JPS5977981A - Magnetically attracted robot - Google Patents

Magnetically attracted robot

Info

Publication number
JPS5977981A
JPS5977981A JP57187490A JP18749082A JPS5977981A JP S5977981 A JPS5977981 A JP S5977981A JP 57187490 A JP57187490 A JP 57187490A JP 18749082 A JP18749082 A JP 18749082A JP S5977981 A JPS5977981 A JP S5977981A
Authority
JP
Japan
Prior art keywords
robot
along
frame
attracted
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57187490A
Other languages
Japanese (ja)
Inventor
Yutaka Ueyama
植山 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ZOSEN KIKAI KK
Original Assignee
NIPPON ZOSEN KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ZOSEN KIKAI KK filed Critical NIPPON ZOSEN KIKAI KK
Priority to JP57187490A priority Critical patent/JPS5977981A/en
Publication of JPS5977981A publication Critical patent/JPS5977981A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To automatize an operation such as removal of rusts on a wall surface, by providing magnets for supporting a frame on a surface of a magnetic structure. CONSTITUTION:Of the frame, left and right frames 11c, 11d are provided with guide grooves 21 in the interior thereof, and ball nuts 23 fixed to both ends of a rod body 13 are slidably fitted into the grooves 23. The rod body 13 is provided with a guide groove 26 along it, and a ball nut 27 connected to a traveling part 14 is slidably fitted into the groove 26. A screw shaft 28 axially supported along the rod body 13 is engaged with a threaded hole of the ball but 27, and when the screw shaft 28 is rotated by a driving motor 29, the traveling part 14 is moved along the rod body 13. Since the traveling part 14 can be moved in longitudinal and transverse directions to cover a tetragonal area, the surface 8 onto which the robot is to be attracted can be covered in a belt from by sequentially moving the robot in a transverse direction.

Description

【発明の詳細な説明】 この発明は、船体等の磁性構造物の壁面に磁力で吸着し
ながら、該壁面のさび落し等の作業を行うロボットに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a robot that performs work such as removing rust from a wall of a magnetic structure such as a ship's hull while adhering to the wall using magnetic force.

かかる作業は従来、壁面に沿って足場を組み1作業員が
その上に乗って行っており1足場の仮設、Wl去に多く
の労力9時間を必要としている。また9足場の上での作
業は、危険がつきものであり、能率も悪い。
Conventionally, such work has been carried out by setting up scaffolding along the wall and having one worker stand on it, requiring a lot of labor and nine hours to temporarily set up and remove one scaffold. Furthermore, work on scaffolding is always dangerous and inefficient.

この発明は、このような壁面作業を自動化するための磁
気吸着ロボットを提供するものである。
The present invention provides a magnetic attraction robot for automating such wall work.

すなわちこの発明は、フレームと、このフレームを磁性
構造物の表面に保持するための磁5と、前記フレームに
移動自在に支持され、前記構造物の表面に沿って平行移
動する杆体と、この杆体に沿って移動する走行部を備え
た磁気吸着ロボットを提供する。
That is, the present invention includes a frame, a magnet 5 for holding the frame on the surface of a magnetic structure, a rod movably supported by the frame and moving in parallel along the surface of the structure, and the rod. To provide a magnetic adsorption robot equipped with a traveling part that moves along.

この発明のロボッ:−によれば、走行部が構造物の表面
に沿って縦横に動くので、これに取り付けた工具。
According to the robot of the present invention, the running part moves vertically and horizontally along the surface of the structure, and the tool is attached to the running part.

検査装置で該表面のさび落し、塗装、溶接部の探傷等の
作業を行うことができる。そして、ロボットをM4造物
の表面に沿って、何回かにわたって移動させることによ
り、かかる作業を広い面積にわたって行うことができる
。また、走行部が四角形の可動範囲をもっているので、
このようにロボットを何回か移動させて広い面積をカバ
ーする場合9作業の能率が高い。
The inspection equipment can perform tasks such as removing rust from the surface, painting, and inspecting welded parts. By moving the robot several times along the surface of the M4 structure, this work can be performed over a wide area. In addition, since the running part has a rectangular movable range,
In this way, when the robot moves several times to cover a large area, the efficiency of the 9 work is high.

以下、この発明の実施例を示す図面を参照しながら。Hereinafter, reference will be made to the drawings showing embodiments of the present invention.

この発明の磁気吸着ロボットについてさらに詳しく説明
する。
The magnetic adsorption robot of this invention will be explained in more detail.

第1.第2図は、このロボットの使用状態を示したもの
で、符号1は船体2の側部に置かれた台車であり。
1st. FIG. 2 shows the state in which this robot is used, and reference numeral 1 indicates a cart placed on the side of the hull 2.

これには操作盤3.電源受入装置4.非常用畜電池5が
備えられている。7はロボットであり5台車1の格納部
1aから図示しないクレーンでつり上げられて船体2の
外板面、すなわち被吸着面8まで運ばれ、広径。
This includes operation panel 3. Power supply receiving device 4. An emergency storage battery 5 is provided. Reference numeral 7 denotes a robot, which is hoisted up by a crane (not shown) from the storage section 1a of the truck 1 and carried to the outer surface of the hull 2, that is, the surface to be attracted 8, and has a wide diameter.

ケーブル9′fJ)ら電源の供給を受け、備えている電
磁石で該表面に吸着する。ロボット7は、彼達するよう
に。
It receives power from the cable 9'fJ) and is attracted to the surface by the provided electromagnet. Robot 7 is like them.

被吸着面に沿って横方向に移動することができ、また。It can also move laterally along the adsorbed surface.

これに取り付けられている工具等を、被吸着面8の溶接
線10に沿って縦横に動かすことができるようになって
いる。したがって、これに例えばクラインダを取り付け
れば、溶接線に沿ったさび落し作業ができ、また超音波
探傷装置を績んで溶接部の傷を探すこともできる。さら
に、塗装用スプレーガンを取り付け、これを溶接線に沿
って動かせば、溶接線に沿ってさび止め塗料をタッチア
ップすることができ、また、スプレーガンを溶接線に無
関係にジグザクに動かせば、被吸着面全体を塗装するこ
とが可能である。
Tools and the like attached to this can be moved vertically and horizontally along the welding line 10 of the attracted surface 8. Therefore, by attaching a grinder to this, for example, it is possible to remove rust along the weld line, and it is also possible to use an ultrasonic flaw detector to search for flaws in the weld. Furthermore, if you attach a paint spray gun and move it along the weld line, you can touch up the anti-corrosion paint along the weld line, or if you move the spray gun in a zigzag pattern regardless of the weld line, It is possible to paint the entire surface to be attracted.

第3〜第5図に示すように、各ロボット7は、四角の枠
状フレーム11と、4個の電磁石12と、フレーム上を
上下に動く杆体13と、杆体に沿って動く走行部14を
備えている。
As shown in FIGS. 3 to 5, each robot 7 includes a square frame 11, four electromagnets 12, a rod 13 that moves up and down on the frame, and a running section 14 that moves along the rod. We are prepared.

フレーム】1の構成部材である上部および下部フレーム
lla、llbは、内部に案内溝15が形成されており
、電磁石12は、これらの溝に摺動自在に嵌合している
ポールナツト16に取り付けられている。一方、これら
ポールナツトのねじ孔に契合するねじ軸J7が、上部お
よび下部フレームlla、llbに2木づつ、縦に並べ
て支えられており、これらの軸をそれぞれの駆動モータ
18で回転させると、電磁石12が軸]7に沿って横移
動するようになっている。
The upper and lower frames lla and llb, which are the constituent members of the frame 1, have guide grooves 15 formed therein, and the electromagnet 12 is attached to a pole nut 16 that is slidably fitted into these grooves. ing. On the other hand, screw shafts J7 that engage with the screw holes of these pole nuts are supported vertically in pairs on the upper and lower frames lla and llb, and when these shafts are rotated by their respective drive motors 18, electromagnets are activated. 12 is the axis]7.

前記走行部14には、ロボットの移動を制御する本体位
置制卸回路19が置かれており1次にその働きを説明す
る。ロボットが止っているとき、各電磁石12は、第3
図に示すように、上部および下部フレーム1]−a、1
1−bの側部にあたる位filifAにある。ロボット
が例えば第3図の石方向に移動しようとするときは。
A body position control circuit 19 for controlling the movement of the robot is installed in the traveling section 14, and its function will be explained first. When the robot is at rest, each electromagnet 12
As shown in the figure, upper and lower frames 1]-a, 1
It is located in filifA on the side of 1-b. For example, when the robot tries to move in the direction of the stone in Figure 3.

ます、左側の2個の電磁石12a、12bを9通電を止
めて消磁しながら右に動かし、上下フレームの中央寄り
の位aBに移す。この間、ロボットは3個の電磁石で支
えられるよう、2個の電磁石12a、12bの移動は9
時間を前後して行う。
First, turn off the electricity to the two electromagnets 12a and 12b on the left, move them to the right while demagnetizing them, and move them to position aB near the center of the upper and lower frames. During this time, the movement of the two electromagnets 12a and 12b is 9 so that the robot is supported by three electromagnets.
Go back and forth in time.

次いで、料紙回路19は、4個全部の電磁石12が本体
に対し左方向に動くよう、駆動モータ18を制獅する。
The paper circuit 19 then controls the drive motor 18 so that all four electromagnets 12 move to the left relative to the main body.

すると、電磁512が被吸着面に吸着しているので、電
磁石は止まったままで、ロボット本体が右に進む。この
場合、全部の電磁石を同速度で動かすため。
Then, since the electromagnet 512 is attracted to the surface to be attracted, the robot body moves to the right while the electromagnet remains stationary. In this case, to move all electromagnets at the same speed.

4台の駆動モータ18は同期させる必要があり、そのた
めには、同モータにステラピンクモータを用い?Sと構
成がシシブルになる。
It is necessary to synchronize the four drive motors 18, and for that purpose, a Stella Pink motor is used as the same motor. S and configuration become cisible.

このようにロボット本体が進むと、左側の2個の電磁石
12a、12bはもとの位置Aにもとるが、右側のもの
12C,12dはフレームの中央番りの位f’MBにく
る。そこで、これら右側電磁石12c、12dを右に動
かして5位置Aに移す。この場合の要領は、前に左側の
ものについて説明したのと同様である。
As the robot body advances in this manner, the two electromagnets 12a and 12b on the left side return to their original positions A, but the ones on the right side 12C and 12d come to f'MB, which is the center position of the frame. Therefore, these right side electromagnets 12c and 12d are moved to the right to the 5th position A. The procedure in this case is the same as that described above for the one on the left.

これまでの操作で、ロボットは、各電磁石の行程。In the previous operations, the robot moved each electromagnet.

すなわち位置A−B間の距離に相当する距群だけ進んだ
わけであり、かかる一連の操作を繰り返すことで。
In other words, the distance group corresponding to the distance between positions A and B has been advanced by repeating this series of operations.

所望の位置に達するのである。The desired position is reached.

これまでの説明から明らかなように、このロボッ1〜は
、被吸着面に密接する電磁石12で該面に保持され。
As is clear from the above description, the robots 1 to 1 are held on a surface to be attracted by an electromagnet 12 that is in close contact with the surface.

しかも、移動中、少なくとも3個の電磁石で支持される
ので、被吸着面から落下のおそれが少ない。また。
Moreover, since it is supported by at least three electromagnets during movement, there is little risk of it falling from the surface to be attracted. Also.

ロボットの移動のために必要な構造は、被吸着面に沿っ
て電磁石12を動かすだけであり、きわめてシンプルで
ある。
The structure required for the movement of the robot is extremely simple, as it only moves the electromagnet 12 along the surface to be attracted.

電磁石は、電源と切り離した後も、いく分かの残留磁気
を持っているのが普通であり、このため、電磁石12を
前述のように被吸着面に沿って動かすときは。
Electromagnets typically have some residual magnetism even after being disconnected from the power source, so when the electromagnet 12 is moved along the surface to be attracted as described above.

該電磁石を被吸着面から引き部してから行うとよい。It is preferable to perform this after pulling the electromagnet from the surface to be attracted.

そこで、この実施例では、電磁石12とポールナツト1
6の間に伸縮シリンダ20が置かれており、これに圧縮
空気等の作動副体を導入することで、被吸着面8に垂直
な方向に電磁石12を動かせるようになっている。
Therefore, in this embodiment, the electromagnet 12 and the pole nut 1
A telescopic cylinder 20 is placed between the magnets 6 and 6, and by introducing a working sub-body such as compressed air into this cylinder, the electromagnet 12 can be moved in a direction perpendicular to the attracting surface 8.

電磁石が被吸着面を走っている溶接線10の上に乗った
ような場合の電磁石と被吸着面との間の密着性を確保す
るために、電磁石]2は、いずれの方向にもある程度回
動てきることが好ましい。このため、電磁石12と伸縮
シリンダ20をボール継手(図示しない)で接続するこ
とができる。
In order to ensure close contact between the electromagnet and the surface to be attracted when the electromagnet rides on the welding line 10 running on the surface to be attracted, the electromagnet] 2 is rotated to some extent in either direction. It is preferable to be able to move. Therefore, the electromagnet 12 and the telescopic cylinder 20 can be connected with a ball joint (not shown).

前記フレームのうち左右のフレーム]1.C,lldに
は、内部に案内溝21が形成されており、これらの溝に
、杆体13の両端に固定されたポールナツト23が摺動
自在に嵌合している。これらポールナツトのねじ孔には
、左右フレーム1]、C,11,dに回転自在に支えら
れたねじ軸24が螺合しており、これらねし軸をそれぞ
れの駆動モータ25で回転させると、ポールナツト23
および杆体13が左右フレームに沿って動くようになっ
ている。なお、2台の駆動モータ25も同期させる必要
があるが、このため、これらモータにステッピングモー
タを用いると構成が簡単になる。
Left and right frames among the above frames]1. Guide grooves 21 are formed inside C and lld, and pole nuts 23 fixed to both ends of the rod body 13 are slidably fitted into these grooves. Screw shafts 24 rotatably supported by the left and right frames 1], C, 11, and d are screwed into the screw holes of these pole nuts, and when these screw shafts are rotated by their respective drive motors 25, pole nut 23
And the rod 13 is adapted to move along the left and right frames. Note that the two drive motors 25 also need to be synchronized, but for this reason, the configuration can be simplified if stepping motors are used for these motors.

杆体13には、これに沿って案内溝26が形成されてお
り、この溝に、走行部14と連なるポールナツト27が
摺動自在に嵌合している。このポールナツトのねし孔に
は、杆体13に沿って軸支されたねじ軸28がかみ合っ
ており、このねじ軸を駆動モータ29で回すと走行部1
4が杆体13に沿って動くようになっている。
A guide groove 26 is formed along the rod 13, and a pole nut 27 connected to the running portion 14 is slidably fitted into this groove. A threaded shaft 28 supported along the rod 13 is engaged with the threaded hole of this pole nut, and when this threaded shaft is rotated by a drive motor 29, the running section 1
4 is adapted to move along the rod 13.

このように走行部が縦横に動き、四角形の可動範囲をも
っているので、ロボットを横方向に順々と移動させれば
、被吸着面8を帯状にカバーすることができる。
As described above, since the traveling section moves vertically and horizontally and has a rectangular movable range, by sequentially moving the robot in the horizontal direction, the surface to be attracted 8 can be covered in a band shape.

なお、第3図には、走行部14が四角形の可動範囲の頂
点にきたところを鎖線で示しである。
In addition, in FIG. 3, the point where the traveling portion 14 reaches the apex of the rectangular movable range is indicated by a chain line.

前記走行部】4は、ポールナツト27に連なる箱体1、
4 aと、この箱体に連なる保持部材14bからなる。
The traveling part] 4 is the box body 1 connected to the pole nut 27;
4a, and a holding member 14b connected to the box body.

箱体14aは、ポールナツト27との間に伸縮シリンダ
(図示しない)を有し、これに圧縮空気を導入すること
により、WJ体と保持部材が被吸着面8に垂直な方向に
移動できるようになっており、ロボットの移動時。
The box body 14a has a telescopic cylinder (not shown) between it and the pole nut 27, and by introducing compressed air into this, the WJ body and the holding member can be moved in a direction perpendicular to the attracting surface 8. , when the robot moves.

保持部拐14 bは被吸着面から離した状態に保持され
る。
The holding part 14b is held away from the surface to be attracted.

保持部G!’ 14 bは、スプリング30で被吸着面
8に向は押しやられており、裏面の突起31が被吸着面
に当接することで、被吸着面との距離が一定に保たれる
ようになっている(第7図)。
Holding part G! ' 14b is pushed toward the suction surface 8 by a spring 30, and the distance from the suction surface is maintained constant by the protrusion 31 on the back side coming into contact with the suction surface. (Figure 7).

この保持部IA’ 14 bの中央に工具類や検査装置
が保持されるようになっており、この実施例では、さび
落し用のだがね32が保持されている。このたがねは。
Tools and inspection equipment are held in the center of this holding portion IA' 14b, and in this embodiment, a rust removal butt 32 is held. This chisel is.

圧縮を気の供給を受けて針東32aがピストン運動し。The needle east 32a moves as a piston when supplied with compressed air.

その先で、溶接線10に沿って被吸着面をたたき、付着
しているさびやスケールをlこたき落す0、なお、!こ
たき落したさびやスケールが電磁石12に吸着するのを
防止するため、これらを針東32aの近くで真空吸引し
てしまうことも可能である。
At the end, tap the surface to be attracted along the weld line 10 to knock off any rust or scale that may have adhered to it. In order to prevent the dusted off rust and scale from adhering to the electromagnet 12, it is also possible to vacuum-suction the rust and scale near the needle east 32a.

第6〜第8図に示すように、保持部材]41〕は、溶接
線10の位置を探るために、その中央からJ二下ノーi
:、右の各方向に隔たったところに、3個で1組になっ
た触子34を備えている。これらの触子は、被吸着面8
に垂直な方向に摺動することができ、内蔵しているスプ
リング35により、その先端が被吸着面に押し付けられ
ている。そして、各触子34は、対応するスイッチ36
に連動しており、触子の先が溶接線]0の」−にくると
、溶接線の表面が他の部分よりわずかに盛りhがってい
るので触子がその分引っ込み、これに応じてスイッチ3
6の出力が9例えばオンに切り変わるようになっている
。1組の触子は、走行部が溶接線から外れかかったとき
、いずれの側にそれたかが分るよう、溶接線に垂直な方
向にわずかずつ間隔を置いて配置された複数個の触子か
らなる。1組の触子は、この実施例では3個て構成され
ているが、2個で構成することもできる。
As shown in FIGS. 6 to 8, in order to locate the welding line 10, the holding member 41 is moved from the center of the welding line 10.
:, A set of three tentacles 34 are provided at locations spaced apart in each direction on the right. These tentacles are attached to the surface to be attracted 8
It can slide in a direction perpendicular to , and its tip is pressed against the surface to be attracted by a built-in spring 35. Each contactor 34 has a corresponding switch 36.
When the tip of the feeler reaches the weld line] 0 -, the surface of the weld line is slightly more protruding than the other parts, so the feeler retracts by that amount and responds accordingly. switch 3
The output of 6 is switched on, for example, 9. One set of tentacles consists of multiple tentacles arranged at slight intervals in the direction perpendicular to the welding line so that when the running part is about to come off the welding line, it can be seen which side it has deviated to. Become. Although one set of tentacles is made up of three in this embodiment, it can also be made up of two.

走行部14が被吸着面上の溶接線に沿って動くよう。The traveling part 14 moves along the weld line on the surface to be attracted.

スイッチ36の出力を受けて駆動モータ25,29を制
御する走行部位置制御回路37は箱体14aに置かれて
おり9次にこの回路の作用について説明する。
A traveling section position control circuit 37 for controlling the drive motors 25 and 29 in response to the output of the switch 36 is placed in the box 14a, and the operation of this circuit will now be described.

いま、第3図に示すように、ロボットが吸着している船
体外板面に逆T字形に縦横の溶接線10a、10bが走
っているとする。制御回路37はまず、走行部14を例
えば左上の位置Sから右方向に移動させ、やがて、上下
の組の触子34a+ 34bがオンになることで、走行
部が縦の溶接線10に乗ったことを知る。
Now, as shown in FIG. 3, it is assumed that vertical and horizontal welding lines 10a and 10b run in an inverted T-shape on the surface of the hull outer plate to which the robot is adsorbed. The control circuit 37 first moves the running section 14 from, for example, the upper left position S to the right, and eventually the upper and lower sets of contactors 34a+34b are turned on, so that the running section rides on the vertical welding line 10. Know that.

これを知った制御回路は、走行部を今度は下向きに移動
させ、縦の溶接線10aをたどらせる。このとき。
Knowing this, the control circuit now moves the running section downward to follow the vertical weld line 10a. At this time.

例えば、走行部14が溶接線の左側に外れかかったとす
ると、制御回路はこのことを上下各組の触子34a。
For example, if the traveling section 14 is about to come off to the left of the weld line, the control circuit will detect this and send it to each set of upper and lower contactors 34a.

34bのうち左側のものがオフになったことで検知し。It was detected when the left one of 34b was turned off.

駆動モータ29を制御して走行部14の軌道を右に修正
する。このようにして走行部14が溶接線1oaに追従
して動く間に、走行部に保持されただかね32が。
The drive motor 29 is controlled to correct the trajectory of the traveling section 14 to the right. While the traveling section 14 moves in this manner following the welding line 1oa, the pin 32 held by the traveling section is moved.

被吸着面8の溶接線に沿った部分をたたき、付着してい
るさびやスケールを落していく。
The adhering surface 8 is struck along the weld line to remove adhering rust and scale.

やがて、走行部が交点10eに近づくと、まず下の組の
触子34bがオフになり1次いで左右の組の触子34C
,34dが溶接線10bに乗ってオンになるので、制御
回路は、縦の溶接線10aが終り、横方向に他の溶接線
10bが走っていることを知り得る。そこで制御回路3
7け、走行部14を今度は横方向9例えば左方向に進め
、たがね32は横の溶接線10bをたたいていく。走行
部が左の可動限界に達すると、制御回路は、走行部の移
動方向を逆にし、走行部が溶接線10bを左から右にた
どるようにする。この場合、交点]、 Ocまでは、す
でにさび落しが済んでいるから。
Eventually, when the traveling section approaches the intersection 10e, the lower group of tentacles 34b is turned off, and then the left and right sets of probes 34C are turned off.
, 34d turn on on the weld line 10b, the control circuit can know that the vertical weld line 10a has ended and another weld line 10b runs in the horizontal direction. Therefore, control circuit 3
7, the running portion 14 is now advanced laterally 9, for example to the left, and the chisel 32 strikes the lateral welding line 10b. When the runner reaches the left limit of movement, the control circuit reverses the direction of movement of the runner so that the runner follows the weld line 10b from left to right. In this case, the rust has already been removed up to the intersection ], Oc.

たがねの作動を止めて早い速度で戻す。次いで、走行部
]4が右の可動限界に達すると、制御回路は、たがねの
作動を止め、走行部14を下方に進め、他の溶接線を探
しながら右下の位置Tに達する。
Stop the chisel and return it at a fast speed. Then, when the running section] 4 reaches the right limit of movement, the control circuit stops the operation of the chisel and advances the running section 14 downward until it reaches the lower right position T while searching for another weld line.

これで、走行部の可動範囲内にあるすべての溶接線のさ
び落しが済んだわけであり、ロボットは横に移動してそ
の隣りの部分のさび落しにかかる。なお、走行部をに述
のように制御するための制御回路37の具体的構成は、
従来技術で容易になし得るので、説明は省略する。
This means that all the weld lines within the movable range of the moving part have been removed, and the robot moves sideways to remove the rust from the adjacent parts. The specific configuration of the control circuit 37 for controlling the traveling section as described above is as follows.
Since this can be easily accomplished using conventional techniques, the explanation will be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示したものであり、ア1図は
船体の横方向からみたロボットの作動状態の説明図、第
2図は同じ状態を船体に沿ってみたときの説明図、第3
図はロボットの立面図、第4図は第3図の■方向からみ
たロボットの拡大底面図、第5図は第3図の■方向から
みたロボットの拡大側面図、第6図は走行部保持部材の
裏面図、第7図は同保持部材の側面図。 第8図は第7図の■方向からみた拡大図である。 1・・・・臼車 2・・・・船体 7・・・・ロボット
 8・・・・被吸着面 10・・・・溶接線 11・・
・・フレーム 12・・・・電磁石 13・・・・杆体
 14・・・・走行部 14a・・・・保持部材 17
・・・・ねじ軸 18・・・・駆動モータ19・・・・
本体位置制御回路 20・・・・伸縮シリンダ24・・
・・ねじ軸 25・・・・駆動モータ 28・・・・ね
じ軸 29・・・・駆動モータ 32・・・・たがね 
34・・・・触子 36・・・・スイッチ 37・・・
・走行部位置制御回路 代理人弁理士 佐 竹 良 明 第1図 2 第2図
The drawings show an embodiment of the present invention. Figure A1 is an explanatory diagram of the operating state of the robot seen from the side of the ship, Figure 2 is an explanatory diagram of the same state when viewed along the hull, and Figure 3
The figure is an elevational view of the robot, Figure 4 is an enlarged bottom view of the robot seen from the ■ direction in Figure 3, Figure 5 is an enlarged side view of the robot seen from the ■ direction in Figure 3, and Figure 6 is the traveling section. FIG. 7 is a back view of the holding member, and FIG. 7 is a side view of the holding member. FIG. 8 is an enlarged view of FIG. 7 viewed from the direction ■. 1... Mortar wheel 2... Hull 7... Robot 8... Surface to be attracted 10... Welding line 11...
... Frame 12 ... Electromagnet 13 ... Rod 14 ... Running part 14a ... Holding member 17
... Screw shaft 18 ... Drive motor 19 ...
Body position control circuit 20...Telescopic cylinder 24...
... Screw shaft 25 ... Drive motor 28 ... Screw shaft 29 ... Drive motor 32 ... Chisel
34...Toucher 36...Switch 37...
・Traveling part position control circuit attorney Yoshiaki Satake Figure 1 2 Figure 2

Claims (1)

【特許請求の範囲】 1、フレームと、このフレームを磁性構造物の表面に保
持するための磁石と、前記フレームに移動自在に支持さ
れ、前記構造物の表面に沿って平行移動する杆体と、こ
の杆体に沿って移動する走行部を備えた磁気吸着ロボッ
ト。 2、前記杆体がその軸方向に垂直なねじ孔を有し、この
ねじ孔に螺合し、それ自体回転するねじ軸が前記フレー
ムに軸架されている特許請求の範囲第1項の磁気吸着ロ
ボット。 3、前記走行部が前記杆体に沿ったねじ孔を有し、この
ねじ孔に螺合し、かつ、それ自体回転するねじ軸が前記
杆体に軸架されている特許請求の範囲第1項または第2
項の磁気吸着ロボット。
[Scope of Claims] 1. A frame, a magnet for holding the frame on the surface of a magnetic structure, and a rod movably supported by the frame and moving in parallel along the surface of the structure; A magnetic adsorption robot equipped with a running section that moves along this rod. 2. The magnetic attraction according to claim 1, wherein the rod has a screw hole perpendicular to the axial direction thereof, and a screw shaft that is screwed into the screw hole and rotates itself is mounted on the frame. robot. 3. The running part has a screw hole along the rod, and a screw shaft that is screwed into the screw hole and rotates itself is mounted on the rod. Second
Magnetic adsorption robot.
JP57187490A 1982-10-27 1982-10-27 Magnetically attracted robot Pending JPS5977981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57187490A JPS5977981A (en) 1982-10-27 1982-10-27 Magnetically attracted robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57187490A JPS5977981A (en) 1982-10-27 1982-10-27 Magnetically attracted robot

Publications (1)

Publication Number Publication Date
JPS5977981A true JPS5977981A (en) 1984-05-04

Family

ID=16206973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57187490A Pending JPS5977981A (en) 1982-10-27 1982-10-27 Magnetically attracted robot

Country Status (1)

Country Link
JP (1) JPS5977981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332845C (en) * 2004-11-01 2007-08-22 大连大学 Steps climbing robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332845C (en) * 2004-11-01 2007-08-22 大连大学 Steps climbing robot

Similar Documents

Publication Publication Date Title
CN208542679U (en) It is a kind of for taking turns pair and the Intelligent Laser cleaning system of bogie
US3811320A (en) Surface scaler apparatus
CN110027673B (en) Self-adaptive traction wall-climbing robot for multifunctional processing of giant ship body
CN206733016U (en) A kind of robot for marine surface patching coating
CN202656185U (en) Multiple-freedom-degree mechanical arm clamp
CN103481279A (en) Multi-freedom-degree manipulator fixture
CN110480448A (en) A kind of large-scale storage tank climbs wall milling robot
Choi et al. A wall climbing robot with closed link mechanism
JPS5977981A (en) Magnetically attracted robot
Kangari et al. Automation in construction
Khirade et al. Magnetic wall climbing devices—a review
JP3137460B2 (en) Suction type mobile manipulator
CN113103251A (en) Radiation-resistant nuclear emergency multifunctional dismantling robot
JP2001242289A5 (en)
JPH09285928A (en) Chucking device and article rotating device
CN110562688A (en) quick switching system of positioning fixture
JPS5977980A (en) Magnetically attracted robot
JPH03119256A (en) Automatic setting method of board
CN109176459A (en) Multi-functional absorption type mobile platform
CN211056032U (en) Quick switching system of positioning fixture
JPS5976757A (en) Welding line follower
CN110867109A (en) Real platform of instructing of robot anchor clamps installation and debugging
CN211361889U (en) Sand blasting continuous processing equipment for metal part structure processing
CN114670945B (en) Wall climbing robot and wall climbing robot walking method
CN210402794U (en) Flexible production training system