JPS6366379B2 - - Google Patents

Info

Publication number
JPS6366379B2
JPS6366379B2 JP57179125A JP17912582A JPS6366379B2 JP S6366379 B2 JPS6366379 B2 JP S6366379B2 JP 57179125 A JP57179125 A JP 57179125A JP 17912582 A JP17912582 A JP 17912582A JP S6366379 B2 JPS6366379 B2 JP S6366379B2
Authority
JP
Japan
Prior art keywords
less
steel
corrosion
resistance
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57179125A
Other languages
Japanese (ja)
Other versions
JPS5970750A (en
Inventor
Haruki Watanabe
Takayoshi Kamyo
Tsuguyasu Yoshii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17912582A priority Critical patent/JPS5970750A/en
Publication of JPS5970750A publication Critical patent/JPS5970750A/en
Publication of JPS6366379B2 publication Critical patent/JPS6366379B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐応力腐食割れ性と耐隙間腐食性のす
ぐれたオーステナイト系ステンレス鋼に関するも
のである。 SUS304に代表されるオーステナイト系ステン
レス鋼は耐食性、溶接性、および加工性にすぐれ
ていることから広い用途に用いられているが、
Cl-イオンを含み、かつ比較的温度の高い使用環
境において応力腐食割れを発生することがある。 ステンレス鋼の応力腐食割れの研究には主とし
て濃厚塩化マグネシウム溶液あるいは濃厚食塩溶
液が用いられてきた。これらの促進試験用溶液中
における応力腐食割れ感受性におよぼす成分元素
の影響は溶液の種類により異なる。たとえばJIS
G0576に規格されている42%塩化マグネシウム溶
液に対してはMoの添加は有害であるが、1%重
クロム酸ナトリウムを酸化剤として添加した20%
食塩溶液ではMoの添加は有効である。このよう
に応力腐食割れ感受性に対する成分元素の影響が
試験溶液の種類によつて異なることを考えた場
合、実環境に近い試験条件で成分元素の影響を明
らかにする必要がある。 本発明者らは溶接部に隙間を有する構造で溶接
残留応力を有するスポツト溶接試片を用いて実環
境のような低濃度食塩溶液における応力腐食割れ
は隙間腐食部から発生することを見いだし、耐応
力腐食割れ性と耐隙間腐食性のすぐれたオーステ
ナイト系ステンレス鋼を開発すべく種々研究を重
ねた。 本発明者等は耐応力腐食割れ性改善のために
SUS304系ステンレス鋼にCuを添加し、その際に
鋼中に含まれるPとの関係を詳細に検討し、Cu
量とP量との相対量と腐食の間にある種の関係が
あり、応力腐食割れが隙間腐食部から発生するこ
とを知見し、応力腐食割れ感受性を高めないで、
耐隙間腐食性を高めた点に最も大きな特徴を有す
る鋼組成を見出した。本発明によれば、 1 重量%で、 C:0.08%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.045%以下、S:0.03%以下、
Ni:6.0〜20.0%、Cr:16.0〜25.0%、N:0.03
〜0.30%および下記の式の条件を満足する量の
Cuを含有し、残部Feおよび不可避的不純物か
らなることを特徴とする耐応力腐食割れ性と耐
隙間腐食性のすぐれたオーステナイト系ステン
レス鋼が提供される。 30P(%)+0.6≦Cu(%)≦3.0 さらに本発明によれば 2 重量%で、 C:0.08%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.045%以下、S:0.03%以下、
Ni:6.0〜20.0%、Cr:16.0〜25.0%、N:0.03
〜0.30%、Mo:0.20〜1.0%および上記の式の
条件を満足する量のCuを含有し、残部Feおよ
び不可避的不純物よりなることを特徴とする耐
応力腐食割れ性と耐隙間腐食性のすぐれたオー
ステナイト系ステンレス鋼が提供される。 本発明鋼の成分限定の理由を以下に説明する。 C:Cは耐応力腐食割れ性に大きな影響を与え
ない。しかしCを高くすると溶接した時にCr炭
化物が折出しやすいので上限は0.08%とした。 Si:Siは製鋼時、脱酸のために必要であるが加
工性を害するので、上限は1.0%とした。 Mn:Mnは製鋼時の脱酸、脱硫および熱間加
工性改善のため必要であるが、耐食性を劣化させ
るので上限は2.0%とした。 S:Sは応力腐食割れ感受性には影響しないの
で通常許容される0.03%以下でよいが、腐食の発
生には有害であるので低いのが望ましい。 Cr:Crは耐食性を保つために不可欠な元素で
あり、16%未満では十分な耐食性が得られない。
一方25%を越すと加工性が悪くなるので16.0〜
25.0%に限定した。 Ni:Niはオーステナイト相を維持するための
必須の元素であり、耐酸性を維持するためには
6.0%以上を必要とするが、20%を越す添加は経
済的に高くなるので6.0〜20.0%に限定した。 N:Nは耐隙間腐食性の向上に有効な元素であ
り、0.03%未満では効果が得られず、また0.30%
を越すと製造時健全な鋼塊が得られないので0.03
〜0.30%に限定した。 Mo:MoはCuが添加されていない場合は応力
腐割れ感受性を大きくする。Cuが添加されてい
る場合は応力腐食割れ感受性を高めることなく、
耐隙間腐食性を改善する。0.2%未満の添加では
効果が得られず、また1.0%を越す添加は経済的
に高くなるので0.2〜1.0%に限定した。 先に述べたように、本発明者らはMoを含む
SUS304系鋼にCuを添加すると低濃度食塩溶液に
おいて隙間腐食が広がり応力腐食割れ感受性が小
さくなることを知見した。すなわちCuは腐食を
広げる作用をもつため、上述の腐食を集中させる
Pの作用を打ち消し応力腐食割れ感受性を小さく
する。応力腐食割れの発生を防ぐために必要な
Cu量はP量が高くなると高くなる。割れの発生
を防ぐためのCuの下限量は以下に詳細に述べる
ように実験的に導き出された次式で規定すること
ができる。 〔Cu%〕≧30〔P%〕+0.6% Cuはこのような腐食を広げる作用をもつため
多く添加してもよいが3.0%を越えると熱間加工
性を損なうので上限は3.0%とする。Pは溶接性
を損なうので上限は0.045%とする。 次に本発明鋼を実施例によつて具体的に説明す
る。 本発明鋼(実施例鋼)および比較鋼の組成を第
1表に示す。
The present invention relates to an austenitic stainless steel having excellent stress corrosion cracking resistance and crevice corrosion resistance. Austenitic stainless steel, represented by SUS304, is used in a wide range of applications due to its excellent corrosion resistance, weldability, and workability.
Stress corrosion cracking may occur in environments that contain Cl - ions and are used at relatively high temperatures. Concentrated magnesium chloride solutions or concentrated salt solutions have mainly been used to study stress corrosion cracking in stainless steel. The effects of component elements on stress corrosion cracking susceptibility in these accelerated test solutions vary depending on the type of solution. For example, JIS
Addition of Mo is harmful to the 42% magnesium chloride solution specified in G0576, but 20% with 1% sodium dichromate added as an oxidizing agent
Addition of Mo is effective in saline solutions. Considering that the influence of component elements on stress corrosion cracking susceptibility differs depending on the type of test solution, it is necessary to clarify the influence of component elements under test conditions close to the actual environment. The present inventors used spot welded specimens with a structure with gaps in the weld zone and weld residual stress, and found that stress corrosion cracking in low-concentration salt solutions, such as in a real environment, occurs from the gap corrosion zone. Various studies were conducted to develop an austenitic stainless steel with excellent stress corrosion cracking resistance and crevice corrosion resistance. In order to improve stress corrosion cracking resistance, the inventors
When Cu was added to SUS304 stainless steel, the relationship with P contained in the steel was examined in detail, and Cu
It was discovered that there is a certain relationship between the relative amount of P and corrosion, and that stress corrosion cracking occurs from crevice corrosion areas.
We have discovered a steel composition with the most significant feature of improved crevice corrosion resistance. According to the present invention, at 1% by weight, C: 0.08% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.045% or less, S: 0.03% or less,
Ni: 6.0-20.0%, Cr: 16.0-25.0%, N: 0.03
~0.30% and the amount that satisfies the conditions of the formula below.
Provided is an austenitic stainless steel with excellent stress corrosion cracking resistance and crevice corrosion resistance, which is characterized by containing Cu, with the balance consisting of Fe and unavoidable impurities. 30P (%) + 0.6≦Cu (%)≦3.0 Furthermore, according to the present invention, at 2% by weight, C: 0.08% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.045% or less, S: 0.03% or less,
Ni: 6.0-20.0%, Cr: 16.0-25.0%, N: 0.03
~0.30%, Mo: 0.20~1.0%, and an amount of Cu that satisfies the conditions of the above formula, with the balance consisting of Fe and unavoidable impurities.It has stress corrosion cracking resistance and crevice corrosion resistance. Superior austenitic stainless steel is provided. The reason for limiting the composition of the steel of the present invention will be explained below. C: C does not significantly affect stress corrosion cracking resistance. However, if the C content is increased, Cr carbides are likely to precipitate during welding, so the upper limit was set at 0.08%. Si: Si is necessary for deoxidation during steel manufacturing, but since it impairs workability, the upper limit was set at 1.0%. Mn: Mn is necessary for deoxidizing, desulfurizing, and improving hot workability during steel manufacturing, but since it deteriorates corrosion resistance, the upper limit was set at 2.0%. S: S does not affect stress corrosion cracking susceptibility, so it can be kept at the normally allowed 0.03% or less, but it is desirable to be low, as it is harmful to the occurrence of corrosion. Cr: Cr is an essential element for maintaining corrosion resistance, and if it is less than 16%, sufficient corrosion resistance cannot be obtained.
On the other hand, if it exceeds 25%, the workability will deteriorate, so 16.0~
Limited to 25.0%. Ni: Ni is an essential element to maintain the austenite phase and is necessary to maintain acid resistance.
Although 6.0% or more is required, adding more than 20% would be economically expensive, so it was limited to 6.0 to 20.0%. N: N is an effective element for improving crevice corrosion resistance, and if it is less than 0.03%, no effect will be obtained, and if it is less than 0.30%
If it exceeds 0.03, it will not be possible to obtain a sound steel ingot during manufacturing.
Limited to ~0.30%. Mo: Mo increases stress corrosion cracking susceptibility when Cu is not added. When Cu is added, it does not increase stress corrosion cracking susceptibility.
Improves crevice corrosion resistance. Addition of less than 0.2% will not produce any effect, and addition of more than 1.0% will be economically expensive, so it was limited to 0.2 to 1.0%. As mentioned earlier, the inventors believe that Mo-containing
It was found that when Cu was added to SUS304 steel, crevice corrosion spread in low-concentration salt solutions and stress corrosion cracking susceptibility decreased. In other words, since Cu has the effect of spreading corrosion, it cancels out the effect of P that concentrates the corrosion mentioned above and reduces the stress corrosion cracking susceptibility. necessary to prevent stress corrosion cracking.
The amount of Cu increases as the amount of P increases. The lower limit amount of Cu to prevent the occurrence of cracks can be determined by the following equation, which was experimentally derived as detailed below. [Cu%] ≧ 30 [P%] + 0.6% Cu has the effect of spreading corrosion, so it may be added in large amounts, but if it exceeds 3.0%, hot workability will be impaired, so the upper limit is 3.0%. do. Since P impairs weldability, the upper limit is set at 0.045%. Next, the steel of the present invention will be specifically explained using examples. The compositions of the invention steel (example steel) and comparative steel are shown in Table 1.

【表】【table】

【表】 * 市販鋼
これらの鋼を板厚1mmの鋼板とし、溶体化処理
し、幅29mm、長さ31mmの板の上に同一材料の幅14
mm、長さ16mmの板を重ねてスポツト溶接した試片
を、80℃の50ppmCl-1濃度のNaCl溶液に30日間
浸漬する試験を行なつて、応力腐食割れの有無は
断面観察により判断した。隙間腐食は、同様の試
片を80℃の3.5%NaCl溶液に10日間浸漬して、試
験前後の重量変化を測定することにより評価し
た。結果は第1表中、および第1図に示されてい
る。 本発明はCu量、P量を限定することにより耐
応力腐食割れ性を確保し、NないしNとMoを添
加することにより耐隙間腐食性を向上させたもの
である。第1表より明らかな如く、市販鋼および
比較鋼では50ppmCl-溶液による浸漬試験で割れ
が発生するか、又は3.5%NaCl溶液による浸漬試
験における隙間腐食減量は5mg以上である。これ
に対し本発明鋼では応力腐食割れの発生はなく、
また隙間腐食減量も小さい。 第1図から耐応力腐食割れ性を確保するには、
P量とCu量の相間関係を前記の式の関係に保つ
必要があることがわかる。 Pを低くすると応力腐食割れ感受性は小さくな
つていくが、適正量のCuを含まないとP:0.002
%の鋼(鋼No.4)においても隙間腐食による腐食
孔の底部から割れが発生する。この場合腐食孔の
深さは0.3〜0.4mmに達する。Pが低い鋼では最初
隙間腐食の成長が大きいが、時間と共に腐食孔内
に溶出したPが腐食孔内の溶解を抑制していく。
しかしながら腐食孔の先端は腐食孔の他の部分よ
り応力が大きいため活性に保たれる。このように
腐食が局部に集中するためこの部分から応力腐食
割れが発生するものと考えられる。 本発明鋼は耐応力腐食割れ性と耐隙間腐食性に
すぐれているため現在オーステナイト系ステンレ
ス鋼を用いて応力腐食割れならびに隙間腐食が発
生している温水用機器(例えば電気温水器、温水
ボイラー)や給湯用配管等の材料として好適であ
るとともに、Cuを成分組成としているので、硫
酸や塩酸等の非酸化性酸の環境下においてもすぐ
れた耐食性が期待される。
[Table] *Commercially available steel These steels are made into steel plates with a thickness of 1 mm, solution treated, and a width of 14 mm of the same material is placed on a plate with a width of 29 mm and a length of 31 mm.
A test was conducted in which a specimen made by stacking and spot-welding plates with a length of 16 mm and 16 mm was immersed in a NaCl solution with a concentration of 50 ppmCl -1 at 80°C for 30 days, and the presence or absence of stress corrosion cracking was determined by cross-sectional observation. Crevice corrosion was evaluated by immersing a similar specimen in a 3.5% NaCl solution at 80°C for 10 days and measuring the weight change before and after the test. The results are shown in Table 1 and in FIG. The present invention ensures stress corrosion cracking resistance by limiting the amounts of Cu and P, and improves crevice corrosion resistance by adding N or N and Mo. As is clear from Table 1, in the commercially available steel and comparative steel, cracks occur in the immersion test with a 50 ppm Cl - solution, or the crevice corrosion loss in the immersion test with a 3.5% NaCl solution is 5 mg or more. On the other hand, with the steel of the present invention, stress corrosion cracking does not occur.
Also, the loss of crevice corrosion is small. From Figure 1, to ensure stress corrosion cracking resistance,
It can be seen that it is necessary to maintain the correlation between the amount of P and the amount of Cu as expressed by the above equation. As P is lowered, stress corrosion cracking susceptibility decreases, but if an appropriate amount of Cu is not included, P: 0.002
% steel (Steel No. 4) also cracks occur from the bottom of the corrosion hole due to crevice corrosion. In this case, the depth of the corrosion hole reaches 0.3-0.4 mm. In steel with low P content, the growth of crevice corrosion is large at first, but as time passes, P dissolved into the corrosion pores suppresses dissolution within the corrosion pores.
However, the tip of the corrosion hole remains active because the stress is greater than in other parts of the corrosion hole. It is thought that stress corrosion cracking occurs in these areas because the corrosion is concentrated in these areas. The steel of the present invention has excellent stress corrosion cracking resistance and crevice corrosion resistance, so it is used in hot water equipment (e.g. electric water heaters, hot water boilers) where stress corrosion cracking and crevice corrosion currently occur using austenitic stainless steel. It is suitable as a material for hot water supply pipes, etc., and because it contains Cu, it is expected to have excellent corrosion resistance even in environments with non-oxidizing acids such as sulfuric acid and hydrochloric acid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼および比較鋼のスポツト溶接
試片を80℃、50ppmCl-溶液に30日間浸漬後の耐
応力腐食割れ性におよぼすPとCuの影響を示す
図である。
FIG. 1 is a diagram showing the influence of P and Cu on the stress corrosion cracking resistance of spot welded specimens of the steel of the present invention and comparative steel after being immersed in a 50 ppm Cl - solution at 80° C. for 30 days.

Claims (1)

【特許請求の範囲】 1 重量%で C:0.08%以下、Si:1.0%以下、Mn:2.0%以
下、P:0.045%以下、S:0.03%以下、Ni:6.0
〜20.0%、Cr:16.0〜25.0%、N:0.03〜0.30%お
よび下記の条件を満足する量のCuを含有し、残
部Feおよび不可避的不純物からなることを特徴
とする耐応力腐食割れ性と耐〓間腐食性のすぐれ
たオーステナイト系ステンレス鋼。 30P(%)+0.6≦Cu(%)≦3.0 2 重量%で C:0.08%以下、Si:1.0%以下、Mn:2.0%以
下、P:0.045%以下、S:0.03%以下、Ni:6.0
〜20.0%、Cr:16.0〜25.0%、N:0.03〜0.30%、
Mo:0.2〜1.0%および下記の条件を満足する量
のCuを含有し、残部Feおよび不可避的不純物か
らなることを特徴とする耐応力腐食割れ性と耐〓
間腐食性のすぐれたオーステナイト系ステンレス
鋼。 30P(%)+0.6≦Cu(%)≦3.0
[Claims] 1% by weight C: 0.08% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6.0
~20.0%, Cr: 16.0~25.0%, N: 0.03~0.30%, and an amount of Cu that satisfies the following conditions, with the balance consisting of Fe and unavoidable impurities. Austenitic stainless steel with excellent intercorrosion resistance. 30P (%) + 0.6≦Cu (%)≦3.0 2 In weight% C: 0.08% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6.0
~20.0%, Cr: 16.0~25.0%, N: 0.03~0.30%,
Contains Mo: 0.2 to 1.0% and an amount of Cu that satisfies the following conditions, with the balance consisting of Fe and unavoidable impurities.
Austenitic stainless steel with excellent intercorrosion resistance. 30P (%) + 0.6≦Cu (%)≦3.0
JP17912582A 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance and crevice corrosion resistance Granted JPS5970750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17912582A JPS5970750A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance and crevice corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17912582A JPS5970750A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance and crevice corrosion resistance

Publications (2)

Publication Number Publication Date
JPS5970750A JPS5970750A (en) 1984-04-21
JPS6366379B2 true JPS6366379B2 (en) 1988-12-20

Family

ID=16060426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17912582A Granted JPS5970750A (en) 1982-10-14 1982-10-14 Austenitic stainless steel with superior stress corrosion cracking resistance and crevice corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5970750A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668116B2 (en) * 1987-09-02 1997-10-27 日新製鋼株式会社 Austenitic stainless steel with excellent corrosion resistance in hot water
KR101923922B1 (en) * 2016-12-23 2018-11-30 주식회사 포스코 Austenitic stainless steel product having excellent surface properties and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110215A (en) * 1976-03-13 1977-09-16 Nippon Metal Ind Deep drawing austenite stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110215A (en) * 1976-03-13 1977-09-16 Nippon Metal Ind Deep drawing austenite stainless steel

Also Published As

Publication number Publication date
JPS5970750A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
KR20130123463A (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
KR20000011411A (en) Corrosion-resistant low-nickel austenitic stainless steel
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
US3854937A (en) Pitting corrosion resistant austenite stainless steel
JPH06279951A (en) Ferritic stainless steel for water heater
JP5676896B2 (en) Ferritic stainless steel with excellent local corrosion resistance
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JP2021075758A (en) Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE
JPS6366379B2 (en)
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPH0244895B2 (en)
JP3471570B2 (en) High heat input welding steel with excellent anticorrosion properties and its steel structure
JPH0588298B2 (en)
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JPS58184094A (en) Belt-like electrode for build-up welding
JPH021902B2 (en)
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPS619557A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking and pitting corrosion
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JPS645101B2 (en)
JP2759222B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance in chloride environment
JP3679982B2 (en) Boron-containing stainless steel
JPS6187855A (en) Stainless steel having superior corrosion resistance and hot workability