JPS5970749A - Austenitic stainless steel with superior stress corrosion cracking resistance - Google Patents

Austenitic stainless steel with superior stress corrosion cracking resistance

Info

Publication number
JPS5970749A
JPS5970749A JP17912482A JP17912482A JPS5970749A JP S5970749 A JPS5970749 A JP S5970749A JP 17912482 A JP17912482 A JP 17912482A JP 17912482 A JP17912482 A JP 17912482A JP S5970749 A JPS5970749 A JP S5970749A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
less
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17912482A
Other languages
Japanese (ja)
Other versions
JPH0244895B2 (en
Inventor
Haruki Watanabe
渡辺 治幾
Takayoshi Kamiyo
神余 隆義
Tsuguyasu Yoshii
吉井 紹泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17912482A priority Critical patent/JPS5970749A/en
Publication of JPS5970749A publication Critical patent/JPS5970749A/en
Publication of JPH0244895B2 publication Critical patent/JPH0244895B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stress corrosion cracking resistance of an austenitic stainless steel, by adding Cu to the steel by an amount related to the amount of P in the steel. CONSTITUTION:This austenitic stainless steel with superior stress corrosion cracking resistance has a composition consisting of, by weight, <=0.08% C, <=1.0% Si, <=2.0% Mn, <=0.045% P, <=0.03% S, 6.0-20.0% Ni, 16.0-25.0% Cr, Cu by an amount satisfying the equation and the balance essentially Fe. 0.1-1.0% Ti and/or Nb may be added to the composition.

Description

【発明の詳細な説明】 本発明は耐応力腐食割れ性のすぐれたオーステナイト系
ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an austenitic stainless steel having excellent stress corrosion cracking resistance.

5US304に代表されるオーステナイト系ステンレス
鋼は耐食性、溶接性および加工性にすぐ′Itているこ
とから広い用途に用いられているが。
Austenitic stainless steel, typified by 5US304, has excellent corrosion resistance, weldability, and workability, and is therefore used in a wide range of applications.

Cu2−イオンを含み、かつ比較的温度の高い使用環境
において応力腐食割れを発生することがある。
Stress corrosion cracking may occur in a usage environment that contains Cu2- ions and has a relatively high temperature.

ステンレス鋼の応力腐食割れの研究には主として濃厚塩
化マグネシウム溶液あるいは濃厚食塩溶液が用いらγし
てきた。これらの促進試験用溶液中における応力腐食割
れ感受性におよぼす成分元素の影響は溶液の種類により
異なる。たとえばJISGO576に規格されている4
2チ塩化マグネシウム溶液に対してはMoの添加は有害
であるが、1t4重クロム酸ナトリウムを酸化剤として
添加した20%食塩溶液に対してはMoの添加は有効で
ある。このように応力腐食割れ感受性に対する成分元素
の影響が試験溶液の種類等によって異なることを考えた
場合、実環境に近い試験条件で成分元素の影響を明らか
tこする必要がある。
Concentrated magnesium chloride solutions or concentrated salt solutions have mainly been used to study stress corrosion cracking in stainless steel. The effects of component elements on stress corrosion cracking susceptibility in these accelerated test solutions vary depending on the type of solution. For example, the 4 standard in JISGO576
Addition of Mo is harmful to magnesium dichloride solution, but addition of Mo is effective to 20% common salt solution to which 1t4 sodium dichromate is added as an oxidizing agent. Considering that the influence of component elements on stress corrosion cracking susceptibility differs depending on the type of test solution, etc., it is necessary to clearly examine the influence of component elements under test conditions close to the actual environment.

本発明者らは、溶接部に隙間を有する構造で溶接残留応
力を有するスポット溶接試片を用いて。
The present inventors used a spot welded specimen that had a structure with a gap in the welded part and had welding residual stress.

実察境のような低濃度食墳溶i(ζおける応力腐食7;
)]れは隙間腐食部から発生することを見いだし。
Low-concentration food corrosion i (stress corrosion in ζ7;
)] was found to occur from crevice corrosion.

耐応力腐食割れ性にすぐれたオーステナイト系ステンレ
ス鋼を開発すべく種々研究を重ねた。
Various studies were conducted to develop austenitic stainless steel with excellent stress corrosion cracking resistance.

本発明者等は耐応力腐食割れ性改善のために5t)S3
04系ステンレス鋼にCoを添加し、その際に、鋼中に
含まれるPとの関係を詳却1に検討し。
The present inventors have developed 5t) S3 to improve stress corrosion cracking resistance.
When adding Co to 04 series stainless steel, the relationship with P contained in the steel was investigated in detail 1.

C11訃とP量の相対量と腐食の間にある種の関係があ
ることを知見し、耐応力腐食割れ性に優れた鋼組成を見
出した。
It was discovered that there is a certain relationship between the relative amount of C11 and P content, and corrosion, and a steel composition with excellent stress corrosion cracking resistance was discovered.

本発明によれ(ま1重量%で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0チ以下、P:0.045チ以下、  S : 
0.0 ′5係以下。
According to the present invention (at 1% by weight, C: 0.08% or less, Si: 1.0% or less, Mn:
2.0 inch or less, P: 0.045 inch or less, S:
0.0 '5 or less.

Ni:6.0−20.0%、 Cr : 16.0−2
5.0%。
Ni: 6.0-20.0%, Cr: 16.0-2
5.0%.

および下記の式の条件を満足する量のCoを含有し、残
部Fe、?+よび不可避的不純物からなることを特徴と
する耐応力腐食割れ性のすぐれたオーステナイト系ステ
ンレス鋼が提供される。
and contains an amount of Co that satisfies the conditions of the following formula, with the remainder being Fe, ? The present invention provides an austenitic stainless steel with excellent stress corrosion cracking resistance and characterized by being composed of carbon dioxide and unavoidable impurities.

30[M]+0.6%≦〔cuqb〕≦3.0%上記の
鋼に、溶接部の耐応力腐食割れ性をさらに向上させるた
めにT+ * Nbの1種又は2種で01〜i、 D 
%を添加してもよい。
30 [M] + 0.6% ≦ [cuqb] ≦ 3.0% To the above steel, in order to further improve the stress corrosion cracking resistance of the welded part, one or two types of T+ * Nb 01 to i, D
% may be added.

本発明鋼の成分限定の理由を以下に説明する。The reason for limiting the composition of the steel of the present invention will be explained below.

C:Cは耐応力腐食割れ性に大きな影響を与えない。し
かしCを高くすると溶接した時にCr炭化物が析出しや
すいので上限は0.08%とした。
C: C does not significantly affect stress corrosion cracking resistance. However, if the C content is increased, Cr carbides tend to precipitate during welding, so the upper limit was set at 0.08%.

Si : SrはfJI鋼時、脱酸のために必要である
が加工性を害するので上限は1.0%とした。
Si: Sr is necessary for deoxidation in fJI steel, but since it impairs workability, the upper limit was set at 1.0%.

Mn : Mnは製鋼時の脱酸、脱硫および熱間加工性
改善のため必要であるが、耐食性を劣化させるので上限
は2.0%とした。
Mn: Mn is necessary for deoxidizing, desulfurizing, and improving hot workability during steel manufacturing, but since it deteriorates corrosion resistance, the upper limit was set to 2.0%.

S:Sは応力腐食割れ感受性には影響しないので通常許
容される0、 031以下ならよいが、腐食の発生Iこ
は有害であるので低いのが望ましい。
S: Since S does not affect stress corrosion cracking susceptibility, it may be less than the normally allowed value of 0.031, but since the occurrence of corrosion is harmful, a low value is desirable.

Cr二Crは耐食性を保つために不可欠な元素であり、
16%未満では十分な耐食性が得られない。
Cr2Cr is an essential element to maintain corrosion resistance.
If it is less than 16%, sufficient corrosion resistance cannot be obtained.

一方25チを越すと加工性が悪くなるので16.0〜2
5.0 %に限定した。
On the other hand, if it exceeds 25 inches, workability will deteriorate, so 16.0~2
It was limited to 5.0%.

Ni : Niはオーステナイト相を維持するための必
須の元素であり、耐酸性を維持するためには6.0%以
上を必要とするが、20%を越す添加は経済的に高くな
るので6.0〜200係に限定した。
Ni: Ni is an essential element for maintaining the austenite phase, and 6.0% or more is required to maintain acid resistance, but addition of more than 20% is economically expensive, so 6. Limited to 0-200 staff.

T i r Nb : T r e N bはC,Nを
固定する作用を有するために溶接部の耐粒界腐食性を向
上させ、さらには粒界型の応力腐食割れ感受性を小さく
するの;こ効果があるが、いずれも0.1%未満では効
果が少なく1才た1、0係を越すと効果が飽和して無駄
となるので0.1〜1.0係に限定した。
T i r Nb: Since T r e N b has the effect of fixing C and N, it improves the intergranular corrosion resistance of the weld zone and further reduces the susceptibility to intergranular stress corrosion cracking; Although they are effective, if they are less than 0.1%, the effect is small, and if they exceed 1% or 0%, the effect becomes saturated and useless, so we limited them to 0.1% to 1.0%.

先に述べたように9本発明者らは808304系鋼にC
uを添加すると低濃度食塩溶液において隙間腐食が広が
り、応力腐食割れ感受性が小さくなることを知見した。
As mentioned earlier, the present inventors added C to 808304 series steel.
It was found that the addition of u spreads crevice corrosion in low-concentration salt solutions and reduces stress corrosion cracking susceptibility.

すなわちC11は腐食を広げる作用をもつため、上述の
腐食を集中させるPの作用を打ち消し応力腐食割れ感受
性を小さくする。
That is, since C11 has the effect of spreading corrosion, it cancels out the effect of P that concentrates the corrosion described above and reduces the stress corrosion cracking susceptibility.

応力腐食割れの発生を防ぐために必要なCu量はP量が
高くなると高くなる。割れの発生を防ぐためのCuの下
限量は以下に詳細に述べるように実験的に導き出された
次式で規定することができる。
The amount of Cu required to prevent stress corrosion cracking increases as the amount of P increases. The lower limit amount of Cu for preventing the occurrence of cracks can be defined by the following equation, which was experimentally derived as described in detail below.

(Cub)≧30 [i )+0.696Coはこのよ
うに腐食を広げる作用をもつため多く添加してもよいが
、3.0チを越えると熱間加工性を損なうので上限は3
.0%とする。Pは溶接性をtJA、なうので」二限は
0.045 %とする。
(Cub)≧30 [i)+0.696Co has the effect of spreading corrosion in this way, so it may be added in large amounts, but if it exceeds 3.0 inches, it impairs hot workability, so the upper limit is 3.
.. Set to 0%. P represents weldability as tJA, so the second limit is 0.045%.

本発明鋼を実施例により具体的に説明する。The steel of the present invention will be specifically explained with reference to Examples.

本発明@i1(実施例鋼)および比較鋼の組成を第1表
に示す。
Table 1 shows the compositions of the present invention@i1 (example steel) and comparative steel.

これらの鋼を板厚1順の鋼板とし、溶体化処理し1幅2
9mm、長さ31朋の板の上に同一材料の幅j4mm、
長さ16朋の板を重ねてスポット溶接した試片を、80
℃の50ppmC! 濃度のNaCノ溶故に30日間浸
漬する試験を行なった。応力腐食削れ発生の有無は断面
観察により判断した。
These steels are made into steel plates with a thickness of 1 and are solution treated to have a width of 2.
A board of 9 mm and length 31 mm is made of the same material and has a width of j4 mm.
A test piece made by stacking and spot welding plates with a length of 16 mm was
50ppmC! A 30-day immersion test was conducted to determine the concentration of NaC. The presence or absence of stress corrosion chipping was determined by cross-sectional observation.

結果は第1表中に記入され、また第1図に示されている
The results are listed in Table 1 and shown in FIG.

第1必から耐応力腐食割れ性を確保するにはP量とCu
量の相関関係を前記の式の関係に保つ必要、l+1ある
ことがわかる。Pを低くすると応力腐食割れ感受性は小
さくなっていくが、適正量のCuを含まないと、P:0
.005%の′a4(鋼Na5)においても隙間腐食に
よる腐食孔の底部から割れが発生する。この場合腐食孔
の深さは0.3〜0.4朋に達する。Pが低い鋼では最
初隙間腐食の成長が大きいが9時間と共に腐食孔内に溶
出したPが腐食孔内の溶解を抑制していく。しかしなが
ら腐食孔の先端は腐食孔の他の部分より応力が大きいた
め活性に保たれる。このように腐食が局部に集中するた
めこの部分から応力腐食割れが発生するものと考えられ
る。
The first thing to ensure stress corrosion cracking resistance is the amount of P and Cu.
It can be seen that there is a need to maintain the correlation between the quantities in the relationship expressed by the above equation: l+1. As P decreases, stress corrosion cracking susceptibility decreases, but if an appropriate amount of Cu is not included, P: 0.
.. Even in 0.005% 'a4 (steel Na5), cracks occur from the bottom of the corrosion hole due to crevice corrosion. In this case, the depth of the corrosion hole reaches 0.3-0.4 mm. In steel with low P content, the growth of crevice corrosion is large at first, but after 9 hours, the P dissolved into the corrosion holes suppresses dissolution inside the corrosion holes. However, the tip of the corrosion hole remains active because the stress is greater than in other parts of the corrosion hole. It is thought that stress corrosion cracking occurs in these areas because the corrosion is concentrated in these areas.

本発明鋼は耐応力腐食割れ性にすぐれているため、現在
5tJ8304を用いて応力腐食割れが発生している。
Since the steel of the present invention has excellent stress corrosion cracking resistance, stress corrosion cracking is currently occurring using 5tJ8304.

湛水用機器(例えば電気温水器、密水ボイラー)や給湯
配管用等の材料として好適であるとともに、Cuを成分
組成としているので硫酸や塩酸等の非酸化性酸の環境下
においてもすぐれた耐食性が期待される。
It is suitable as a material for water storage equipment (e.g. electric water heaters, tight water boilers) and hot water supply piping, and since it contains Cu, it is excellent even in environments with non-oxidizing acids such as sulfuric acid and hydrochloric acid. Corrosion resistance is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼および比較鋼のスポット溶接試片を8
0℃の50 ppm Cノー溶α中に30日間浸漬した
時の応力腐食割れの有無におよぼすPとCuの影響を示
した図である。 特許出願人 日新製鋼株式会社
Figure 1 shows spot welded specimens of the invention steel and comparative steel.
FIG. 3 is a diagram showing the influence of P and Cu on the presence or absence of stress corrosion cracking when immersed in 50 ppm C-free α at 0° C. for 30 days. Patent applicant Nisshin Steel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、創0で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0チ以下、P:0.045%以下、S:0.03
係以下、  Ni : 6.0〜20.0%、  Cr
 : 16.0〜25.0係、および下記の式の条件を
満足する硫のC11を含有し、残部Feおよび不可避的
不純物からなることを特徴とする耐応力腐食割れ性のす
ぐれたオーステナイト系ステンレス鋼。 30[:P%〕+ 0.6%≦(Cu%〕≦3.0%2
、重帯幅で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0係以下、P:0.045%以下、8:0.03
%以]”、  Ni : 6.0〜20.0%、  C
r : 16.0=25.0係、  Ti 、 Nhの
1種又は2種で0.1〜1.0%および下記の式の条件
を満足する量のC+1を含有し、残部Feおよび不可避
的不純物よりなる耐応力腐食割れ性のすぐれたオーステ
ナイト系ステンレス鋼。 30[P%)+0.6%≦(−Cu%’J≦6.0%
[Claims] 1. At wound 0, C: 0.08% or less, Si: 1.0% or less, Mn:
2.0chi or less, P: 0.045% or less, S: 0.03
Below, Ni: 6.0-20.0%, Cr
: An austenitic stainless steel with excellent stress corrosion cracking resistance characterized by containing C11 of sulfur having a ratio of 16.0 to 25.0 and satisfying the conditions of the following formula, with the remainder consisting of Fe and inevitable impurities. steel. 30[:P%]+0.6%≦(Cu%]≦3.0%2
, C: 0.08% or less, Si: 1.0% or less, Mn:
2.0 ratio or less, P: 0.045% or less, 8: 0.03
% or less]”, Ni: 6.0 to 20.0%, C
r: 16.0 = 25.0 ratio, contains 0.1 to 1.0% of one or two of Ti and Nh and an amount of C+1 that satisfies the conditions of the following formula, the balance being Fe and unavoidable Austenitic stainless steel with excellent stress corrosion cracking resistance due to impurities. 30[P%)+0.6%≦(-Cu%'J≦6.0%
JP17912482A 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance Granted JPS5970749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17912482A JPS5970749A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17912482A JPS5970749A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS5970749A true JPS5970749A (en) 1984-04-21
JPH0244895B2 JPH0244895B2 (en) 1990-10-05

Family

ID=16060409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17912482A Granted JPS5970749A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS5970749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785427B2 (en) * 2006-04-21 2010-08-31 Shell Oil Company High strength alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112417A (en) * 1975-03-29 1976-10-04 Sumitomo Metal Ind Ltd Corrosion resistant extra low carbon stainless steel
JPS5741357A (en) * 1980-08-26 1982-03-08 Nisshin Steel Co Ltd Austenite stainless steel with superior stress corrosion cracking resistance
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS57158359A (en) * 1981-03-24 1982-09-30 Nippon Stainless Steel Co Ltd Corrosion resistant austenite stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112417A (en) * 1975-03-29 1976-10-04 Sumitomo Metal Ind Ltd Corrosion resistant extra low carbon stainless steel
JPS5741357A (en) * 1980-08-26 1982-03-08 Nisshin Steel Co Ltd Austenite stainless steel with superior stress corrosion cracking resistance
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS57158359A (en) * 1981-03-24 1982-09-30 Nippon Stainless Steel Co Ltd Corrosion resistant austenite stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785427B2 (en) * 2006-04-21 2010-08-31 Shell Oil Company High strength alloys

Also Published As

Publication number Publication date
JPH0244895B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
KR101573511B1 (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
KR20000011411A (en) Corrosion-resistant low-nickel austenitic stainless steel
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JPH04214843A (en) Austenite stainless steel
JPH06279951A (en) Ferritic stainless steel for water heater
SU1438600A3 (en) Welding material from two-phase ferrite-austenitic stainless steel
EP0135321A1 (en) Austenitic stainless steel with improved resistance to corrosion by nitric acid
JPS5970749A (en) Austenitic stainless steel with superior stress corrosion cracking resistance
SE441455B (en) STALL OF AUSTENITIC TYPE
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JPS6366379B2 (en)
JPH01159351A (en) Austenitic stainless steel excellent in corrosion resistance in warm water
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JPS59215469A (en) Austenitic stainless steel with superior stress corrosion cracking resistance
JPS62134196A (en) Welding material for austenitic stainless steel
JPS592740B2 (en) Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use
JPH021902B2 (en)
JPS619557A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking and pitting corrosion
JPH034619B2 (en)
JP3679982B2 (en) Boron-containing stainless steel
JPH02213451A (en) Inexpensive austenitic stainless steel excellent in corrosion resistance
JPS61124551A (en) Steel superior in sour resistance
JPH031372B2 (en)
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance
KR100325708B1 (en) Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER