JPS5972715A - Laminated condenser - Google Patents

Laminated condenser

Info

Publication number
JPS5972715A
JPS5972715A JP18400482A JP18400482A JPS5972715A JP S5972715 A JPS5972715 A JP S5972715A JP 18400482 A JP18400482 A JP 18400482A JP 18400482 A JP18400482 A JP 18400482A JP S5972715 A JPS5972715 A JP S5972715A
Authority
JP
Japan
Prior art keywords
electrode
internal
electrodes
view
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18400482A
Other languages
Japanese (ja)
Inventor
常包 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18400482A priority Critical patent/JPS5972715A/en
Publication of JPS5972715A publication Critical patent/JPS5972715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電体ペーストと電極ペーストを交互に印刷し
たシあるいは誘電体シートに予め電極ペースト全印刷し
たものを複数層積層したシして、その後焼成することに
よりM造される積層コンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a sheet in which dielectric paste and electrode paste are alternately printed, or a dielectric sheet with electrode paste entirely printed in advance, which is laminated in multiple layers, and then fired. The present invention relates to a multilayer capacitor manufactured by M manufacturing.

従来例の構成とその問題点 第1図ムは多数個数シの形で形成された積層コンデンサ
ーのグリーンシートの断面図である。
Conventional Structure and Problems Therein FIG. 1 is a sectional view of a green sheet of a multilayer capacitor formed in the form of a large number of sheets.

第1図ムにおいて、内部電極2はパラジウムなどの導体
ペーストが5ミクロン前後の厚みに印刷によって形成さ
れている。そして、一点鎖線の箇所  −−− で切断し個片の形にしたものが第1図Bである。
In FIG. 1, the internal electrodes 2 are formed by printing a conductive paste such as palladium to a thickness of about 5 microns. Figure 1B shows the pieces cut into individual pieces along the dot-dashed line.

切断面には第1図りに示すように、外部電極3を形成し
内部電極2との接続を行うのであるが、切断時に誘電体
層1が塑性変形してパリ状になり、内部電極2を覆い隠
してしまうことがある。そのため焼成する前にバレル加
工等で、誘電体層を研磨し、第1図Cのように内部電極
2が確実に切断面上に飛出すように電極出しの処理を行
う。その後、焼成を行い第1図りに示すように外部電極
3をつけ完成された積層コンデンサとなる。
As shown in the first diagram, the external electrode 3 is formed on the cut surface and connected to the internal electrode 2. However, during cutting, the dielectric layer 1 is plastically deformed and becomes crispy, causing the internal electrode 2 to It may be hidden. Therefore, before firing, the dielectric layer is polished by barrel machining or the like, and an electrode extraction process is performed to ensure that the internal electrode 2 protrudes onto the cut surface as shown in FIG. 1C. Thereafter, it is fired and the external electrode 3 is attached as shown in the first diagram to form a completed multilayer capacitor.

積層コンデンサにおいては、内部電極と外部電極をいか
に確実に接続するかが信頼性を左右する大きなポイント
になる。例えばチップコンデンサを例にとると、多層に
形成された内部電極の各層が全て外部電極と電気的に接
続されていて規定の容量が出ていても、接続面積が少な
く導体抵抗が高い状態では、FM発振回路等に使用した
場合、Q値の低下により発振不良等が発生する。従って
、内部電極の各層を広い面積で確実に外部電極に接続す
る必要がある。
In multilayer capacitors, how reliably the internal and external electrodes are connected is a major factor in determining reliability. For example, if we take a chip capacitor as an example, even if each layer of the internal electrodes formed in multiple layers is electrically connected to the external electrodes and a specified capacitance is produced, if the connection area is small and the conductor resistance is high, When used in FM oscillation circuits, etc., oscillation failures occur due to a decrease in the Q value. Therefore, it is necessary to reliably connect each layer of the internal electrode to the external electrode over a wide area.

3べ、−ゾ 従来、内部電極2は5ミクロン前後、誘電体層は20〜
1o○ミクロン程度の厚みに形成されている。そのため
バレル加工等によって誘電体層を研磨し、内部電極を出
そうとしても、誘電体層の方が厚いために長時間を要し
、また内部電極の厚みが5ミクロン程度と薄いため、切
断面において電極の断面を100パーセント露出させる
ことは非常に困難であった。またバレル加工により電極
出しの処理を行った後、焼成を行うが、この焼成によっ
て内部電極が収縮し誘電体層の中へもぐり込む現象が発
生し、ますます外部電極との接続を困難にすることがあ
る。また内部電極はパラジウム等の導体ペースIfシル
クスクリーン印刷等、厚膜印刷の手法で印刷するため、
ペースト粘度、スクリーンメツシュ、乳剤厚さ、スキー
ジ角度、印圧その他数多くの要因により電極の膜厚がバ
ラツキ、部分的にはカスレの発生する場合がある。
3be, -zo Conventionally, the internal electrode 2 is around 5 microns, and the dielectric layer is 20~
It is formed to a thickness of about 100 microns. Therefore, even if you try to remove the internal electrodes by polishing the dielectric layer using barrel processing, etc., it takes a long time because the dielectric layer is thicker, and since the internal electrodes are thin at about 5 microns, the cut surface It was extremely difficult to expose 100% of the cross section of the electrode. Furthermore, after the electrodes are exposed by barrel processing, they are fired, but this firing causes the internal electrodes to shrink and sink into the dielectric layer, making it even more difficult to connect them with external electrodes. There is. In addition, since the internal electrodes are printed using thick film printing methods such as palladium or other conductor paste If silk screen printing,
The electrode film thickness may vary due to paste viscosity, screen mesh, emulsion thickness, squeegee angle, printing pressure, and many other factors, and scratches may occur in some areas.

以上述べたような、不安定要因の基で内部電極と外部電
極とが接続されている訳であるが、従来の積層コンデン
サーは第2図人のように内部電極の幅が広いチップコン
デンサーが主な用途であった。
The internal and external electrodes are connected due to the instability factors mentioned above, but conventional multilayer capacitors are mainly chip capacitors with wide internal electrodes, as shown in Figure 2. It was a useful use.

電極の幅が広ければ同一の層において部分的に接続され
ていない箇所が発生しても大きな問題にはならなかった
。しかし最近のようにチップコンデンサーの小型化が進
み、また第2図Bのような小基板内に多数のコンデンサ
ーを内蔵したマルチコンデンサにおいては、内部電極の
引出し部の幅はどんどん狭くなる方向であり、1すます
外部電極との接続信頼性は低下してくる。また第2図B
のようなマルチコンデンサの場合、この基板の上にRu
O2のような850℃程度で焼成する厚膜抵抗を形成す
る事も考えられる。このように積層コンデンサに後で高
温度がかかるプロセスを考えた場合、従来の積層コンデ
ンサでは倒産充分な信頼性が確保できないという問題が
あった。
If the width of the electrode was wide, even if some parts of the same layer were not connected, it would not be a big problem. However, as chip capacitors have become smaller in recent years, and in multi-capacitors with many capacitors built into a small board as shown in Figure 2B, the width of the lead-out portion of the internal electrode is becoming narrower and narrower. , the reliability of the connection with the external electrode decreases. Also, Figure 2B
In the case of a multi-capacitor like , Ru is placed on this board.
It is also conceivable to form a thick film resistor fired at about 850° C. such as O2. When considering a process in which multilayer capacitors are subjected to high temperatures later on, there is a problem in that conventional multilayer capacitors cannot guarantee sufficient reliability.

発明の目的 本発明は以上のような従来の欠点を除去するものであり
、簡単な構成で信頼性の高い優れた積層コンデンサを提
供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks and provides an excellent multilayer capacitor with a simple structure and high reliability.

発明の構成 5 ペー〕゛ 本発明は内部電極の外部電極との接続部近傍を他の部分
より肉厚に形成し、上下外部電極との接続をよシ確実に
し、信頼性を向上させるように構成したものである。
Arrangement of the Invention Page 5 [0016] According to the present invention, the vicinity of the connection part of the internal electrode with the external electrode is formed thicker than other parts, thereby making the connection with the upper and lower external electrodes more secure and improving reliability. It is composed of

実施例の説明 第3図人は多数個取りの形で形成された本発明の積層コ
ンデンサの一実施例の断面図であり、第4図A、Bは誘
電体1の上に印刷された内部電極2の形状を示したもの
である。第3図、第4図において、第4図A、Bに示し
た内部電極2が交互に積層され、第3図人のようになっ
ている。そして第3図の一点鎖線の部分が切断すること
により個片に分離される。従来の積層コンデンサは印刷
法であれ、シート法であれ内部電極はどの部分も同一の
厚さで印刷されていた。
DESCRIPTION OF EMBODIMENTS FIG. 3 is a cross-sectional view of an embodiment of a multilayer capacitor of the present invention formed in the form of a multilayer capacitor, and FIGS. This figure shows the shape of the electrode 2. In FIGS. 3 and 4, the internal electrodes 2 shown in FIGS. 4A and 4B are alternately stacked to form a structure similar to a person in FIG. Then, it is separated into individual pieces by cutting along the dot-dash line in FIG. In conventional multilayer capacitors, internal electrodes are printed with the same thickness on all parts, whether by printing or sheeting.

本発明では、第3図、第4図に示すように外部電極3と
の接続的近傍4の内部電極2の膜厚全印刷の重ね塗りあ
るいは、製造上の工夫等によって内部電極その他の部分
より厚く印刷するようにしている。
In the present invention, as shown in FIGS. 3 and 4, the internal electrodes 2 in the connection vicinity 4 with the external electrodes 3 are coated over the entire thickness of the internal electrodes 2, or by manufacturing innovations, etc., the internal electrodes and other parts are I try to print thickly.

6ベーン゛ その後のプロセスは、従来例のところで説明したプロセ
スと同一である。
6 vanes The subsequent process is the same as that described in the conventional example.

なお、膜厚を厚くする接続部近傍4の形状及び寸法は、
内部電極全体の形状との関係を考慮しながら最適な形状
を選べばよい。また接続部近傍4を厚くする方法として
、印刷を2回以上重ねて行う場合は、内部電極全体を印
刷した1回目のペーストと異るペースト(例えば誘電体
との密着性がよい、あるいはバレル研磨で削られにくい
もの)を塗ってもよい。
Note that the shape and dimensions of the area 4 near the connection part where the film thickness is increased are as follows:
The optimum shape may be selected while considering the relationship with the overall shape of the internal electrodes. In addition, as a method of thickening the area near the connection part 4, if printing is repeated two or more times, use a paste different from the first paste used to print the entire internal electrode (for example, a paste with good adhesion to the dielectric material, or a paste with barrel polishing). You may also apply a coating (one that is not easily scratched).

発明の効果 (1)接続部近傍4の内部電極3が他の部分より厚いた
め短時間のバレル加工で容易に電極が露出し、それも従
来のように一部分がカスしたような形でなく、完全な形
で露出ζせられる。
Effects of the invention (1) Since the internal electrode 3 in the vicinity of the connection part 4 is thicker than other parts, the electrode is easily exposed by short barrel machining, and it does not have a partially chipped shape as in the conventional case. Fully exposed.

(掲 また従来の同一厚みの内部電極では、この後の焼
成工程において電極が収縮し、せっかくバレル加工で電
極出ししたものが誘電体中にもぐり込むことがあるが、
本発明によれば7  t−、:。
(Additionally, with conventional internal electrodes of the same thickness, the electrodes shrink during the subsequent firing process, and the electrodes that were taken out through barrel processing may sink into the dielectric material.
According to the invention 7 t-, :.

接続部近傍4のみ厚いため、これがクサビ作用を成し、
誘電体の中へもぐり込むことがなく外部電極との充分な
接続面積を確保できる。
Since only the part 4 near the connection part is thick, this creates a wedge effect,
A sufficient connection area with external electrodes can be secured without penetrating into the dielectric material.

(3)また異るペース)k重ね塗りした場合には更にそ
の効果を高めることができる。
(3) Different paces) The effect can be further enhanced by applying multiple coats.

(4)そして上た(1 )(2)(3)の効果により、
従来の積層コンデンサに比べ内部電極と外部電極の接続
信頼性を飛躍的に向上させることができる。
(4) And due to the effects of (1), (2), and (3) above,
Compared to conventional multilayer capacitors, the connection reliability between internal and external electrodes can be dramatically improved.

(5)また接続信頼性の向上によシ、電極引出し部の幅
を狭くすることができ、部品形状の小型化捷だマルチコ
ンデンサ等においては、集積度のアップ、引出し端子数
の増加等が容易になる。
(5) In addition, by improving connection reliability, the width of the electrode lead-out part can be narrowed, and in multi-capacitors etc. where component shapes are miniaturized, the degree of integration can be increased and the number of lead-out terminals can be increased. becomes easier.

(6)接続部の信頼性を上げるため内部電極の膜厚を上
げる方法には、内部電極全体を厚くしたシ、シート法の
場合は誘電体シートの両面に電極を印刷しておき、それ
を積層していく方法もあるが、これでは積層コンデンサ
の厚さが厚くなる上に、高価な導体ペーストを大量に使
うことになりコストアップになる。しかし、本発明では
わずかのペーストの増加で大きな効果を上げることがで
きる。
(6) To increase the thickness of the internal electrode in order to increase the reliability of the connection, the entire internal electrode is made thicker, or in the case of the sheet method, electrodes are printed on both sides of the dielectric sheet and then There is also a method of stacking layers, but this increases the thickness of the multilayer capacitor and requires the use of a large amount of expensive conductive paste, which increases costs. However, in the present invention, a large effect can be achieved with a slight increase in the amount of paste.

(カ 従来の積層コンデンサでは、高温にさらすと内部
電極と外部電極の接続部が外れるため積層コンデンサ上
に厚膜抵抗を形成するというプロセスを行うことが困難
であったが、本発明によれば850℃の焼成を繰り返し
ても何ら問題がなく積層コンデンサを基板として用いる
用途が更に広がるという利点を有する。
(F) With conventional multilayer capacitors, it was difficult to perform the process of forming a thick film resistor on the multilayer capacitor because the connection between the internal and external electrodes would come off when exposed to high temperatures. There is no problem even after repeated firing at 850° C., which has the advantage of further expanding the range of applications in which multilayer capacitors can be used as substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図人は従来の積層コンデンサを構成するグリーンシ
ートの断面図、第1図Bは第1図人の一点鎖線の箇所で
切断した個片の断面図、第1図Cは第1図Bをバレル加
工したものの断面図、第1図りは従来の完成された積層
コンデンサの断面図および右側面図、第2図人はチップ
状積層コンデンサの斜視図、第2図Bはマルチコンデン
サの斜視図、第3図人は本発明の積層コンデンサを構成
するグリーンシートの一実施例の断面図、第3図Bは第
3図人の一点鎖線の箇所で切断した個片の9ページ 断面図、第3図Cは本発明の完成された積層コンデンサ
の一実施例の断面図および右側面図、第4図人およびB
は第3図人の内部電極を示した正面図である。 1・・・・・・誘電体層、2・・・・・・内部電極、3
・・・・・・外部電極、4・・・・・・内部電極の外部
電極への接続部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 2 2 tA)          IB)
Figure 1 is a cross-sectional view of a green sheet that constitutes a conventional multilayer capacitor, Figure 1B is a cross-sectional view of an individual piece cut along the dot-dashed line in Figure 1, and Figure 1C is Figure 1B. Figure 1 is a cross-sectional view and right side view of a completed conventional multilayer capacitor, Figure 2 is a perspective view of a chip-shaped multilayer capacitor, and Figure 2B is a perspective view of a multi-capacitor. , Figure 3 is a cross-sectional view of one embodiment of the green sheet constituting the multilayer capacitor of the present invention, Figure 3B is a cross-sectional view on page 9 of an individual piece cut along the dashed-dotted line in Figure 3, Figure 3C is a sectional view and right side view of one embodiment of the completed multilayer capacitor of the present invention, Figure 4 is a cross-sectional view and a right side view
FIG. 3 is a front view showing the internal electrodes of a person. 1... Dielectric layer, 2... Internal electrode, 3
. . . External electrode, 4 . . . Connection portion of internal electrode to external electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 2 tA) IB)

Claims (1)

【特許請求の範囲】[Claims] 内部電極の外部電極との接続部近傍を上下内部電極の他
の部分よシ肉厚に形成したことを特徴とする積層コンデ
ンサ。
A multilayer capacitor characterized in that the vicinity of the connection part of the internal electrode with the external electrode is formed thicker than other parts of the upper and lower internal electrodes.
JP18400482A 1982-10-20 1982-10-20 Laminated condenser Pending JPS5972715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18400482A JPS5972715A (en) 1982-10-20 1982-10-20 Laminated condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18400482A JPS5972715A (en) 1982-10-20 1982-10-20 Laminated condenser

Publications (1)

Publication Number Publication Date
JPS5972715A true JPS5972715A (en) 1984-04-24

Family

ID=16145633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18400482A Pending JPS5972715A (en) 1982-10-20 1982-10-20 Laminated condenser

Country Status (1)

Country Link
JP (1) JPS5972715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278009A (en) * 1988-04-28 1989-11-08 Elna Co Ltd Manufacture of electric double-layer capacitor
JPH0969463A (en) * 1995-08-30 1997-03-11 Nec Corp Multilayer ceramic capacitor and manufacture thereof
JP2012253346A (en) * 2011-05-31 2012-12-20 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278009A (en) * 1988-04-28 1989-11-08 Elna Co Ltd Manufacture of electric double-layer capacitor
JPH0969463A (en) * 1995-08-30 1997-03-11 Nec Corp Multilayer ceramic capacitor and manufacture thereof
JP2012253346A (en) * 2011-05-31 2012-12-20 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS63169014A (en) Method of forming external electrode terminal of chip capacitor
JPH07211132A (en) Conductive paste, and manufacture of laminated ceramic capacitor using same
JPH07272975A (en) Composite capacitor
JP3514117B2 (en) Multilayer ceramic electronic component, method of manufacturing multilayer ceramic electronic component, and conductive paste for forming internal electrode
JP2019021907A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP2001102243A (en) Coaxial capacitor
JP2000340448A (en) Laminated ceramic capacitor
JPS5972715A (en) Laminated condenser
JP2857552B2 (en) Multilayer electronic component and method of manufacturing the same
JP3344309B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JPH08115845A (en) Monolithic ceramic capacitor
JPS59172711A (en) Method of producing ceramic laminated capacitor
JPH01152712A (en) Formation of external electrode of laminated ceramic capacitor
JPH06164150A (en) Ceramic multilayer board
JPH0982558A (en) Multilayer ceramic electronic component
JP2555638B2 (en) Method for manufacturing multilayer ceramic substrate
JP2000164451A (en) Laminated ceramic capacitor
JPS5827302A (en) Chip element including resistor
JPH06140278A (en) Laminated ceramic capacitor
JPH07169651A (en) Multilayer chip filter
JPS5858716A (en) Laminated ceramic condenser
JP3437019B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH0945830A (en) Chip electronic component
JP2000252159A (en) Multilayer ceramic capacitor
JPS59202618A (en) Method of producing laminated ceramic condenser