JPS5976468A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5976468A
JPS5976468A JP18805382A JP18805382A JPS5976468A JP S5976468 A JPS5976468 A JP S5976468A JP 18805382 A JP18805382 A JP 18805382A JP 18805382 A JP18805382 A JP 18805382A JP S5976468 A JPS5976468 A JP S5976468A
Authority
JP
Japan
Prior art keywords
semiconductor
impurity region
contact
regions
adhered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18805382A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP18805382A priority Critical patent/JPS5976468A/en
Publication of JPS5976468A publication Critical patent/JPS5976468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To securely position a diffused region at the center in an aperture by a method wherein a thick field insulation film is adhered on a semiconductor substrate, the aperture is bored in correspondence to the diffused region, which region is formed by plasma ion implantation when it is formed at a substrate surface layer part exposed in the aperture. CONSTITUTION:The thick field insulation film 2 is adhered on the semiconductor substrate 1, and the open hole parts 10 and 9 are bored in correspondence to the diffused regions 6 and 9 to be formed. Next, the diffused regions 6 and 9 are formed at the surface layer part of the substrate 1 exposed by utilizing these open holes 10 and 9; thereat, these regions are formed by plasma ion implantation. In this manner, the regions 6 and 9 are securely coincident to the centers of the open hole parts 10 and 9; when leads 5 and 3 are adhered on these regions while they are made to run along or buried in the side wall of the film 2, there is no possibility of the positional slippages thereof. At this time, it is better to use Al, Mo, W, etc. for the leads 5 and 3.

Description

【発明の詳細な説明】 この発明は、半導体内に選択的にプラズマイオン注入法
(以下Pエエという)Kよシ蓋価またはV価の不純物を
添加するとともに、この添加された開穴部上およびそれ
以外の絶縁物土に半導体または導体の膜またはリードを
プラズマ気相法(以下PCVDという)Kよ多形成せし
めることを目的とする半導体装置およびその作製方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves selectively doping impurities with K, valence, or V valence into a semiconductor using plasma ion implantation (hereinafter referred to as PAE), and adding impurities onto the apertures where the impurities have been added. The present invention relates to a semiconductor device and a method for manufacturing the same, the purpose of which is to form semiconductor or conductor films or leads on other insulating materials using plasma vapor deposition (hereinafter referred to as PCVD).

この発、明は特に開穴部の側面に対しても、平面部と同
様の膜厚に均一に形成せしめるため、段差部(ステップ
カバレッジ)K対し、信頼性低下の可能性が全くなく、
特にこの穴の大きさを2μまたは1.5μとし被膜の膜
厚がO,ト1pであっても十分な段差部での半導体また
は導体膜を作ることができる。その結果0.5−1μの
伏巾のリード線を±0.2μの公差で作ることができた
0そのため、VLSI(超I、Sυにとってきわめてす
ぐれた特性を有する。
In this invention, in particular, since the film is formed uniformly on the side surfaces of the hole to the same thickness as on the flat surface, there is no possibility of a decrease in reliability with respect to the step coverage (step coverage) K.
In particular, when the size of this hole is set to 2μ or 1.5μ, a semiconductor or conductor film can be formed with a sufficient level difference even if the film thickness of the film is 0.5μ or 1p. As a result, lead wires with a width of 0.5-1μ can be made with a tolerance of ±0.2μ. Therefore, it has extremely excellent characteristics for VLSI (super I, Sυ).

さらにこの発明は、下側リードまfC,は不純物領域と
その上のリードとが、マスク合わせ精度においてズレを
生じても、その間KPエエによる不純物領域を設けて電
気的に連結させることができ、さらにこの不純物領域に
よシ半導体とリードとが直接接して接合リークを発生さ
せてしまうことがない。そのためリードの合せ%にコン
タクト部での合せ精度が実質的にセルファライン構成を
有せしめることができ、従来の如く3十0.5μの精度
ではなり、1±0.5μでも2層配線間のコンタクトを
十分なオーム接触をさせて有せしめることができるとい
う特徴を有する。
Furthermore, in the present invention, even if there is a misalignment between the impurity region of the lower lead (fC) and the lead above it due to mask alignment accuracy, an impurity region by KP can be provided between them to electrically connect them. Furthermore, this impurity region prevents the semiconductor from directly contacting the lead and causing junction leakage. Therefore, the alignment accuracy at the contact part can be substantially made to have a self-line configuration in accordance with the alignment percentage of the leads, and the accuracy between the two-layer wiring can be improved by 1±0.5μ, instead of the conventional precision of 300.5μ. It has the feature that the contacts can be made with sufficient ohmic contact.

第1図に従来例のたて断面図を示す。FIG. 1 shows a vertical sectional view of a conventional example.

半導体(1)上にフィールド絶縁物(2)を設け、開穴
細物領域(6)(7)とコンタクトを構成させようとし
ていた。しかしかかる構成において、開穴部(10)の
穴の位置は不純物領域(6)の中央部にあシ、かつ穴の
大きさは小さくなければならず、良好なオームコンタク
トが保証されなかった。
A field insulator (2) was provided on the semiconductor (1), and contacts were to be formed with the open-hole narrow regions (6) and (7). However, in such a configuration, the hole of the opening (10) must be located at the center of the impurity region (6) and the size of the hole must be small, and good ohmic contact cannot be guaranteed.

例えば第1図(37)においては、リード(3〉と基板
半導体(1)が短絡してしまい、逆方同バイヤスでのリ
ークがおきてしまった。さらにリードはフィールド絶縁
物(2)の側部(8))(4) において、このリード
をアルミニュームの真空蒸着法で作る時十分な厚さとな
らず、その結果かかる側部での段差部での断線がおきや
すく、結果として1〜2μの枕巾の十分な細線を有する
コンタクト領域を構成させることができなかった。特に
かかる幹)のリードの側部に形成されない傾箇は、真空
蒸着法によシリード用導体層(5)の形成およびフィー
ルド絶縁物(2)が1〜2.5μを有し、かつ穴径が1
−3μの時著しかった〇本発明はかかるコンタクト部で
のオーム接触をさらに助長させるための半導体装置およ
びそのπM造方法に関するものである。
For example, in Figure 1 (37), the lead (3) and the substrate semiconductor (1) were short-circuited, causing leakage in the opposite direction.Furthermore, the lead was connected to the field insulator (2) side. In parts (8) and (4), when this lead is made by vacuum evaporation of aluminum, it is not thick enough, and as a result, it is easy to break the wire at the stepped part on the side, resulting in a thickness of 1 to 2 μm. It was not possible to construct a contact area with a sufficiently thin line for the width of the pillow. In particular, the slopes that are not formed on the sides of the leads of such main trunks can be avoided by forming the conductor layer (5) for the series leads by vacuum evaporation, and by forming the field insulator (2) with a diameter of 1 to 2.5μ and a hole diameter of is 1
The present invention relates to a semiconductor device and its πM manufacturing method for further promoting ohmic contact at the contact portion.

以下に図面に従ってその詳細を説明する。The details will be explained below according to the drawings.

第2図は本発明の製造工程を示したものである。FIG. 2 shows the manufacturing process of the present invention.

図面において、半導体として例えば単結晶珪素またはヒ
化ガリュームの如き化合物半導体(P型を用いた。さら
にこの上面に絶縁物(2)をLPCI7D(減圧気相法
)またはPCvD法によシ、例えば酸化珪素、窒化珪素
を0.5−2μの厚さに形成した。
In the drawings, a compound semiconductor (P-type) such as single crystal silicon or gallium arsenide is used as the semiconductor. Furthermore, an insulator (2) is formed on the upper surface by LPCI7D (low pressure vapor phase method) or PCvD method, for example, by oxidation. Silicon and silicon nitride were formed to a thickness of 0.5-2μ.

さらにフォトリソグラフィー技術によシ開穴部αO) 
(9)を設けた。(10)は1μゞ、(9)は5μ0で
ある。
Furthermore, the hole αO) is formed using photolithography technology.
(9) was established. (10) is 1μ゜, and (9) is 5μ0.

ノ 次に第2図(A)K示される如く、逆導電型の不純物領
域(ここではN型)を作るため、Pエエ工程を行なった
Next, as shown in FIG. 2(A)K, a P-e process was performed to form an impurity region of the opposite conductivity type (in this case, N type).

即ちかかる半導体をプラズマ装置に配設し、真空引をし
、107torrまで真空引をした。さらにかかる半導
体を200−300°CK加熱し、吸着物を除去17た
。この後水素またはへリュームによシ100〜3000
PPM K希釈された反応性気体である7オスヒンまた
はアルシンを導入し、加えて100KH2〜13、56
MHzの高周波、または7.45GHzのマイクロ波の
電気エネルギを加えてプラズマ化した。反応はプラズマ
反応装置(857,9,25出願9% 4 rj! 5
7−/(72go / /672’ifl  )  J
−Q フ ツー2eするとプラズマ化したリンマタはヒ
素が半導体中K 200−2000^の濃さにイオン注
入され、このPエエは基板にリンまたはヒ素イオンを多
量に注入させるから、kバイアスを加え工おいてもよい
That is, such a semiconductor was placed in a plasma device and evacuated to 107 torr. The semiconductor was further heated to 200-300°C to remove adsorbed matter. After this, use hydrogen or helium for 100~3000
PPM K diluted reactive gas 7 Oshin or Arsine is introduced, plus 100 KH2~13,56
Plasma was generated by applying electrical energy of MHz high frequency or 7.45 GHz microwave. The reaction takes place in a plasma reactor (857, 9, 25 applications 9% 4 rj! 5
7-/(72go//672'ifl) J
-Q Futsu 2e When the phosphorus material becomes plasma, arsenic is ion-implanted into the semiconductor at a concentration of K 200-2000^, and this PAE implants a large amount of phosphorus or arsenic ions into the substrate, so it is processed by adding k bias. You can leave it there.

かくの如きPエエを5−30分間行なった後、プラズマ
放電を中止し、反応性気体の導入も中止して、さらに水
素によシ再度プラズマ放電を行ない、半導体中に注入さ
せればよい。吸着物も気相エッチをして除去した。
After carrying out such P-E for 5 to 30 minutes, the plasma discharge is stopped, the introduction of the reactive gas is also stopped, and further plasma discharge is carried out again with hydrogen to be injected into the semiconductor. Adsorbed matter was also removed by vapor phase etching.

次ニ第2図に示される如く、この上面に半導体または導
体を形成させた。
Next, as shown in FIG. 2, a semiconductor or conductor was formed on this upper surface.

具体例1 非単結晶シリコン膜を形成させる場合、シラン(100
%)を同一プラズマ反応装置に導入し、同様に高周波を
γト30W加えて、プラズマCVDを行ない、たはAs
H,) /s iH4・0.5〜1〜として導入して導
電性を向上させてもよい。
Specific example 1 When forming a non-single crystal silicon film, silane (100
%) into the same plasma reactor and similarly applied a high frequency of 30 W to perform plasma CVD, or As
H, ) /s iH4·0.5 to 1 to improve conductivity.

かくして半導体膜を形成した。この後通常のフォトリゾ
グラフィー技術によシ、第2図(B) K示されるよう
にエツチングをしリード(3)、(5)を形成せしめた
A semiconductor film was thus formed. Thereafter, the leads (3) and (5) were formed by etching using a conventional photolithography technique as shown in FIG. 2(B).

具体例2 具体例1と同様に、第2図((りK示される如く、同一
反応炉にて半導体膜を形成させた。但しこの場合半導体
膜の厚さを200−’l OOOλとした。しかしく0
) K示される如く、段差部において何ら断線をするこ
となく形成させることができた。
Concrete Example 2 As in Concrete Example 1, a semiconductor film was formed in the same reactor as shown in FIG. But 0
) As shown in K, it was possible to form the wire without any breakage at the stepped portion.

具体例3 第2図(B) においてTMA (1(a席)を用いて
アルミニュームをPOVD法によシOdト2μの厚さに
形成上面と同じ厚さの導体膜を得ることができた。
Concrete Example 3 In Fig. 2 (B), aluminum was formed by POVD using TMA (1 (a)) to a thickness of Od 2μ, and a conductor film with the same thickness as the upper surface was obtained. .

具体例4 第2図(B)において、TMAK加えてPm /TMA
= 0.1〜1チの値で加えた。さらにシランをS1勇
/TMA・1〜5%として加えた。かかる場合この導体
中には珪素が1〜5チ添加され、かつリンが0.1〜1
チ添加されている。かかる導体は、その後の加熱処理に
おいても、その下のP工工での接合部を100−200
0又と減らしても、全く金属部のスパイクを発生させる
ことがなく、また珪素半導体を食ってし凍うことがなく
、いわゆるシアロー接合を作ることができた。
Specific example 4 In Fig. 2 (B), in addition to TMAK, Pm /TMA
= Added at a value of 0.1 to 1 inch. Furthermore, silane was added as S1 Yong/TMA 1-5%. In such a case, 1 to 5 silicon is added to the conductor, and 0.1 to 1 phosphorus is added to the conductor.
is added. Even in the subsequent heat treatment, such a conductor has a bonding area of 100-200% at the P work below.
Even when reduced to zero, no spikes were generated in the metal part, and the silicon semiconductor was not eaten away and frozen, making it possible to create a so-called shear-low junction.

これを電子ビーム蒸着法ですると、珪素とアルミニュー
ムの差があるため、流量制御が困難であ:役そ )1が何らの制御性の困難さを生じることなく作ること
ができた。
If this was done using the electron beam evaporation method, it would be difficult to control the flow rate due to the difference between silicon and aluminum, but 1 was able to be produced without any difficulty in controllability.

具体例5 1NLんrl 7y々る耐熱性の逆導電型被膜を基板温度200〜30
0°Cにて作ることができた。
Specific example 5 1NLnrl 7yr heat resistant reverse conductivity type coating at substrate temperature 200-30
It was possible to make it at 0°C.

P1工14f輔4不純物領域とはきわめて浅い(1oo
−2oo)Qのオーム接か接合を作ることかで@た。
The P1 14f 4 impurity region is extremely shallow (1oo
-2oo) Is it possible to make an ohmic contact or a junction of Q?

具体例6 第2図(B) において鉛CびSiH忙を水素をキャる
ことかできた。特性は具体例5と同様であった。
Concrete Example 6 In Figure 2 (B), it was possible to capture hydrogen from lead C and SiH. The characteristics were similar to those of Example 5.

具体例フ 第2図(B) において、wIF、と日1鳳KP馬をP
均昨1町=0.5% K で導入し、WF、/SiH,
=1:’1〜1:3 Kで導入した0するとリン′が添
加されB i XW7を0.1−0.5μ得ることがで
きた。さらにとのよpとPH,とによる半導体層を積層
して0.1−0.3μ形成させた。
In a specific example, Fig. 2 (B), wIF, day 1, and KP horse are P.
Introduced at 1 town = 0.5% K, WF, /SiH,
=1:'1 to 1:3 When 0 was introduced at K, phosphorus' was added and B i XW7 of 0.1-0.5μ could be obtained. Further, semiconductor layers of Tonoyo p and PH were laminated to form 0.1-0.3 μm.

具体例8 具体例1−/7のうちさらに同一プラズマOVD装置十
NH,の反応による窒化珪素よシなる絶縁物を積層した
0これらの絶縁物はフォトエツチング工程におけるマス
クとして用いることが可能である。
Concrete Example 8 Among Concrete Examples 1-/7, an insulator such as silicon nitride was further laminated by the reaction of the same plasma OVD device.These insulators can be used as a mask in the photoetching process. .

以上の如く具体例1〜8にょシ、導体または半導体をP
エエの後POVD法によ多形成させた。
As mentioned above, in specific examples 1 to 8, conductors or semiconductors are
After the etching, polymorphism was formed using the POVD method.

かくすることによ’)、”−5p〜5μのコンタクト穴
(開穴部)の側面に対しても、自由に導体または半導体
を形成させることかで@た。
In this way, a conductor or a semiconductor can be freely formed on the side surface of the contact hole (opening part) of -5p to 5μ.

さらにフォトリゾグラフィーの後、オーム接触をp”4
させるため、3oドoo’aの温度にて加熱処理をして
Pエエによシできた損傷を防ぎ、さらにコンタクト抵抗
を下げるのに有効であった。
After further photolithography, the ohmic contact was made to p”4.
In order to achieve this, heat treatment was performed at a temperature of 3°C to prevent damage caused by PAE, and was effective in lowering the contact resistance.

第3図は本発明の他のたて断面図を示す。FIG. 3 shows another vertical sectional view of the present invention.

第2図と同じく具体例1〜8が有効である。さらに図面
においては、半導体(1)上にア峠導電型の第1の不純
物領域(38)がO,’l−0,5μの深さに設けられ
ておシ、さらにこれらの上面に絶縁物(2)が設けられ
、その絶縁物に開穴部(9) (10)(39)が設け
られてい2ノ る。さらKPエエにより設けられた第2の不純物領域(
6)、(′1)、Ql)が第1の不純物領域と同一導電
型にて200−2000大の深さにて設けられている。
Specific examples 1 to 8 are effective as in FIG. 2. Further, in the drawing, a first impurity region (38) of A-toge conductivity type is provided on the semiconductor (1) at a depth of O,'l-0,5μ, and an insulating layer is further formed on the upper surface of the impurity region (38). (2) is provided, and the insulator is provided with two openings (9), (10), and (39). Furthermore, the second impurity region (
6), ('1), Ql) are of the same conductivity type as the first impurity region and are provided at a depth of 200 to 2000 degrees.

またとのPエエの不純物領域に接して、コンタクト部に
は半開穴であ勺、第1の不純物領域0→よシ小さい第2
の不純物領域Qυが穴と同一形状にて設けられ、またこ
の穴すべてをおおってリード(イ)が設けられた2層配
線のコンタクト部である。
In addition, in contact with the impurity region of the PET, there is a half-open hole in the contact part.The first impurity region 0→the smaller second impurity region
This is a contact portion of a two-layer wiring in which an impurity region Qυ is provided in the same shape as the hole, and a lead (A) is provided covering all the holes.

第3図開穴部(9)は本発明に特に開示したものでおる
。即ち第1の不純物領域0→は穴(9)の一部VC露呈
しておシ、Pエエによシ設けられた第2の不純物領域(
7)とその一部θ乃においてのみ接触している。
The opening (9) in FIG. 3 is specifically disclosed in the present invention. That is, the first impurity region 0→ is partially exposed in the hole (9), and the second impurity region (
7) and a part of it is in contact only at θno.

さらに半導体または導体のリード(3)はPエエの第2
の不純物領域(7)とのみ接融し、第1の不純物領域α
樽とは離間(IQシている。即ちPエエの第1の不純物
領域(〕)がリード(3)と他の第1の不純物領域によ
シ設けられたクロスアンダ−リードとの旬t、 44 
/&を行なっていることである。
Furthermore, the semiconductor or conductor lead (3) is the second
is fused only with the impurity region (7) of the first impurity region α
It is separated from the barrel (IQ), that is, the first impurity region () of P is connected to the lead (3) and the cross-under-lead provided to the other first impurity region, 44
/&.

即ち本発明Vζ示す如く、リード(3)が開穴部の一部
をのみおおう場合においても、この穴の全面にPIIK
より不純物を注入しているため、コンタクトを成就する
のに全く支障がない。即ち同一プラズマ装置により、P
エエとPCVDを行なうため初めて可能となシ、従来よ
りイオン濃度が2−4倍にもなるイオン注入装置によシ
成就し、さらに装置を変えて真空蒸着法((よシリード
を得るのではなく多層生成が低コストのプラズマ装置に
より一度で可能になったという大きな特徴を有する。
That is, as shown in the present invention Vζ, even when the lead (3) covers only a part of the hole, PIIK is applied to the entire surface of the hole.
Since more impurities are implanted, there is no problem at all in achieving contact. That is, with the same plasma device, P
This was achieved for the first time using an ion implanter that can achieve 2 to 4 times the ion concentration compared to conventional ion implantation equipment. A major feature of this method is that it is possible to generate multiple layers at once using a low-cost plasma device.

第3図開穴部0→はPエエの不純物領域(6)と第1の
不純物領域θつとはイ頂ノ、一部で接しているoしかし
リード(5)は00ニおいて開穴を十分うめていない。
In Fig. 3, the hole 0→ is the impurity region (6) of PAE and the first impurity region θ, which are in contact with each other at the top, but the lead (5) is opened at 00N. I haven't filled it enough.

かかるコンタクトであっても信頼性の低下を訪発させる
ことは全くないという特徴を有する。
Even such a contact has the characteristic that reliability does not deteriorate at all.

第4図は本発明を絶縁ゲイト型電界効果半導体装置に応
用したものである0      ゛即ち図面において半
導体(1)Kは埋置したフィールド絶縁物Q1)が設け
られている。さらにゲイト絶縁物に)とその上面にゲイ
ト電極(ハ)が設けられている。リード(ハ)をゲイト
電極に)と同一材料によシリンを導入して形成した後、
PIIKよシヒ素を注入してソース(ハ)ドレイン四を
積層している0これに従来より知られたイオン注入法に
よっては高濃度00″〜10”crrr’)の注入を1
時間もかかつてしまっていたoしかし本発明によっては
単にAeHと水素またはへリュームとのプラズマ雰囲気
中に〜10分間浸すのみで注入することが可能であり、
安価で多量生産が可能であるという大きな特徴を有する
FIG. 4 shows an application of the present invention to an insulated gate field effect semiconductor device. That is, in the drawing, a semiconductor (1) K is provided with a buried field insulator Q1). Further, a gate insulator () and a gate electrode (c) are provided on its upper surface. After forming the lead (c) with the same material as the gate electrode by introducing cylindrical
In PIIK, arsenic is implanted and the source (c) and drain layers are stacked.Additionally, according to the conventional ion implantation method, a high concentration of 00'' to 10''crrr') is implanted.
However, according to the present invention, injection can be performed by simply immersing in a plasma atmosphere of AeH and hydrogen or helium for ~10 minutes,
Its major feature is that it is inexpensive and can be mass-produced.

ソース、ドレインは反応炉内圧力0.1切rr。The source and drain pressure inside the reactor is 0.1 min rr.

AsH,/ H,=1%、 300’O、高周波出力5
0W 10分でlocm’[擾ん4のPエエが可能であ
った。特にゲイト絶縁物(イ)が200−500^の厚
さで形成されていてもかがる高純度の不純物の注入が可
能であった。
AsH,/H,=1%, 300'O, high frequency output 5
0W It was possible to perform locm' [Pae of 4 in 10 minutes. In particular, even if the gate insulator (a) was formed to a thickness of 200 to 500 mm, it was possible to implant impurities with high purity.

図面ではP工Q(31)のコーティングを行ない、開穴
部を設け、他のPエエによりコンタクト(30)をll
:ソ、そのリードに)を本発明方法によシ形成している
0 かくして工GFETまたはその集積化されたVLSIN
4−1処φjt1’叔P号ガルl工(でる?・において
も、チャネ院]面汀ト→、5μとし、接合深さ20 ト
2000;yの浅い接合を有せしめることが可能どなっ
た。
In the drawing, the P process Q (31) is coated, a hole is made, and the contact (30) is connected using another P process.
: on its leads) are formed by the method of the present invention. Thus, the GFET or its integrated VLSIN
4-1 It is now possible to have a shallow joint with a depth of 20mm and a depth of 2000mm with a depth of 5μ. .

さらに本発明においては、半導体はシリコンだけではな
く、低温でのi、rlfiが可能外ため、ヒ化ガリュー
ム、ヒ化アルミニュームガリュームに対しても可能であ
り、単にメモリ用ICではなく、発光、受光素子に対し
ても応用可能である。
Furthermore, in the present invention, the semiconductor is not only silicon, but also gallium arsenide and aluminum gallium arsenide, since i and rlfi at low temperatures are not possible. , it can also be applied to light-receiving elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置を示すたて断面図である。 第2図は本発明の半導体装置の製造工程を示す。 第3図および第4図は本発明の半導体装置のたて断面図
を示す。 112 ヱ′°   〜え− 12■
FIG. 1 is a vertical sectional view showing a conventional semiconductor device. FIG. 2 shows the manufacturing process of the semiconductor device of the present invention. 3 and 4 show vertical sectional views of the semiconductor device of the present invention. 112 ヱ′°〜E− 12■

Claims (1)

【特許請求の範囲】[Claims] 1、半導体内に逆導電型を有して設けられた第1の不純
物領域と、該不純物領域に一部が接して設けられた前記
半導体上の絶縁物に設けられた開穴部と、該開穴部と概
略同一形状を有し前記不純物領域と同一導電型の第2の
不純物領域と、該不純物領域に少なくとも一部が接して
設けられたオーム接触をする半導体または導体のコンタ
クトと、該コンタクトよシ前記絶縁物上に延在した同一
材料のリードとが設けられることを特徴とした半導体装
置02、特許請求の範囲第1項において、オーム接触を
する導体はアルミニューム、モリブデン、タングステン
、SixMoy 、(5ixtyよシ選ばれたことを特
徴とする半導体装置。
1. A first impurity region provided in a semiconductor with an opposite conductivity type; an opening provided in an insulator on the semiconductor partially in contact with the impurity region; a second impurity region having approximately the same shape as the opening and the same conductivity type as the impurity region; a semiconductor or conductor contact that makes ohmic contact and is provided at least partially in contact with the impurity region; A semiconductor device 02 characterized in that a contact and a lead made of the same material extending on the insulator are provided, and in claim 1, the conductor making ohmic contact is made of aluminum, molybdenum, tungsten, A semiconductor device characterized by being selected from SixMoy (5ixty).
JP18805382A 1982-10-25 1982-10-25 Semiconductor device Pending JPS5976468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18805382A JPS5976468A (en) 1982-10-25 1982-10-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18805382A JPS5976468A (en) 1982-10-25 1982-10-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5976468A true JPS5976468A (en) 1984-05-01

Family

ID=16216858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18805382A Pending JPS5976468A (en) 1982-10-25 1982-10-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5976468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994780A (en) * 1997-12-16 1999-11-30 Advanced Micro Devices, Inc. Semiconductor device with multiple contact sizes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131428A (en) * 1975-05-12 1976-11-15 Fujitsu Ltd Method of growing aluminum in gassphase
JPS5252368A (en) * 1975-10-24 1977-04-27 Mitsubishi Electric Corp Semiconductor device
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131428A (en) * 1975-05-12 1976-11-15 Fujitsu Ltd Method of growing aluminum in gassphase
JPS5252368A (en) * 1975-10-24 1977-04-27 Mitsubishi Electric Corp Semiconductor device
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994780A (en) * 1997-12-16 1999-11-30 Advanced Micro Devices, Inc. Semiconductor device with multiple contact sizes
US6211058B1 (en) 1997-12-16 2001-04-03 Advanced Micro Devices, Inc. Semiconductor device with multiple contact sizes

Similar Documents

Publication Publication Date Title
US4433468A (en) Method for making semiconductor device having improved thermal stress characteristics
US5654237A (en) Method of manufacturing semiconductor device
JPS6025894B2 (en) Method for manufacturing semiconductor devices using ion implantation
US3544399A (en) Insulated gate field-effect transistor (igfet) with semiconductor gate electrode
US3633078A (en) Stable n-channel tetrode
US4081896A (en) Method of making a substrate contact for an integrated circuit
US3810795A (en) Method for making self-aligning structure for charge-coupled and bucket brigade devices
US6977406B2 (en) Short channel insulated-gate static induction transistor and method of manufacturing the same
JPS5976468A (en) Semiconductor device
US3702790A (en) Monolithic integrated circuit device and method of manufacturing the same
KR100198652B1 (en) Method of manufacturing electrode in semiconductor device
JPH0257700B2 (en)
JPS62200770A (en) Manufacture of insulated gate field effect transistor
JPS59189677A (en) Manufacture of semiconductor device
JPS6292327A (en) Semiconductor device and manufacture thereof
JPS62190847A (en) Manufacture of semiconductor device
KR100774114B1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JPS6235539A (en) Manufacture of semiconductor device
JPH0689904A (en) Manufacture of insulated gate type field-effect semiconductor device
JPH04368125A (en) Semiconductor device and manufacture thereof
JPS61204979A (en) Manufacture of insulated gate fe device
JPH0794448A (en) Manufacture of semiconductor device
JP2576373B2 (en) Semiconductor device and manufacturing method thereof
JPS6021539A (en) Manufacture of semiconductor device
KR900000827B1 (en) Semiconductor device manufacturing method