JP3131597B2 - Nitrate resistant austenitic stainless steel and weld metal - Google Patents

Nitrate resistant austenitic stainless steel and weld metal

Info

Publication number
JP3131597B2
JP3131597B2 JP05324197A JP32419793A JP3131597B2 JP 3131597 B2 JP3131597 B2 JP 3131597B2 JP 05324197 A JP05324197 A JP 05324197A JP 32419793 A JP32419793 A JP 32419793A JP 3131597 B2 JP3131597 B2 JP 3131597B2
Authority
JP
Japan
Prior art keywords
nitric acid
stainless steel
corrosion
nieq
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05324197A
Other languages
Japanese (ja)
Other versions
JPH07179999A (en
Inventor
幸夫 矢野倉
保正 古谷
正之 祐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05324197A priority Critical patent/JP3131597B2/en
Publication of JPH07179999A publication Critical patent/JPH07179999A/en
Application granted granted Critical
Publication of JP3131597B2 publication Critical patent/JP3131597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、硝酸を取扱う機器、配
管等に用いる耐硝酸性オーステナイトステンレス鋼およ
びそれを接合する溶接金属に係り、特に溶接部が耐孔食
性、耐すきま腐食性に優れた材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitric acid-resistant austenitic stainless steel used for equipment and piping for handling nitric acid and a weld metal for joining the same, and particularly to a weld having excellent pitting corrosion resistance and crevice corrosion resistance. About the material.

【0002】[0002]

【従来の技術】硝酸を取扱う機器等の主要な構造材料と
してはステンレス鋼が多用され、硝酸環境下における優
れた耐食性を確保するために、そのステンレス鋼の成分
等の工夫が必要となり、検討されている。対硝酸耐食性
の観点からは、低炭素ステンレス鋼であるSUS304
LやSUS316L、あるいはそれより炭素含有量を低
くした極低炭素ステンレス鋼が優れている。また、耐硝
酸性の外に、使用環境によっては孔食やすきま腐食に対
する優れた特性も要求される。耐硝酸性のみの観点から
は、Moを含まない304系が316系より優れている
が、耐孔食性や耐すきま腐食性も要求される場合は、M
oを含む316系が適している。特に溶接時の熱影響に
より材料の鋭敏化が起こるような場合、溶接熱影響部、
溶融再凝固部および溶接金属部では硝酸中で粒界腐食が
発生し易くなる。
2. Description of the Related Art Stainless steel is widely used as a main structural material of equipment for handling nitric acid, etc. In order to ensure excellent corrosion resistance in a nitric acid environment, it is necessary to devise components of the stainless steel, etc. ing. From the viewpoint of nitric acid corrosion resistance, SUS304 which is a low carbon stainless steel is used.
L or SUS316L, or an ultra-low carbon stainless steel with a lower carbon content than that is excellent. In addition to nitric acid resistance, excellent properties against pitting and crevice corrosion are also required depending on the use environment. From the viewpoint of nitric acid resistance alone, the 304 series containing no Mo is superior to the 316 series, but if pitting corrosion resistance and crevice corrosion resistance are also required, M
A 316 system containing o is suitable. Especially when the material is sensitized by the heat effect during welding,
In the molten re-solidified portion and the weld metal portion, intergranular corrosion easily occurs in nitric acid.

【0003】ところが、SUS316Lの規格を満足
し、かつ炭素量をより低く規制した極低炭素ステンレス
鋼でも、溶接熱影響部を想定した鋭敏化熱処理を施した
場合に耐硝酸性が劣ることがあり、また溶接金属部の耐
硝酸性が劣ることがある。これは、316系ステンレス
鋼の結晶粒界に、Moを高濃度に含む金属間化合物が析
出し、これが硝酸に溶解し易いためと推定されている。
[0003] However, even ultra-low carbon stainless steel satisfying the SUS316L standard and having a lower carbon content may be inferior in nitric acid resistance when subjected to sensitization heat treatment assuming the heat affected zone of welding. Also, the nitric acid resistance of the weld metal may be poor. This is presumed to be due to the precipitation of intermetallic compounds containing Mo at a high concentration at the grain boundaries of the 316 stainless steel, which are easily dissolved in nitric acid.

【0004】一方、316系ステンレス鋼には限定され
ないが、このようなステンレス鋼溶接部の耐硝酸性を向
上させる方策は種々検討されている。代表的な方法とし
て、特開平1−268848号公報及び特開平2−99
294号公報において、溶接部が凝固する際にδ−フェ
ライト相を最初に晶出させるように、Cr当量とNi当
量の比を1.6以上に規定することが提案されている。
しかし、本発明者らの検討結果によると、316系のス
テンレス鋼の耐硝酸性を向上させるためには、溶接部が
凝固する際にδ−フェライト相を最初に晶出させること
が必ずしも必須条件ではないと考えられる。即ち、溶接
部が凝固する際オーステナイト相が最初に晶出するよう
な成分範囲でも十分耐食性が良好な領域があり、一方δ
−フェライト相を最初に晶出する領域のなかにも耐食性
が低い領域があることが分かったからである。むしろ、
上記のような硝酸に溶解し易い、Moを高濃度に含有し
た金属間化合物の析出を抑制することの方がより重要で
あると考えられる。
[0004] On the other hand, various measures have been studied for improving the nitric acid resistance of such stainless steel welds, although not limited to 316 stainless steel. Representative methods are described in JP-A-1-268848 and JP-A-2-99.
No. 294 proposes that the ratio of Cr equivalent to Ni equivalent be specified to be 1.6 or more so that the δ-ferrite phase is first crystallized when the weld is solidified.
However, according to the study results of the present inventors, in order to improve the nitric acid resistance of 316 stainless steel, it is always essential that the δ-ferrite phase is first crystallized when the weld is solidified. It is not considered. That is, there is a region where the corrosion resistance is sufficiently good even in the component range in which the austenite phase is first crystallized when the weld is solidified.
-It is because it was found that some of the regions where the ferrite phase crystallized first had low corrosion resistance. Rather,
It is considered more important to suppress the precipitation of the intermetallic compound containing Mo at a high concentration, which is easily dissolved in nitric acid as described above.

【0005】[0005]

【発明が解決しようとする課題】上記のように、Moを
含む316系ステンレス鋼で炭素含有量を極く低くした
ものでも、特に溶接時の熱の影響を受けた溶接熱影響
部、溶融再凝固部や溶接金属において、耐硝酸性や耐孔
食性の劣る場合があるという問題があった。
As described above, even if the carbon content is extremely low in 316 series stainless steel containing Mo, particularly, the welding heat affected zone affected by heat during welding, There is a problem that the solidified portion and the weld metal may have poor nitric acid resistance and pitting corrosion resistance.

【0006】本発明の目的は、硝酸環境下で用いる溶接
構造物の構成材料として好適な、耐孔食性や耐すきま腐
食性に優れた耐硝酸性オーステナイトステンレス鋼およ
び溶接金属を提供することにある。
An object of the present invention is to provide a nitrate-resistant austenitic stainless steel and a weld metal, which are excellent in pitting corrosion resistance and crevice corrosion resistance and are suitable as a constituent material of a welded structure used in a nitric acid environment. .

【0007】[0007]

【課題を解決するための手段】硝酸環境中で使用する優
れた耐食性を有する溶接構造物を得るには、溶接構造物
の母材を構成するステンレス鋼、溶接時の入熱の影響を
受けた溶接熱影響部、溶融再凝固部及び溶接金属のそれ
ぞれが、優れた耐食性を有することが不可欠である。こ
こで、ステンレス鋼をTIG溶接法で接合するとして、
溶接熱影響部は溶接アークにより加熱されて金属組織が
変化した母材部分をいい、溶融再凝固部は溶接ワイヤな
しで溶接アークにより溶融され凝固した母材部分をい
い、溶接金属部は溶接ワイヤを添加して溶接し、実質的
に溶接ワイヤの組成からなる部分をいう。
In order to obtain a welded structure having excellent corrosion resistance used in a nitric acid environment, stainless steel constituting a base material of the welded structure is affected by heat input during welding. It is essential that each of the weld heat affected zone, the molten re-solidified zone, and the weld metal has excellent corrosion resistance. Here, assuming that stainless steel is joined by the TIG welding method,
The weld heat-affected zone refers to the base metal portion that has been heated by the welding arc to change the metal structure, the molten re-solidified portion refers to the base metal portion that has been melted and solidified by the welding arc without a welding wire, and the weld metal portion refers to the welding wire. And a portion substantially consisting of the composition of the welding wire.

【0008】そこで、溶接構造物に使用するステンレス
鋼自身である母材、ステンレス鋼の溶接部、その溶接部
を構成する溶接金属それぞれの耐硝酸性を良好に保持さ
せるには、母材の成分範囲および溶接金属の成分範囲を
適切に規制することによって達成される。本発明の耐硝
酸性オーステナイトステンレス鋼はC:0.03%以
下,Cr:16〜20%,Ni:8〜16%,Mo:4
%以下,Si:1%以下,Mn:2%以下、残部Feお
よび不可避的不純物からなり、また本発明の溶接金属は
C:0.03%以下,Cr:18〜22%,Ni:8〜
15%,Mo:4%以下,Si:0.65%以下,M
n:1〜2.5%、残部Feおよび不可避的不純物から
なり、そしてC,Cr,Ni,Mo,Si,Mnの含有
量は以下に説明するように規制されている。
[0008] Therefore, in order to maintain good nitric acid resistance of the base metal which is the stainless steel itself used for the welded structure, the welded portion of the stainless steel, and the weld metal constituting the welded portion, the components of the base material are required. This is achieved by appropriately regulating the range and the composition range of the weld metal. The nitric acid-resistant austenitic stainless steel of the present invention has a C content of 0.03% or less, a Cr content of 16 to 20%, a Ni content of 8 to 16%, and a Mo content of 4%.
%, Si: 1% or less, Mn: 2% or less, balance Fe and unavoidable impurities, and the weld metal of the present invention is C: 0.03% or less, Cr: 18 to 22%, Ni: 8 to 8%.
15%, Mo: 4% or less, Si: 0.65% or less, M
n: 1 to 2.5%, the balance being Fe and inevitable impurities, and the contents of C, Cr, Ni, Mo, Si, and Mn are regulated as described below.

【0009】まず、溶接構造物を構成するMo含有ステ
ンレス鋼の耐硝酸性について検討する。図1に、成分の
種々異なるMo含有ステンレス鋼でその溶接熱影響部を
想定して鋭敏化熱処理された材料の耐食性について検討
した結果を示す。図1はCr,Ni,Mo,Siの成分
範囲と耐硝酸性との関係を、ステンレス鋼の基本元素で
あるCr及びNiの含有量合計(Cr+Ni)と耐食性や
粒界腐食影響元素であるMo及びSiの含有量合計(M
o+Si)とで整理したものである。ここで、耐硝酸性
として、65%沸騰硝酸中で48時間を1サイクルとし
て5サイクルの腐食試験(JIS G 0573)したと
きの粒界腐食速度を1年間当りの腐食速度に換算して示
してある。従来の知見からSUS316L系の腐食速度
としては、上記試験条件で得られた腐食速度として0.
5mm/y以下が良好な耐硝酸性を示すものと規定すると、
鋭敏化熱処理材の耐硝酸性を向上させるには、Cr,N
i,Mo,Siの成分範囲を重量%で次式のように規制
することにより達成されることが分かる。
First, the nitric acid resistance of the Mo-containing stainless steel constituting the welded structure will be examined. FIG. 1 shows the results of a study on the corrosion resistance of Mo-containing stainless steels of various components, which were subjected to sensitization heat treatment assuming the heat affected zone of welding. FIG. 1 shows the relationship between the component ranges of Cr, Ni, Mo, and Si and the nitric acid resistance. The total content of Cr and Ni (Cr + Ni), which are the basic elements of stainless steel, and Mo, an element that affects corrosion resistance and intergranular corrosion, are shown. And Si content (M
o + Si). Here, as the nitric acid resistance, the intergranular corrosion rate in a 5-cycle corrosion test (JIS G 0573) in which the cycle is 48 hours in 65% boiling nitric acid and converted to a corrosion rate per year is shown. is there. From the conventional knowledge, the corrosion rate of the SUS316L-based steel is set to be the corrosion rate obtained under the test conditions described above, which is equal to 0.1.
When it is specified that 5 mm / y or less shows good nitric acid resistance,
In order to improve the nitric acid resistance of the sensitized heat-treated material, Cr, N
It can be seen that this is achieved by regulating the component ranges of i, Mo, and Si in terms of% by weight as in the following equation.

【0010】 Cr+Ni≧Mo+Si+28.4 (1) なお、(1)式は次のように示すこともできる。Cr + Ni ≧ Mo + Si + 28.4 (1) Equation (1) can also be expressed as follows.

【0011】 次に、構造用ステンレス鋼の溶接部の耐硝酸性について
説明する。溶接法としてTIG溶接法を用い、溶接継手
をU開先またはV開先としてステンレス鋼部材を溶接す
る場合に、屡々、開先ルート部を溶接ワイヤの添加なし
に溶接アークで溶融して初層を形成し、次いで溶加ワイ
ヤを用いて2層目以降を形成する。このような場合、初
層部の組成はステンレス鋼自身すなわち母材の組成に大
きく依存し、そして2層目以降の部分は溶加ワイヤすな
わち溶接金属の組成に大きく依存する。初層部は実質的
に母材が溶融し、再凝固したものであり、一方、2層目
以降の部分は一部母材の稀釈があるものの、主として溶
加ワイヤを構成する溶接金属からなる。従って、溶接部
の耐食性については、母材が溶融して再凝固した部分
(溶融再凝固部)の耐食性を考慮した上での母材及び溶
接金属の両方の組成を規定する必要がある。
[0011] Next, the nitric acid resistance of the welded portion of the structural stainless steel will be described. When a TIG welding method is used as a welding method and a stainless steel member is welded with a weld joint having a U groove or a V groove, the groove root is often melted with a welding arc without adding a welding wire to form a first layer. Is formed, and then the second and subsequent layers are formed using a filler wire. In such a case, the composition of the first layer greatly depends on the composition of the stainless steel itself, that is, the base metal, and the composition of the second and subsequent layers greatly depends on the composition of the filler wire, that is, the weld metal. In the first layer, the base material is substantially melted and re-solidified, while in the second and subsequent layers, although there is some dilution of the base material, mainly the weld metal constituting the filler wire is used. . Therefore, regarding the corrosion resistance of the welded portion, it is necessary to define the composition of both the base material and the weld metal in consideration of the corrosion resistance of the portion where the base material has been melted and re-solidified (the molten re-solidified portion).

【0012】図2は、316系ステンレス鋼材を上記の
ように開先ルート部を溶加ワイヤなしにTIG溶接で溶
融凝固させた溶融再凝固部、および溶接ワイヤを添加し
てTIG溶接した溶接部の耐硝酸性を示す図である。こ
こで溶接部とは溶融再凝固部と溶接金属部からなる部分
をいう。図2に示す316系ステンレス鋼溶接部の耐硝
酸性は、オーステナイトステンレス鋼の凝固組織の形態
に影響の大きいCr当量(Creq)とNi当量(Nie
q)との比と、粒界腐食影響元素のMo、Siの含有量
合計(Mo+Si)とで整理したものである。耐硝酸性と
して65%沸騰硝酸中で、48時間を1サイクルとして
5サイクル腐食試験したときの粒界侵食速度をパラメー
タとして整理してある。ここでは、溶接部は特に粒界侵
食が起こりやすい点を考慮し、溶接部として許容される
耐食性の限界を、1年間当りの粒界侵食速度3mm/yと
設定し、これより腐食速度の小さい領域を好ましい範囲
とする。溶融再凝固部の耐硝酸性が良好な範囲はCr,
Ni,Mo,Siの成分範囲を重量%で次式を満足する
範囲であることが分かる。
FIG. 2 shows a molten re-solidified portion obtained by melting and solidifying a 316 stainless steel material by TIG welding without a filler wire at a groove root portion as described above, and a welded portion obtained by adding a welding wire and TIG welding. FIG. 3 is a view showing nitric acid resistance of the present invention. Here, the welded portion refers to a portion composed of a molten re-solidified portion and a weld metal portion. The nitric acid resistance of the 316 stainless steel weld shown in FIG. 2 has a large effect on the solidification structure of the austenitic stainless steel, which is Cr equivalent (Creq) and Ni equivalent (Nie).
q) and the total content of Mo and Si (Mo + Si) as intergranular corrosion affecting elements. As the nitric acid resistance, the grain boundary erosion rate in a 5-cycle corrosion test in 65% boiling nitric acid with 48 hours as one cycle is arranged as a parameter. Here, in consideration of the fact that the intergranular erosion is particularly likely to occur in the welded portion, the limit of the corrosion resistance allowed for the welded portion is set at a grain boundary erosion speed of 3 mm / y per year, and the corrosion speed is smaller than this. The region is a preferable range. The range of good nitric acid resistance in the molten re-solidified part is Cr,
It can be seen that the component ranges of Ni, Mo, and Si are in a range satisfying the following expression by weight%.

【0013】 Creq/Nieq>1.5又はCreq/Nieq<1.3 (2) 但し、Creq=Cr+Mo+1.5Si+0.5Nb Nieq=Ni+30C+0.5Mn Mo+Si<2.8 (3) 母材については、溶融再凝固部の耐硝酸性を考慮する
と、316系ステンレス鋼のJIS規格及び(1)式を
満足するだけでなく、更に成分範囲を上記の(2)及び
(3)式を満足するように規制する必要がある。
Creq / Nieq> 1.5 or Creq / Nieq <1.3 (2) where Creq = Cr + Mo + 1.5Si + 0.5Nb Nieq = Ni + 30C + 0.5MnMo + Si <2.8 (3) In consideration of the nitric acid resistance of the solidified portion, not only the JIS standard of 316 stainless steel and the formula (1) are satisfied, but also the ranges of the components are as described in (2) and (3).
It is necessary to regulate to satisfy the expression (3).

【0014】一方、溶接金属については、溶接施工時の
溶接割れ発生を防止する必要があり、溶接割れ発生防止
にはδーフェライト量を少なくとも2%以上含有するこ
とで対処可能である。Creq/Nieqが1.3以下では
このδーフェライト含有が成分構成上困難となるため、
溶接金属に対してはCreq/Nieq<1.3の規制はで
きない。従って、溶接金属についてはSUSY316L
等のJIS規格を満足するだけでなく、更に成分範囲を
次式のように規制することが必要である。
On the other hand, for the weld metal, it is necessary to prevent the occurrence of weld cracks during welding, and the prevention of the occurrence of weld cracks can be dealt with by including at least 2% of δ-ferrite. If Creq / Nieq is 1.3 or less, it becomes difficult to contain δ-ferrite due to the composition of the components.
Creeq / Nieq <1.3 cannot be regulated for weld metal. Therefore, for the weld metal, SUSY316L
In addition to satisfying the JIS standards such as the above, it is necessary to further regulate the component range as in the following formula.

【0015】 Creq/Nieq>1.5 (4) Mo+Si<2.8 (5)Creq / Nieq> 1.5 (4) Mo + Si <2.8 (5)

【0016】[0016]

【作用】上記の手段に述べた成分組成のステンレス鋼の
耐硝酸性が向上するのは硝酸に溶解し易いFe、Crお
よびMoを主成分とする金属間化合物が粒界に析出し難
くなるためと考えられる。
The nitric acid resistance of the stainless steel having the composition described in the above means is improved because the intermetallic compound mainly composed of Fe, Cr and Mo, which is easily dissolved in nitric acid, hardly precipitates at the grain boundary. it is conceivable that.

【0017】このような溶解し易い金属間化合物の析出
や耐硝酸性に対するステンレス鋼(母材)の主要元素の
含有量の影響は次のように考えられる。
The influence of the content of the main elements of the stainless steel (base material) on the precipitation of such easily soluble intermetallic compounds and the nitric acid resistance is considered as follows.

【0018】Cは含有量が高いと溶接熱影響部のCr炭
化物が粒界に析出し、Cr欠乏層が生じて耐食性が著し
く低下するが、0.03%以下であればこれを防止でき
る。
If the content of C is high, Cr carbide in the weld heat affected zone precipitates at the grain boundary, and a Cr deficient layer is formed, so that the corrosion resistance is remarkably reduced. However, if it is 0.03% or less, this can be prevented.

【0019】Crは耐硝酸性を維持するための基本元素
であり、このためには16%以上が必要であることは広
く知られている。一方あまり多くても均一なオーステナ
イト組織とするために高価なNiを多量に添加すること
が必要となるため、20%以下が望ましい。
Cr is a basic element for maintaining nitric acid resistance, and it is widely known that 16% or more is required for this purpose. On the other hand, even if it is too large, it is necessary to add a large amount of expensive Ni in order to obtain a uniform austenite structure.

【0020】Niはオーステナイト組織を維持するため
に必要な元素であり、また耐食性にも寄与する。Crを
16%以上含有させた上でオーステナイト組織を維持す
るには8%以上は必要である。一方、Ni含有量をあま
り高くしても効果は飽和してあまり変わらない上、非常
に高価となる。必要十分量という観点から16%以下と
する。
Ni is an element necessary for maintaining the austenite structure, and also contributes to corrosion resistance. In order to maintain the austenite structure after containing 16% or more of Cr, 8% or more is necessary. On the other hand, even if the Ni content is too high, the effect is saturated and does not change much, and it is very expensive. From the viewpoint of a necessary and sufficient amount, the content is set to 16% or less.

【0021】Moは耐孔食性を高めるために必要な元素
であるが、ハロゲンイオンを多量に含むような余程特殊
な環境以外では4%以下で十分である。
Mo is an element necessary for improving pitting corrosion resistance, but 4% or less is sufficient except in a very special environment containing a large amount of halogen ions.

【0022】Siは酸化物のような介在物が少ない正常
な材料を得るために必要な元素であるが、そのためには
少量の添加でよく、あまり高すぎても靭性の低下をもた
らす。このため1%以下で十分である。
Si is an element necessary for obtaining a normal material having few inclusions such as oxides. For that purpose, a small amount of Si may be added, and if it is too high, the toughness is reduced. For this reason, 1% or less is sufficient.

【0023】Mnはオーステナイト組織を安定化すると
ともに、脱酸、脱硫剤としての作用があり、有用な元素
であるが、含有量が多いと耐食性を低下させるため、あ
まり多く添加できず、2%を超えることは望ましくな
い。
Mn stabilizes the austenite structure and acts as a deoxidizing and desulfurizing agent, and is a useful element. However, if its content is large, it reduces the corrosion resistance. Is not desirable.

【0024】次に上記のステンレス鋼母材をTIG溶接
するために用いる溶接ワイヤの構成元素について説明す
る。溶接ワイヤの構成元素の作用、範囲の上下限を限定
した理由は、母材とほぼ同じであるが、溶接部の良好な
特性を維持するため、一部のの元素については範囲が異
なる。
Next, the constituent elements of the welding wire used for TIG welding the above stainless steel base material will be described. The reason for limiting the upper and lower limits of the action and the range of the constituent elements of the welding wire is almost the same as that of the base metal, but the range differs for some elements in order to maintain good characteristics of the welded portion.

【0025】まず、溶接部の特殊性として、溶接部の金
属組織が完全にオーステナイト組織になると、溶接時に
溶接割れが発生し易くなる。そのため、δ−フェライト
が少なくとも2%以上とする必要がある。そこでフェラ
イト生成元素であるCrを母材より高めの18〜22
%、オーステナイト生成元素であるNiを母材よりやや
低めの8〜15%とするのが望ましい。またSiについ
ては、この含有量が多いと脆化しやすく、溶接部では母
材より影響が現れ易い。そのため、母材より低めの0.
65%以下とする。Mnについては、溶接部では母材と
異なり、合金成分自体で高い脱酸、脱硫効果をもたせる
必要があり、そのため脱酸、脱硫効果を有するMnの含
有量を母材より高めの1〜2.5%とすることが望まし
い。
First, as a special feature of the welded portion, if the metal structure of the welded portion is completely austenitic, a weld crack is likely to occur during welding. Therefore, δ-ferrite must be at least 2% or more. Therefore, the ferrite forming element, Cr, is 18 to 22 higher than the base metal.
%, And Ni, which is an austenite forming element, is desirably set to 8 to 15%, which is slightly lower than that of the base material. Also, with respect to Si, when this content is large, it is easily embrittled, and the effect is more likely to appear at the welded portion than at the base metal. For this reason, the lower .0.
65% or less. Regarding Mn, unlike the base metal at the welded portion, it is necessary that the alloy component itself has a high deoxidizing and desulfurizing effect. Therefore, the content of Mn having the deoxidizing and desulfurizing effect is higher than that of the base material by 1-2. It is desirable to set it to 5%.

【0026】母材についての合金成分の影響を実験的に
調べた結果を、以上のような考え方に基づいたパラメー
タで整理したところ前述の手段に述べた成分組成が耐硝
酸性を向上させるために最適であることが見出されたの
である。
The results of an experimental study of the influence of the alloy components on the base material were arranged by parameters based on the above-described concept. The results show that the component composition described in the above-described means improves the nitric acid resistance. It was found to be optimal.

【0027】一方、溶接部についても母材と同様の金属
間化合物の析出を抑えることが必要であるが、溶接部の
場合は凝固組織で考える必要がある。オーステナイト系
ステンレス鋼の凝固組織はCr当量とNi当量の比率
(Creq/Nieq)に最も影響される。耐硝酸性の優れ
た成分範囲はこの比率が高い領域と低い領域の2つの領
域がある。即ち低い領域(Creq/Nieq<1.3)は
オーステナイト相が安定でCrやMoを安定に固溶して
金属間化合物が析出し難い領域である。一方、高い領域
(Creq/Nieq>1.5)は逆にフェライト相がかな
り共存する領域で、フェライト相が安定に共存し得る状
況であるならば、この相の中にCrやMoが吸収されて
やはり金属間化合物が析出し難いものと考えられる。C
req/Nieqが1.3〜1.5の領域が最も金属間化合物
が析出し易いのでこの領域を避ける必要がある。このよ
うな溶接部も、溶接金属のみで構成されているわけでな
く、例えばU開先やV開先等による突合せ溶接部の初層
は母材が溶融し再凝固したものである。従って、溶接部
の耐硝酸性を向上させるには溶接金属は勿論、母材の成
分範囲も上記の範囲に規制する必要がある。なお溶接金
属のCreq/Nieqを低くして溶接金属組織中のフェラ
イト量を極端に下げると溶接割れが生じ易くなるので、
Creq/Nieq>1.5の領域が望ましい。一方、たと
えCreq/Nieqを望ましい範囲に規制しても、Mo含
有量があまり高いとMoの金属間化合物の析出を抑える
ことができず、高い耐硝酸性を維持できなくなる。また
SiはMoの金属間化合物の析出を促進するらしく、こ
れも低く抑える必要がある。従って、この2つの元素の
含有量を抑えること、即ちMo+Si<2.8%とする
ことが望ましい。
On the other hand, it is necessary to suppress the precipitation of the same intermetallic compound as in the base metal also in the welded portion, but in the case of the welded portion, it is necessary to consider the solidification structure. The solidification structure of austenitic stainless steel is most affected by the ratio of Cr equivalent to Ni equivalent (Creq / Nieq). The component range having excellent nitric acid resistance has two regions, a region having a high ratio and a region having a low ratio. That is, the low region (Creq / Nieq <1.3) is a region in which the austenite phase is stable, Cr and Mo are dissolved stably, and the intermetallic compound is unlikely to precipitate. On the other hand, the high region (Creq / Nieq> 1.5) is a region where the ferrite phase considerably coexists. If the ferrite phase can coexist stably, Cr and Mo are absorbed in this phase. It is considered that the intermetallic compound is unlikely to precipitate. C
It is necessary to avoid the region where req / Nieq is 1.3 to 1.5, since the intermetallic compound is most easily precipitated. Such a welded portion is not necessarily composed only of the weld metal. For example, the first layer of the butt welded portion with a U groove, a V groove, or the like is formed by melting and re-solidifying the base material. Therefore, in order to improve the nitric acid resistance of the welded portion, it is necessary to regulate the component range of the base metal as well as the weld metal within the above range. If the amount of ferrite in the weld metal structure is extremely reduced by lowering the Creq / Nieq of the weld metal, welding cracks are likely to occur.
The region of Creq / Nieq> 1.5 is desirable. On the other hand, even if Creq / Nieq is restricted to a desirable range, if the Mo content is too high, the precipitation of the intermetallic compound of Mo cannot be suppressed, and high nitric acid resistance cannot be maintained. Further, Si seems to promote the precipitation of the intermetallic compound of Mo, and it is necessary to suppress this too. Therefore, it is desirable to suppress the content of these two elements, that is, to satisfy Mo + Si <2.8%.

【0028】[0028]

【実施例】【Example】

〔実施例1〕オーステナイトステンレス鋼SUS316
Lで、次の(1)式を満足する成分範囲にある材料を4
種類と(1)式の成分範囲を外れる材料を3種類を溶製
した。鋭敏化処理した場合、(1)式を満足する材料は
耐硝酸性が良好であるもの、一方(1)式を満足しない
材料は耐硝酸性に劣るものである。
[Example 1] Austenitic stainless steel SUS316
For L, a material having a component range satisfying the following equation (1):
Three types of materials which were out of the range of the type and the component range of the formula (1) were melted. When the sensitization treatment is performed, a material satisfying the formula (1) has good nitric acid resistance, whereas a material not satisfying the formula (1) has poor nitric acid resistance.

【0029】 Cr+Ni≧Mo+Si+28.4 (1) または 表1に(1)式を満足する材料を供試材A〜Dとして、
(1)式を満足しない材料を供試材E〜Gで表示し、そ
れぞれの化学成分を示す。
Cr + Ni ≧ Mo + Si + 28.4 (1) or In Table 1, materials satisfying the expression (1) are referred to as test materials A to D.
Materials that do not satisfy the formula (1) are indicated by test materials EG and their chemical components are shown.

【0030】[0030]

【表1】 [Table 1]

【0031】溶製した各材料は熱間圧延により10mm厚
の板材とした後、1090℃、15分の溶体化処理を施
した。これら各材料を650℃で2時間鋭敏化熱処理し
た後、耐硝酸性を調べた。
Each of the melted materials was hot-rolled into a 10 mm thick plate, and then subjected to a solution treatment at 1090 ° C. for 15 minutes. After heat-sensitizing each of these materials at 650 ° C. for 2 hours, the nitric acid resistance was examined.

【0032】耐硝酸性は、65%沸騰硝酸中で48時間
を1サイクルとして5サイクルの腐食試験(JIS G
0573)を行った結果から判定した。腐食試験前後の
試験片の重量を測定することにより腐食速度を求めた。
表1に腐食試験で求めた腐食速度を一年当りに換算した
数値で示すと共に、図3にグラフで示す。(1)式を満
足する供試材A〜Dは腐食速度が0.5mm/y以下で小さ
いが、(1)式を満足しない比較材の供試材E〜Gの腐食
速度は著しく大きい。
The nitric acid resistance was evaluated by a 5-cycle corrosion test (JIS G) in 48% boiling nitric acid with 48 hours as one cycle.
0573). The corrosion rate was determined by measuring the weight of the specimen before and after the corrosion test.
Table 1 shows the corrosion rate obtained by the corrosion test in numerical values converted per year, and FIG. 3 shows a graph. Although the test materials A to D satisfying the expression (1) have a small corrosion rate of 0.5 mm / y or less, the corrosion rates of the test materials EG of the comparative materials not satisfying the expression (1) are remarkably high.

【0033】図4は腐食試験の結果を、Cr+Ni及び
Mo+Siそれぞれをパラメータとして整理した図であ
る。化学成分が(1)式で規定された成分範囲にあるも
のは耐硝酸性が優れていることが分かる。
FIG. 4 is a diagram in which the results of the corrosion test are arranged using Cr + Ni and Mo + Si as parameters. It can be seen that those having chemical components within the component range defined by the formula (1) have excellent nitric acid resistance.

【0034】〔実施例2〕溶接金属の耐食性を調べる目
的で、SUSY316Lの溶接ワイヤ4種類を新たに溶
製し、この溶接ワイヤを用いたTIG溶接により表2に
示す溶接金属を製作した。溶接金属を得るために、試験
片に広い開先をとり、溶接金属は初層の母材溶融再度凝
固部を含まない2層以降に溶接した部分のみより採取し
た。
Example 2 For the purpose of examining the corrosion resistance of a weld metal, four types of SUS316L welding wires were newly melted, and the welding metals shown in Table 2 were produced by TIG welding using these welding wires. In order to obtain a weld metal, a wide groove was formed in the test piece, and the weld metal was collected only from the portion of the first layer of the base material melted and welded to the second and subsequent layers not including the solidified portion.

【0035】[0035]

【表2】 [Table 2]

【0036】表2中、供試材H、Iは溶接金属の耐硝酸
性が良好であるために必要とされる次の(2)、(3)
式の成分範囲を満足するものであり、供試材J、Kはこ
の成分範囲から外れるものである。
In Table 2, the test materials H and I required the following (2) and (3) required for good nitric acid resistance of the weld metal.
The component ranges of the formula are satisfied, and the test materials J and K are out of this component range.

【0037】 Creq/Nieq>1.5 (2) 但し、Creq=Cr+Mo+1.5Si+0.5Nb Nieq=Ni+30C+0.5Mn Mo+Si<2.8 (3) これら溶接金属部より試験片を採取し、65%沸騰硝酸
中で、48時間を1サイクルとして5サイクル腐食試験
した。腐食試験後、断面観察を行い、粒界侵食深さを測
定することにより粒界侵食速度を求めた。結果は、腐食
試験で求めた粒界侵食速度を1年当たりに換算して、表
2に数値で示すとともに、図5にグラフで示す。(2)及
び(3)式を満足する供試材H、Iは粒界侵食速度が1.
0mm/y以下で小さいが、(2)及び(3)式を満足しない供
試材J、Kの粒界侵食速度は著しく大きい。
Creq / Nieq> 1.5 (2) Here, Creq = Cr + Mo + 1.5Si + 0.5Nb Nieq = Ni + 30C + 0.5MnMo + Si <2.8 (3) A test piece was collected from these welded metal parts and 65% boiling nitric acid In the test, a corrosion test was carried out for 5 cycles with 48 hours as one cycle. After the corrosion test, the cross section was observed, and the grain boundary erosion rate was determined by measuring the grain boundary erosion depth. The results are shown numerically in Table 2 by converting the grain boundary erosion rate obtained in the corrosion test per year, and are shown graphically in FIG. Specimens H and I satisfying the equations (2) and (3) have a grain boundary erosion rate of 1.
Although it is small at 0 mm / y or less, the grain boundary erosion rates of the test materials J and K which do not satisfy the expressions (2) and (3) are extremely large.

【0038】上記腐食試験の結果を、Creq/Nieq及
びMo+Siをパラメータとして整理したものを図6に
示す。化学成分が規定された成分範囲にあるものは耐硝
酸性が優れていることが分かる。
FIG. 6 shows the results of the above-mentioned corrosion tests arranged using Creq / Nieq and Mo + Si as parameters. It can be seen that those having chemical components within the specified component range have excellent nitric acid resistance.

【0039】〔実施例3〕実施例1で用いた316系ス
テンレス鋼板7種類(A〜G)を用い、TIGノンフィ
ラー溶接にて母材を溶融して溶融再凝固部の試験片を製
作し、そして耐硝酸性を調べた。表3に供試材の化学成
分と腐食試験の結果を示す。なお、化学成分は表1に示
すものと同じである。
[Example 3] Using the 316 stainless steel sheets (A to G) used in Example 1, the base material was melted by TIG non-filler welding to produce a test piece for the molten and re-solidified portion. , And the nitric acid resistance was examined. Table 3 shows the chemical components of the test materials and the results of the corrosion test. The chemical components are the same as those shown in Table 1.

【0040】[0040]

【表3】 [Table 3]

【0041】このうち、供試材A、C、Eは次の成分範
囲を満足するもので、溶融再凝固部の耐硝酸性が良好と
考えられるものであり、供試材B、D、F、Gはこの成
分範囲から外れるものである。
Of these, test materials A, C, and E satisfy the following component ranges, and are considered to have good nitric acid resistance in the melt-resolidification portion. Test materials B, D, and F , G are out of this component range.

【0042】 Creq/Nieq>1.5又はCreq/Nieq<1.3 (2) 但し、Creq=Cr+Mo+1.5Si+0.5Nb Nieq=Ni+30C+0.5Mn Mo+Si<2.8 (3) これらの溶融凝固部試験片を65%沸騰硝酸中で、48
時間を1サイクルとして4サイクル腐食試験した。腐食
試験後、断面観察を行い、粒界侵食深さを測定すること
により粒界侵食速度を求めた。結果は、腐食試験で求め
た粒界侵食速度を1年当たりに換算して、表3に数値で
示すとともに、図7にグラフで示す。(2)及び(3)式を
満足する供試材A、C及びEは粒界侵食速度が1.0mm/
y以下で小さいが、(2)及び(3)式を満足しない供試材
B、D、F及びGの粒界侵食速度は著しく大きい。
Creq / Nieq> 1.5 or Creq / Nieq <1.3 (2) where Creq = Cr + Mo + 1.5Si + 0.5Nb Nieq = Ni + 30C + 0.5MnMo + Si <2.8 (3) In 65% boiling nitric acid, 48
A four-cycle corrosion test was performed with the time as one cycle. After the corrosion test, the cross section was observed, and the grain boundary erosion rate was determined by measuring the grain boundary erosion depth. The results are shown in Table 3 as numerical values in terms of the grain boundary erosion rate obtained in the corrosion test per year, and as a graph in FIG. Specimens A, C and E satisfying the equations (2) and (3) have a grain boundary erosion rate of 1.0 mm /
The grain boundary erosion rates of the test materials B, D, F and G, which are small below y but do not satisfy the equations (2) and (3), are remarkably large.

【0043】図8はこれらの結果を、Creq/Nieq及
びMo+Siをパラメータとして整理した図である。化
学成分が規定された成分範囲にあるものは耐硝酸性が優
れていることが分かる。
FIG. 8 is a diagram in which these results are arranged using Creq / Nieq and Mo + Si as parameters. It can be seen that those having chemical components within the specified component range have excellent nitric acid resistance.

【0044】〔実施例4〕実施例1で用いた316ステ
ンレス鋼板のうち供試材A及びFと、実施例2で用いた
溶接ワイヤのうち供試材H及びJとを使用して、各母材
と溶接ワイヤを組合わせた4種類の突合せ溶接試験片を
製作し、耐硝酸性を調べた。なお、供試材A(母材)及
び供試材H(溶接ワイヤ)はそれぞれ高耐硝酸性のため
の要求される化学成分組成を満足するが、供試材F(母
材)及び供試材J(溶接ワイヤ)はそれぞれ要求される
化学成分組成から外れたものである。表4に各溶接試験
片の母材と溶接ワイヤとの組合わせを示す。溶接はTI
G溶接で、開先は狭開先とした。
Example 4 Using the test materials A and F of the 316 stainless steel plate used in Example 1 and the test materials H and J of the welding wires used in Example 2, Four kinds of butt welding test pieces in which a base material and a welding wire were combined were manufactured, and the nitric acid resistance was examined. The test material A (base material) and the test material H (welding wire) each satisfy the chemical composition required for high nitric acid resistance, but the test material F (base material) and the test material Material J (welding wire) deviates from the required chemical composition. Table 4 shows combinations of the base material and the welding wire of each welding test piece. Welding is TI
The groove was narrowed by G welding.

【0045】[0045]

【表4】 [Table 4]

【0046】これらの突合せ溶接試験片より溶接部及び
母材部を含む溶接継手試験片L〜Oを採取し、65%沸
騰硝酸中で、48時間を1サイクルとして5サイクル腐
食試験した。腐食試験後、表面観察を行い、異常な腐食
の有無を調べた。表4に腐食試験後の観察結果を示す。
高耐硝酸性に要求される化学成分を満足する母材Aと溶
接ワイヤHからなる溶接継手試験片Lは異常な腐食が認
められなかったが、使用した母材と溶接ワイヤのいずれ
かが要求される化学成分組成から外れた溶接継手試験片
M,N,Oには、溶接金属あるいは溶融再凝固部(溶接
初層部)に激しい粒界腐食が観察された。
From these butt weld test pieces, welded joint test pieces L to O including a welded portion and a base metal portion were sampled, and subjected to a 5-cycle corrosion test in 65% boiling nitric acid with 48 hours as one cycle. After the corrosion test, the surface was observed to check for abnormal corrosion. Table 4 shows the observation results after the corrosion test.
No abnormal corrosion was observed in the welded joint test piece L composed of the base metal A and the welding wire H satisfying the chemical components required for high nitric acid resistance, but either the base metal or the welding wire used was required. Severe intergranular corrosion was observed in the weld metal or in the molten re-solidified portion (weld first layer portion) of the welded joint test pieces M, N, O deviating from the chemical composition composition to be performed.

【0047】[0047]

【発明の効果】本発明によれば、Moを含有するオース
テナイトステンレス鋼については、その化学組成をCr
+Ni≧Mo+Si+28.4、Creq/Nieq>1.5
又はCreq/Nieq<1.3かつ、Mo+Si<2.8に
規制し、そして溶接金属については、その組成をCreq
/Nieq>1.5かつMo+Si<2.8に規制したの
で、オーステナイトステンレス鋼の母材および溶接部の
耐硝酸性を向上させる効果がある。これにより、硝酸を
取扱う機器等の耐食信頼性が向上することが大いに期待
できる。
According to the present invention, the chemical composition of austenitic stainless steel containing Mo is changed to Cr.
+ Ni ≧ Mo + Si + 28.4, Creq / Nieq> 1.5
Or Creq / Nieq <1.3 and Mo + Si <2.8, and the composition of the weld metal is Creq.
/Nieq>1.5 and Mo + Si <2.8 are effective in improving the nitric acid resistance of the austenitic stainless steel base material and the welded portion. As a result, it can be greatly expected that the corrosion resistance of equipment handling nitric acid and the like will be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mo含有オーステナイトステンレス鋼の鋭敏化
熱処理材の耐硝酸性に及ぼす合金元素の影響を示す図で
ある。
FIG. 1 is a view showing the effect of alloying elements on the nitric acid resistance of a heat treatment material for sensitizing Mo-containing austenitic stainless steel.

【図2】Mo含有オーステナイトステンレス鋼を接合す
る溶接金属および溶融再凝固部の耐硝酸性に及ぼす合金
元素の影響を示す図である。
FIG. 2 is a diagram showing the effect of alloying elements on the nitric acid resistance of a weld metal joining a Mo-containing austenitic stainless steel and a molten re-solidified portion.

【図3】Mo含有オーステナイトステンレス鋼の鋭敏化
熱処理材の硝酸腐食試験結果を示すグラフである。
FIG. 3 is a graph showing a nitric acid corrosion test result of a heat treatment material for sensitizing Mo-containing austenitic stainless steel.

【図4】Mo含有オーステナイトステンレス鋼の鋭敏化
熱処理材の硝酸腐食試験結果をCr+Ni及びMo+S
iをパラメータとして整理した図である。
FIG. 4 shows the results of a nitric acid corrosion test of a heat treatment material for sensitizing Mo-containing austenitic stainless steel on Cr + Ni and Mo + S.
FIG. 9 is a diagram in which i is arranged as a parameter.

【図5】Mo含有オーステナイトステンレス鋼の溶接金
属の硝酸腐食試験結果を示すグラフである。
FIG. 5 is a graph showing the results of a nitric acid corrosion test of a weld metal of Mo-containing austenitic stainless steel.

【図6】Mo含有オーステナイトステンレス鋼の溶接金
属についての硝酸腐食試験結果をCreq/Nieq及
びMo+Siをパラメータとして整理した図である。
FIG. 6 is a diagram in which the results of a nitric acid corrosion test on a weld metal of Mo-containing austenitic stainless steel are arranged using Creq / Nieq and Mo + Si as parameters.

【図7】Mo含有オーステナイトステンレス鋼の溶融再
凝固部の硝酸腐食試験結果を示すグラフである。
FIG. 7 is a graph showing the results of a nitric acid corrosion test of a molten re-solidified portion of Mo-containing austenitic stainless steel.

【図8】Mo含有オーステナイトステンレス鋼の溶融再
凝固部の硝酸腐食試験結果をCreq/Nieq及びM
o+Siをパラメータとして整理した図である。
FIG. 8 shows the results of a nitric acid corrosion test of the molten re-solidified portion of Mo-containing austenitic stainless steel by Creq / Nieq and M
It is the figure arranged using o + Si as a parameter.

フロントページの続き (72)発明者 祐川 正之 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 審査官 小柳 健悟 (56)参考文献 特開 昭64−62278(JP,A) 特開 平4−143214(JP,A) 特開 平5−271752(JP,A) 特開 昭55−107762(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 B23K 35/30 340 C22C 38/44 Continuation of the front page (72) Inventor Masayuki Yukawa 3-1-1 Kochi-cho, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi factory inspector Kengo Koyanagi (56) References JP-A 64-62278 (JP, A) JP-A-4-143214 (JP, A) JP-A-5-271752 (JP, A) JP-A-55-107762 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 B23K 35/30 340 C22C 38/44

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比でC:0.03%以下,Cr:1
6〜20%,Ni:8〜16%,Mo:4%以下,S
i:1%以下,Mn:2%以下、残部Fe及び不可避的
不純物からなり、かつC,Cr,Ni,Mo,Siの含
有量を下記の(1)、(2),(3)式で規制した耐硝
酸性オーステナイトステンレス鋼。 Cr+Ni≧Mo+Si+28.4 (1) Creq/Nieq>1.5又はCreq/Nieq<1.3 (2) 但し、Creq=Cr+Mo+1.5Si+0.5Nb Nieq=Ni+30C+0.5Mn Mo+Si<2.8 (3)
1. A weight ratio of C: 0.03% or less, Cr: 1
6-20%, Ni: 8-16%, Mo: 4% or less, S
i: 1% or less, Mn: 2% or less, the balance being Fe and unavoidable impurities, and the contents of C, Cr, Ni, Mo, and Si are determined by the following formulas (1), (2), and (3). Regulated nitrate resistant austenitic stainless steel. Cr + Ni ≧ Mo + Si + 28.4 (1) Creq / Nieq> 1.5 or Creq / Nieq <1.3 (2) where Creq = Cr + Mo + 1.5Si + 0.5Nb Nieq = Ni + 30C + 0.5MnMo + Si <2.8 (3)
【請求項2】 請求項1記載の耐硝酸性オーステナイト
ステンレス鋼の溶接に使用し、重量比でC:0.03%
以下,Cr:18〜22%,Ni:8〜15%,Mo:
4%以下,Si:0.65%以下,Mn:1〜2.5
%、残部Fe及び不可避的不純物からなり、かつC,C
r,Ni,Mo,Si,Mnの含有量を下記の(4),
(5)式で規制したことを特徴とする溶接金属。 Creq/Nieq>1.5 (4) 但し、Creq=Cr+Mo+1.5Si+0.5Nb Nieq=Ni+30C+0.5Mn Mo+Si<2.8 (5)
2. A method for welding nitric acid-resistant austenitic stainless steel according to claim 1, wherein C: 0.03% by weight.
Hereinafter, Cr: 18 to 22%, Ni: 8 to 15%, Mo:
4% or less, Si: 0.65% or less, Mn: 1 to 2.5
%, The balance being Fe and unavoidable impurities, and C, C
The contents of r, Ni, Mo, Si, and Mn were determined in the following (4),
A weld metal characterized by the formula (5). Creq / Nieq> 1.5 (4) where Creq = Cr + Mo + 1.5Si + 0.5Nb Nieq = Ni + 30C + 0.5MnMo + Si <2.8 (5)
【請求項3】 請求項1記載の耐硝酸性オーステナイト
ステンレス鋼を請求項2記載の溶接金属を用いて溶接し
て構成したことを特徴とする溶接構造物。
3. A welded structure, wherein the nitrate-resistant austenitic stainless steel according to claim 1 is welded using the weld metal according to claim 2.
JP05324197A 1993-12-22 1993-12-22 Nitrate resistant austenitic stainless steel and weld metal Expired - Fee Related JP3131597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05324197A JP3131597B2 (en) 1993-12-22 1993-12-22 Nitrate resistant austenitic stainless steel and weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05324197A JP3131597B2 (en) 1993-12-22 1993-12-22 Nitrate resistant austenitic stainless steel and weld metal

Publications (2)

Publication Number Publication Date
JPH07179999A JPH07179999A (en) 1995-07-18
JP3131597B2 true JP3131597B2 (en) 2001-02-05

Family

ID=18163153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05324197A Expired - Fee Related JP3131597B2 (en) 1993-12-22 1993-12-22 Nitrate resistant austenitic stainless steel and weld metal

Country Status (1)

Country Link
JP (1) JP3131597B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074322A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenite stainless steel excellent in corrosion resistance and hot workability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074322A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenite stainless steel excellent in corrosion resistance and hot workability

Also Published As

Publication number Publication date
JPH07179999A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
EP2119802B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP5793283B2 (en) Ferritic stainless steel with few black spots
CA3019556C (en) Welding structure member
JP3457834B2 (en) Weld metal for low Cr ferritic heat resistant steel with excellent toughness
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JPH06279951A (en) Ferritic stainless steel for water heater
CA3019554C (en) Welding structure member
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JPH044079B2 (en)
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JP3009658B2 (en) Welding material for high Cr steel
JPH0775790B2 (en) Duplex stainless steel welding wire with excellent resistance to concentrated sulfuric acid corrosion
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP3716980B2 (en) Ferritic stainless steel welded structure
JP3190224B2 (en) Submerged arc welding wire for stainless clad steel
JP2800661B2 (en) Welding material for high Cr high N austenitic steel
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JPS592740B2 (en) Chemical containers with excellent corrosion resistance and high temperature resistance against embrittlement during use
JP3270541B2 (en) How to prevent local corrosion in welds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees