line]0 to knock off any rust or scale that may have adhered to it. Note that in order to prevent the knocked-off rust and scale from adhering to the electromagnet 12, it is also possible to vacuum-suction the rust and scale near the needle bundle 32a.

第6〜第8図に示すように、保持部材14bは、溶接線
]、Oの位置を探るために、その中央から上下左右の各
方向に隔たったところに、3個で1組になった触子34
を備えている。これらの触子は、被吸着面8に垂直な方
向に摺動することができ、内蔵しているスプリング35
により、その先端が被吸着面に押し付けられている。そ
して、各触子34は、対応するスイッチ36に連動して
おり、触子の先が溶接線10の上にくると、溶接線の表
面が他の部分よりわずかに盛り七がっているので触子が
その分引っ込み、これに応じてスイッチ36の出力が5
例えばオンに切り変わるようになっている。1組の触子
は、走行部が溶接線から外れかかったとき、いずれの側
にそれたかが分るよう、溶接線に垂直な方向にわずかず
つ間隔を置いて配置された複数個の触子からなる。1組
の触子は、この実施例では3個で構成されているが、2
個で構成することもできる。
As shown in FIGS. 6 to 8, the holding members 14b are placed in sets of three at locations apart from the center in each direction, up, down, left, and right in order to find the position of the weld line. Tentacle 34
It is equipped with These tentacles can slide in a direction perpendicular to the surface to be attracted 8, and are supported by built-in springs 35.
As a result, its tip is pressed against the surface to be attracted. Each contactor 34 is linked to a corresponding switch 36, and when the tip of the contactor is above the welding line 10, the surface of the welding line is slightly more protruding than the other parts. The feeler retracts by that amount, and in response, the output of the switch 36 becomes 5.
For example, it can be turned on. One set of tentacles consists of multiple tentacles arranged at slight intervals in the direction perpendicular to the welding line so that when the running part is about to come off the welding line, it can be seen which side it has deviated to. Become. One set of tentacles is composed of three in this embodiment, but there are two.
It can also be composed of individuals.

走行部14が被吸着面上の溶接線に沿って動くよう。The traveling part 14 moves along the weld line on the surface to be attracted.

スイッチ36の出力を受けて駆動モータ25,29を制
御する走行部位置制御回路37は箱体14aに置かれて
おり9次にこの回路の作用について説明する。
A traveling section position control circuit 37 for controlling the drive motors 25 and 29 in response to the output of the switch 36 is placed in the box 14a, and the operation of this circuit will now be described.

いま、第3図に示すように、ロボットがff1aしてい
る船体外板面に逆T字形の縦横の溶接線1.0a、1.
Obが走っているとする。制御回路37はまず、走行部
14を例えば左上の位置Sから右方向に移動させ、やが
て7.)、下の組の触子34a+  34bがオンにな
ることで、走行部が縦の溶接線10に乗ったことを知る
Now, as shown in Fig. 3, the robot is making vertical and horizontal welding lines 1.0a, 1.
Suppose that Ob is running. The control circuit 37 first moves the traveling section 14 from, for example, the upper left position S to the right, and then 7. ), it is known that the traveling section has ridden on the vertical welding line 10 by turning on the lower set of probes 34a+34b.

これを知った制御回路は、走行部を今度は下向きに移m
JJさせ、縦の溶接線10aをtことらせる。このとき
Knowing this, the control circuit moves the traveling section downwards.
JJ and make the vertical welding line 10a t. At this time.

例えば、走行部]4が溶接線の左側に外れかかったとす
ると、制御回路はこのことを上下各組の触子34a。
For example, if the traveling section] 4 is about to come off to the left of the weld line, the control circuit will detect this and send it to each set of upper and lower contactors 34a.

341〕のうち左側のものがオフになったことで検知し
341], it was detected when the left one was turned off.

駆動モータ29を制御して走行部14の軌iを右に修正
する。このようにして走行部14が溶接線10aに追従
して動く間に、走行部に保持されたたがね32が。
The drive motor 29 is controlled to correct the trajectory i of the traveling section 14 to the right. While the running section 14 moves in this manner following the welding line 10a, the chisel 32 held by the running section moves.

被1汲着面8の溶接線に沿った部分をたたき、付着して
いるさびやスケールを落していく。
Tap the part of the surface to be scooped 8 along the weld line to remove any rust or scale that may have adhered to it.

やがて、走行部が交点10cに近づくと、まず下の組の
触子341〕がオフになり9次いで左右の組の触子34
C,34dが溶接線10bに乗ってオンになるので、制
御回路は、縦の溶接線10aが終り、横方向に他の溶接
線]Obが走っていることを知り得る。そこで制御回路
37は、走行部】4を今度は横方向2例えば左方向に進
め、たがね32は横の溶接線10bをたたいていく。走
行部が左の可動限界に達すると、制御回路は、走行部の
移動方向を逆にし、走行部が溶接線10bを左から右に
たどるようにする。こ。〕場合、全交点0cまでは、す
でにさび落しが済んでいるから。
Eventually, when the running section approaches the intersection 10c, the lower group of tentacles 341 is turned off, and then the left and right pairs of probes 34 are turned off.
Since C, 34d rides on the welding line 10b and turns on, the control circuit can know that the vertical welding line 10a ends and another welding line ]Ob runs in the horizontal direction. Therefore, the control circuit 37 moves the traveling section 4 in the lateral direction 2, for example, to the left, and the chisel 32 strikes the lateral welding line 10b. When the runner reaches the left limit of movement, the control circuit reverses the direction of movement of the runner so that the runner follows the weld line 10b from left to right. child. ], the rust has already been removed up to all intersections 0c.

たがねの作動を止めて早い速度で戻す。次いで、走行部
14が右の可動限界に達すると、制御回路は、たがねの
作動を止め、走行部14を下方に進め、他の溶接線を探
しながら右下の位置Tに達する。
Stop the chisel and return it at a fast speed. Then, when the running section 14 reaches the right limit of movement, the control circuit deactivates the chisel and advances the running section 14 downward until it reaches the lower right position T while searching for another weld line.

これで、走行部の可動範囲内にあるすべての溶接線のさ
び落しが済んだわけであり、ロボットは槓に移動してそ
の隣りの部分のさび落しにかかる。なお、走行部を上述
のように制御するための制御回路37の具体的構成は、
従来技術で容易になし得るので、説明は智略する。
This means that all the weld lines within the movable range of the running part have been removed, and the robot moves to the ram and starts removing rust from the adjacent part. The specific configuration of the control circuit 37 for controlling the traveling section as described above is as follows.
Since this can be easily accomplished using conventional techniques, the explanation will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示したものであり、第1図は
船体の横方向からみたロボットの作動状態の説明図、第
2図は同じ状態を船体に沿ってみたときの説明図、第3
図はロボットの立面図、第4図は第3図の■方向からみ
たロボットの拡大底面図、第5図は第3図のV方向から
みたロボットの拡大側面図、第6図は走行部保持部材の
裏面図、第7図は同保持部材の側面図。 第8図は第7図の■方向からみた拡大図である。 ]・・・・台車 2・・・・船体 7・・・・ロボット
 8・・・・被吸着面 10・・・・溶接線 11・・
・・フレーム 12・・・・電磁石 13・・・・杆体
 14・・・・走行部 14a・・・・保持部材 17
・・・・ねじ軸 18・・・・駆動モータ19・・・・
本体位置制苑回路 20・・・・伸縮シリンダ24・・
・・ねじ軸 25・・・・駆動モータ 28・・・・ね
じ軸 29・・・・駆動モータ、32・・・・たがね 
34・・・・触子 36・・・・スイッチ 37・・・
・走行部位置制御回路 代理人弁理士 佐 竹 良 明 第1図 第2図
The drawings show an embodiment of the present invention, and FIG. 1 is an explanatory diagram of the operating state of the robot seen from the side of the ship, FIG. 2 is an explanatory diagram of the same state when viewed along the hull, and FIG. 3
The figure is an elevational view of the robot, Figure 4 is an enlarged bottom view of the robot seen from the ■ direction in Figure 3, Figure 5 is an enlarged side view of the robot seen from the V direction in Figure 3, and Figure 6 is the traveling section. FIG. 7 is a back view of the holding member, and FIG. 7 is a side view of the holding member. FIG. 8 is an enlarged view of FIG. 7 viewed from the direction ■. ]...Bolly 2...Hull 7...Robot 8...Surface to be attracted 10...Welding line 11...
... Frame 12 ... Electromagnet 13 ... Rod 14 ... Running part 14a ... Holding member 17
... Screw shaft 18 ... Drive motor 19 ...
Main body position control circuit 20...Telescopic cylinder 24...
...Screw shaft 25...Drive motor 28...Screw shaft 29...Drive motor, 32...Chisel
34...Toucher 36...Switch 37...
・Travelling part position control circuit Patent attorney Yoshiaki Satake Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、溶接線が縦横に走っている構造物の表面に沿って移
動し得る走行部と、前記構造物の表面に垂直な方向に動
き得るようこの走行部に取り付けられ、先端が前記構造
物の表面に接するよう押しやられている4組の触子と、
これらの触子に連動しているスイッチと、これらスイッ
チの出力に応じて前記走行部を前記溶接線に沿って移動
させるための制御回路からなり、前記4組の触子は、前
記溶接線が縦横に交差する交点の上に前記走行部がきた
とき、この交点を挟む4つの位置でこれらの溶接線に乗
るよう配置されており、また、1組の前記触子は少なく
とも2個の触子からなり、これら2個の触子は、これら
の触子が乗っている溶接線に直角な方向にわずかに間隔
を設けて配置されている溶接線追従装置。
1. A running part that can move along the surface of the structure in which the welding line runs in all directions, and a running part that is attached to this running part so that it can move in a direction perpendicular to the surface of the structure, and whose tip is attached to the part that can move along the surface of the structure. four pairs of tentacles pushed into contact with the surface,
It consists of switches that are interlocked with these contactors and a control circuit for moving the running section along the welding line in accordance with the outputs of these switches, and the four sets of contactors are connected to the welding line. When the running section comes over an intersection that intersects vertically and horizontally, it is arranged so as to ride on these weld lines at four positions sandwiching this intersection, and one set of the tentacles has at least two tentacles. The welding line tracking device consists of two contactors arranged with a slight interval in the direction perpendicular to the welding line on which these contactors ride.
JP18749182A 1982-10-27 1982-10-27 Welding line follower Pending JPS5976757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18749182A JPS5976757A (en) 1982-10-27 1982-10-27 Welding line follower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18749182A JPS5976757A (en) 1982-10-27 1982-10-27 Welding line follower

Publications (1)

Publication Number Publication Date
JPS5976757A true JPS5976757A (en) 1984-05-01

Family

ID=16206988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18749182A Pending JPS5976757A (en) 1982-10-27 1982-10-27 Welding line follower

Country Status (1)

Country Link
JP (1) JPS5976757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894735B2 (en) 2011-10-13 2014-11-25 Yamabiko Corporation Intake device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894735B2 (en) 2011-10-13 2014-11-25 Yamabiko Corporation Intake device for engine

Similar Documents

Publication Publication Date Title
EP2631040B1 (en) Processing station and method for operating such a station
CN208542679U (en) It is a kind of for taking turns pair and the Intelligent Laser cleaning system of bogie
US4536690A (en) Tool-supporting self-propelled robot platform
US3811320A (en) Surface scaler apparatus
ATE427182T1 (en) METHOD FOR LASER PROCESSING AND LASER DEVICE WITH LASER POWER CONTROLLED DEPENDENT ON THE LASER MOVEMENT
CN204772513U (en) Multi -functional robot of crawling of boats and ships facade operation
CN105563450A (en) Multifunctional crawling robot for ship facade operations
DE3580941D1 (en) METHOD AND ROBOT PLATFORM FOR WASHING, SANDBLASTING AND PAINTING IN A SHIP DOCK.
DE102009008529B4 (en) Electromagnetic conveyor system
CN110711962A (en) Assembly robot welding device in boats and ships
CN111891246B (en) Electromagnetic adsorption type ultrasonic flaw detection robot
CN211276933U (en) Intelligent plasma gouging system for cleaning dead head of large casting
CN114211175A (en) Be used for multi-vehicle type crossbeam intelligence welding production line
JPS5976757A (en) Welding line follower
CN205042663U (en) Long -range manipulation spraying arm device
CN206316516U (en) The horizontal position welding automatic soldering device of gas shield
CN210546614U (en) Automatic cleaning robot for insulator of electric locomotive
CN209364611U (en) A kind of seven axis operating mechanism, robot for automobile assembling
JPS5977981A (en) Magnetically attracted robot
CN217618602U (en) Automatic welding device for external weld joint of curved U rib
Stacy et al. Theoretical and empirical verification of a mobile robotic welding platform
CN217756551U (en) Positioning device for hot galvanizing production line circulating track system
CN114670945B (en) Wall climbing robot and wall climbing robot walking method
CN114789152B (en) Intelligent dust collector and system for industrial machine tool
CN214441504U (en) Nuclear facility remote laser cleaning robot