JPS59215469A - Austenitic stainless steel with superior stress corrosion cracking resistance - Google Patents

Austenitic stainless steel with superior stress corrosion cracking resistance

Info

Publication number
JPS59215469A
JPS59215469A JP8767383A JP8767383A JPS59215469A JP S59215469 A JPS59215469 A JP S59215469A JP 8767383 A JP8767383 A JP 8767383A JP 8767383 A JP8767383 A JP 8767383A JP S59215469 A JPS59215469 A JP S59215469A
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
stainless steel
cracking resistance
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8767383A
Other languages
Japanese (ja)
Inventor
Haruki Watanabe
渡辺 治幾
Takayoshi Kamiyo
神余 隆義
Tsuguyasu Yoshii
吉井 紹泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8767383A priority Critical patent/JPS59215469A/en
Publication of JPS59215469A publication Critical patent/JPS59215469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain an austenitic stainless steel with superior stress corrosion cracking resistance by specifying a composition consisting of C, Si, Mn, S, Ni, Cu, P and Fe and the relation between components in the composition. CONSTITUTION:This austenitic stainless steel consists of, by weight, <=0.08% C, <=1.0% Si, <=2.0% Mn, <=0.03% S, 6.0-20.0% Ni, 16.0-25.0% Cr, Cu and P by amounts satisfying equations 30P%+0.6<=Cu%<=3.0 and P%<=(Cu%+1.5)/200, and the balance Fe with inevitable impurities. The steel is provided with superior stress corrosion cracking resistance by allowing Cu and P among the components to satisfy said relation. The stress corrosion cracking resistance of the weld zone can be improved furthermore by adding 0.1-1.0% Ti and/or Nb.

Description

【発明の詳細な説明】 本発明は耐応力腐食割れ性のすぐれたオーステナイト系
ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an austenitic stainless steel having excellent stress corrosion cracking resistance.

5US304 に代表されるオーステナイト系ステンレ
ス鋼は耐食性、溶接性および加工性にすぐれていること
から広い用途に用いられているが。
Austenitic stainless steels, such as 5US304, are used in a wide range of applications because of their excellent corrosion resistance, weldability, and workability.

C7−イオンを含み、かつ比較的温度の高い使用環境に
おいて応力腐食割れを発生することがある。
Stress corrosion cracking may occur in a usage environment that contains C7- ions and has a relatively high temperature.

ステンレス鋼の応力腐食割れの研究には主として濃厚塩
化マグネシウム溶液あるいは濃厚食塩溶液が用いられて
きた。これらの促進試験用溶液中における応力腐食割れ
感受性におよぼす成分元素の影響は溶液の種類により異
なる。たとえばJISG[)576に規格されている4
2%塩化マグネシウム溶液に対してはMoの添加は有害
であるが、1係重クロム酸ナトリウムを酸化剤として添
加した20%食塩溶液に対してはMoの添加は有効であ
る。このように応力腐食割れ感受性に対する成分元素の
影響が試験溶液の種類等によって異なることを考えた場
合、実環境に近い試験条件で成分元素の影響を明らかに
する必要がある。この場合、試験方法としてはCl−濃
度一定の溶液に浸漬するだけではなく、実使用条件下で
の腐食におよぼす要因を取シ入れるのが望ましい。
Concentrated magnesium chloride solutions or concentrated salt solutions have mainly been used to study stress corrosion cracking in stainless steel. The effects of component elements on stress corrosion cracking susceptibility in these accelerated test solutions vary depending on the type of solution. For example, the 4 standard in JISG[)576
Although the addition of Mo is harmful to a 2% magnesium chloride solution, the addition of Mo is effective to a 20% common salt solution to which 1% sodium dichromate is added as an oxidizing agent. Considering that the influence of component elements on stress corrosion cracking susceptibility differs depending on the type of test solution, etc., it is necessary to clarify the influence of component elements under test conditions close to the actual environment. In this case, it is desirable that the test method not only involve immersion in a solution with a constant Cl concentration, but also include factors that affect corrosion under actual usage conditions.

本発明者らは、溶接部に隙間を有する構造で溶接残留応
力を有するスポット溶接試片を用いて。
The present inventors used a spot welded specimen that had a structure with a gap in the welded part and had welding residual stress.

実環境のような低濃度食塩溶液における応力腐食割れは
隙間腐食部から発生することを見いだした。
It was found that stress corrosion cracking in low-concentration salt solutions, which occurs in real environments, occurs from crevice corrosion.

さらにオーステナイト系ステンレス鋼が応力腐食割れを
起こすような比較的温度の高い条件においては実際上ス
テンレス鋼板の両側では温度が異なること、すなわちス
テンレス鋼板を3訃停とじて熱の移動が行なわ〜れてい
ることに着目した。この場合測定面に熱の流入があると
、腐食条件としては厳しくなる。本発明者らは以上のこ
とを考慮し、耐応力腐食割れ性にすぐれだオーステナイ
ト系ステンレス鋼を開発すべく9種々研究を重ねた。
Furthermore, under relatively high temperature conditions that cause stress corrosion cracking in austenitic stainless steel, the temperature is actually different on both sides of the stainless steel plate, meaning that heat transfer occurs across the stainless steel plate. I focused on the fact that In this case, if heat flows into the measurement surface, the corrosion conditions will be severe. Taking the above into consideration, the present inventors conducted nine different types of research in order to develop an austenitic stainless steel with excellent stress corrosion cracking resistance.

本発明者等は耐応力腐食割れ住改善のだめに5US3D
4  系ステンレス鋼l”(eta加し、その際に、鋼
中に含まれるPとの関係を詳細に検討し。
The present inventors have developed 5US3D for improving stress corrosion cracking and housing.
4 series stainless steel (eta), and at that time, the relationship with P contained in the steel was examined in detail.

Cu量とP量の相対量と腐食の間にある種の関係がある
ことを知見し、耐応力腐食割れ性に優れた鋼組成を見出
した。
It was discovered that there is a certain relationship between the relative amounts of Cu and P and corrosion, and a steel composition with excellent stress corrosion cracking resistance was discovered.

本発明によれば2重量%で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0チ以下、S:O,Oり多以下、Ni:6.0〜
200チ。
According to the present invention, at 2% by weight, C: 0.08% or less, Si: 1.0% or less, Mn:
2.0 or less, S: O, O or less, Ni: 6.0 ~
200 chi.

Cr:16.0〜25.0%、および下記の式の条件を
満足する量のCu 、 Pを含有し、残部Feおよび不
可避的不純物からなることを特徴とする耐応力腐食割れ
性のすぐれたオーステナイト系ステンレス鋼が提供され
る。
Cr: 16.0 to 25.0%, and an amount of Cu and P that satisfies the conditions of the following formula, and the balance is Fe and unavoidable impurities, and has excellent stress corrosion cracking resistance. Austenitic stainless steel is provided.

30P(%)+0.6≦Cu(%)≦3.0上記の鋼に
、溶接部の耐応力腐食割れ性をさらに向上させるために
Ti 、 Nbの1種又は2種で0.1〜1.0%を添
加してもよい。
30P (%) + 0.6≦Cu (%)≦3.0 In order to further improve the stress corrosion cracking resistance of the welded part, one or both of Ti and Nb are added in the range of 0.1 to 1 to the above steel. .0% may be added.

本発明鋼の成分限定の理由を以下に説明する。The reason for limiting the composition of the steel of the present invention will be explained below.

C:Cは耐応力腐食割れ性に大きな影響を与えない。し
かしCを高くすると溶接した時にCr炭化物が析出しや
すいので上限は0.08%とした。
C: C does not significantly affect stress corrosion cracking resistance. However, if the C content is increased, Cr carbides tend to precipitate during welding, so the upper limit was set at 0.08%.

Si二Siは製鋼時、脱酸のために必要であるが加工性
を害するので上限は1.0係としだ。
Although Si2Si is necessary for deoxidation during steel manufacturing, it impairs workability, so the upper limit is set to 1.0.

Mn : Mnは製鋼時の脱酸、脱硫および熱間加工性
改善のため必要であるが、耐食性を劣化させるので上限
は2.0条とした。
Mn: Mn is necessary for deoxidizing, desulfurizing, and improving hot workability during steel manufacturing, but since it deteriorates corrosion resistance, the upper limit was set to 2.0.

srsは応力腐食割れ感受性には影響しないので通常許
容される0、03%以下ならよいが、腐食の発生には有
害であるので低いのが望ましい。
Since srs does not affect stress corrosion cracking susceptibility, it is sufficient if it is below the normally allowable 0.03%, but it is desirable to be low as it is harmful to the occurrence of corrosion.

Cr : Crは耐食性を保つために不可欠な元素であ
、C,16%未満では十分な耐食性が得られない。
Cr: Cr is an essential element for maintaining corrosion resistance, and if it is less than 16%, sufficient corrosion resistance cannot be obtained.

一方25係を越すと加工性が悪くなるので16.0〜2
5.0係に限定した。
On the other hand, if it exceeds 25, the workability will deteriorate, so 16.0~2
Limited to 5.0 staff.

Ni : Niはオーステナイト相を維持するだめの必
須の元素であり、耐酸性を維持するためには6.0%以
上を必要とするが、20%を越す添加は経済的に高くな
るので6.0〜20.0 %に限定した。
Ni: Ni is an essential element for maintaining the austenite phase, and 6.0% or more is required to maintain acid resistance, but addition of more than 20% is economically expensive, so 6. It was limited to 0-20.0%.

Ti 、 Nb : Ti 、 Nl)はC,Nを固定
する作用を有するために溶接部の耐粒界腐食性を向」ニ
させ。
Ti, Nb: Ti, Nl) has the effect of fixing C and N, so it improves the intergranular corrosion resistance of the weld zone.

さらには粒界型の応力腐食割れ感受性を小さくするのに
効果があるが、いずれも0.1係未満では効果が少なく
、また1、 0 %を越すと効果が飽和して無駄となる
ので0.1〜1.0%に限定した。
Furthermore, it is effective in reducing the susceptibility to intergranular stress corrosion cracking, but if the coefficient is less than 0.1%, the effect is small, and if it exceeds 1.0%, the effect is saturated and becomes useless. .1 to 1.0%.

本発明者らは5US304系鋼にCuを添加すると低濃
度食塩溶液において隙間腐食が広がり、応力腐食割れ感
受性が小さくなることを知見した。
The present inventors have found that when Cu is added to 5US304 series steel, crevice corrosion spreads in a low concentration salt solution and stress corrosion cracking susceptibility decreases.

すなわちCuは腐食を広げる作用をもつだめ。In other words, Cu has the effect of spreading corrosion.

腐食を集中させるPの作用を打ち消し応力腐食割れ感受
性を小さくする。応力腐食割れの発生を防ぐために必要
なCu量はP量が高くなると高くなる。割れの発生を防
ぐためのCuの下限量およびPの上限量は以下に詳細に
述べるように実験的に導き出された次の2つの式で規定
することができる。
It cancels out the action of P that concentrates corrosion and reduces stress corrosion cracking susceptibility. The amount of Cu required to prevent stress corrosion cracking increases as the amount of P increases. The lower limit amount of Cu and the upper limit amount of P for preventing the occurrence of cracks can be defined by the following two experimentally derived equations as described in detail below.

C11(%)≦ろOPfチi+0.6 Cuはこのように腐食を広げる作用をもつため多く添加
してもよいが、!1.0%を越えると熱間加工性を損な
うので上限は3.0%とする。
C11(%)≦OPfchi+0.6 Cu has the effect of spreading corrosion in this way, so it may be added in large amounts, but! If it exceeds 1.0%, hot workability will be impaired, so the upper limit is set at 3.0%.

本発明鋼を実施例により具体的に説明する。The steel of the present invention will be specifically explained with reference to Examples.

本発明鋼(実施例鋼)および比較鋼の組成を第1表に示
す。
The compositions of the invention steel (example steel) and comparative steel are shown in Table 1.

これらの鋼を板厚1關の鋼板とし、溶体化処理し2幅2
9myn、長さ31朋の板の上に同一材料の幅14關、
長さ16mmの板を重ねてスポット溶接した試片を、8
0℃の50 ppm cl−’濃度のNa Cl溶液に
60日間浸漬する試験を行なった。応力腐食割れ発生の
有無は断面観察によシ判断した。、(第1試験)。
These steels are made into steel plates with a thickness of 1, and are solution-treated to have a width of 2.
A board of 9 myn and 31 m long, made of the same material, 14 m wide,
A test piece made by overlapping and spot welding plates with a length of 16 mm was
A test was conducted in which the sample was immersed in a NaCl solution with a concentration of 50 ppm Cl-' at 0°C for 60 days. The presence or absence of stress corrosion cracking was determined by cross-sectional observation. , (first test).

さらに先に述べたように熱移動がある場合の試験を行な
った。直径701n′11tの円板の中央部に9幅25
mm、長さ160關の単板の端部を重ね、この部分に6
点のスポット溶接を行ない、スポット溶接された側の端
面から25mmのところで直角に折9曲げた試片を用い
、第1図に示す試験装置により熱移動下での試験を50
 ppm cl−溶液を用いて10日間行なった。
Furthermore, as mentioned earlier, tests were conducted in the presence of heat transfer. 9 width 25 in the center of a disk with a diameter of 701n'11t
Layer the ends of the veneers with a length of 160mm and 6mm on this part.
Using a test piece that was spot welded and bent 9 times at a right angle 25 mm from the end face of the spot welded side, a test under heat transfer was conducted for 50 minutes using the testing apparatus shown in Figure 1.
It was carried out for 10 days using ppm Cl- solution.

第1図において、試験装置は水の入口と出口をブ5とボ
ルトとナツトで試片10の円板部6に固定されている。
In FIG. 1, the test apparatus has a water inlet and an outlet fixed to a disc part 6 of a specimen 10 with a bolt 5, bolts, and nuts.

耐火物4で保護されたヒーター1を巻いた石英管6の中
には銅の棒2が入っており。
A copper rod 2 is contained in a quartz tube 6 wrapped around a heater 1 protected by a refractory material 4.

銅棒の一端は試片10の円板部6と接触している。One end of the copper rod is in contact with the disk portion 6 of the specimen 10.

割れの数は溶着部をドリルでくり抜き、試片を開いて観
察した。(第2試験)。
The number of cracks was determined by drilling out the welded area, opening the specimen, and observing it. (Second test).

結果は第1表中に記入され、また第2図に示されている
The results are listed in Table 1 and shown in FIG.

第2図は応力腐食割れにおよぼすP、CLI  の影響
を示したもので2図中の○印は第1試(検で割れなし2
第2試験で割れ数50ケ以下のもの、(験印は第1試験
で割れなし、第2試験で割れ数50ケ以上のもの、・印
は第1試験で割れありのものを示す。
Figure 2 shows the influence of P and CLI on stress corrosion cracking.
The number of cracks in the second test is 50 or less. (The test mark indicates that there were no cracks in the first test, and the number of cracks was 50 or more in the second test.) The mark indicates that there were cracks in the first test.

第2図から耐応力腐食割れ性を確保するにはP量とCu
量の相関係係を前記の式の関係に保つ必要があることが
わかる。第1試験ではCu (%)を30 P(%l+
[1,6以上自むと、応力腐食割れは発生していない。
From Fig. 2, the amount of P and Cu are required to ensure stress corrosion cracking resistance.
It can be seen that it is necessary to maintain the correlation between the quantities as expressed in the above equation. In the first test, Cu (%) was 30 P (%l+
[If the corrosion rate is 1.6 or more, stress corrosion cracking has not occurred.

しかしながら、第2試験は腐食条件として第1試験より
厳しく、応力腐食割れ感受性の小さい領域は狭くなる。
However, the second test has more severe corrosion conditions than the first test, and the region with low stress corrosion cracking susceptibility becomes narrower.

耐応力腐食割れ性をCu t@ +1.5 保つにはP(%)を−7、。−以下にする必要がある。Stress corrosion cracking resistance Cu t@+1.5 To maintain P (%) -7. -It is necessary to do the following.

Pを低くすると応力腐食割れ感受性は小さくなっていく
が、適正量のCuを含まないと、P:0、005%の鋼
(鋼No、2)においても隙間腐食による腐食孔の底部
から割れが発生する。この場合腐食孔の深さは0.6〜
0.4 m71に達する。Pが低い鋼では最初隙間腐食
の成長が大きいが2時間と共に腐食孔内に溶出したPが
腐食孔内の溶解を抑制していく。しかしながら腐食孔の
先端は腐食孔の他の部分より応力が大きいため活性に保
たれる。このように腐食が局部に集中するためこの部分
から応力腐食割れが発生するものと考えられる。
As P is lowered, stress corrosion cracking susceptibility decreases, but if an appropriate amount of Cu is not included, cracks will occur from the bottom of the corrosion hole due to crevice corrosion even in steel with P: 0.005% (Steel No. 2). Occur. In this case, the depth of the corrosion hole is 0.6~
It reaches 0.4 m71. In steel with low P content, the growth of crevice corrosion is large at first, but after 2 hours, the P dissolved into the corrosion holes suppresses dissolution inside the corrosion holes. However, the tip of the corrosion hole remains active because the stress is greater than in other parts of the corrosion hole. It is thought that stress corrosion cracking occurs in these areas because the corrosion is concentrated in these areas.

本発明鋼は耐応力腐食割れ性にすぐれているだめ2現在
5US304  を用いて応力腐食割れが発生している
。温水用機器(例えば電気温水器、温水ボイラー)や給
湯配管用等の材料として好適であるとともに+ Cuを
成分組成としているので硫酸や塩酸等の非酸化性酸の環
境下においてもすぐれた耐食性が期待される。
The steel of the present invention has excellent stress corrosion cracking resistance.Currently, stress corrosion cracking has occurred using 5US304. It is suitable as a material for hot water equipment (e.g. electric water heaters, hot water boilers) and hot water supply piping, and since it contains + Cu, it has excellent corrosion resistance even in environments with non-oxidizing acids such as sulfuric acid and hydrochloric acid. Be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2試験の装置の概略図である。 第2図は本発明鋼および比較鋼のスポット溶接試片を8
0℃の50 ppm C11=溶液中に30日間浸漬し
た時の応力腐食割れの有無におよぼすPとCuの影響を
示した図である。 特許出願人   日新製鋼株式会社 代理人 弁理士 松 井 政 広(外1名)第1図 第2図 P C’/、) 手続補正書 昭和58年8月18日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58 年特 許 願第087673号3、 補正を
する者 事件との関係 特許出願人 住 所 東京都千代田区丸の内三丁目4番1号4、代理
人 5、 補正命令の日付 自発 6 補正により増加する発明の数 なし令 8 ユ( ン 明細書7頁、2行目の式 %式% に訂正する。
FIG. 1 is a schematic diagram of the apparatus for the second test. Figure 2 shows spot welded specimens of the invention steel and comparative steel.
FIG. 3 is a diagram showing the influence of P and Cu on the presence or absence of stress corrosion cracking when immersed in a 50 ppm C11=solution at 0° C. for 30 days. Patent applicant: Nisshin Steel Co., Ltd. Agent: Patent attorney Masahiro Matsui (1 other person) Figure 1 Figure 2 P C'/) Procedural amendment August 18, 1981 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 , Indication of the case Patent Application No. 087673 No. 3 of 1987, Person making the amendment Relationship to the case Patent applicant address 3-4-1-4 Marunouchi, Chiyoda-ku, Tokyo, Agent 5 Date of amendment order Voluntary action 6 Number of inventions increased by amendment None Ordinance 8 (The formula % is corrected in the second line of page 7 of the specification.)

Claims (1)

【特許請求の範囲】 1、重量%で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0チ以下、S:0.03%以下、 Ni : 6
.0〜20.0Li6+Cr:16.O〜25.0%、
および下記の式の条件を満足する量のCu 、 Pを含
有し、残部Feおよび不可避的不純物からなることを特
徴とする耐応力腐食割れ性のすぐれたオーステナイト系
ステンレス鋼。 60P(%)+0.6≦Cu(%)≦3.[lP(%)
<介(%) + 1.5− 00 2、重量%で C:0.08%以下、Si:1.0%以下、 Mn :
 2.0チ以下、S:0.03チ以下、 Ni : 6
.0〜20.0%。 Cr : 16.0〜25.0 %、 Ti 、 Nb
の1種又は2種で0.1〜1.0係および下記の式の条
件を満足する量のCu 、 Pを含有し、残部Feおよ
び不可避的不純物よりなる耐応力腐食割れ性のすぐれた
オーステナイト系ステンレス鋼。 ろOF(%i+0.6≦Cu(@≦6.0
[Claims] 1. C: 0.08% or less, Si: 1.0% or less, Mn:
2.0 chi or less, S: 0.03% or less, Ni: 6
.. 0-20.0Li6+Cr:16. O~25.0%,
and an austenitic stainless steel with excellent stress corrosion cracking resistance, which is characterized by containing Cu and P in amounts that satisfy the conditions of the following formula, with the remainder consisting of Fe and unavoidable impurities. 60P(%)+0.6≦Cu(%)≦3. [lP (%)
<Intermediate (%) + 1.5-00 2, C: 0.08% or less, Si: 1.0% or less, Mn:
2.0 inches or less, S: 0.03 inches or less, Ni: 6
.. 0-20.0%. Cr: 16.0-25.0%, Ti, Nb
Austenite with excellent stress corrosion cracking resistance, containing Cu and P in an amount of 0.1 to 1.0 and satisfying the conditions of the following formula, with the remainder being Fe and unavoidable impurities. stainless steel. RoOF(%i+0.6≦Cu(@≦6.0
JP8767383A 1983-05-20 1983-05-20 Austenitic stainless steel with superior stress corrosion cracking resistance Pending JPS59215469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8767383A JPS59215469A (en) 1983-05-20 1983-05-20 Austenitic stainless steel with superior stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8767383A JPS59215469A (en) 1983-05-20 1983-05-20 Austenitic stainless steel with superior stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPS59215469A true JPS59215469A (en) 1984-12-05

Family

ID=13921459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8767383A Pending JPS59215469A (en) 1983-05-20 1983-05-20 Austenitic stainless steel with superior stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS59215469A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741357A (en) * 1980-08-26 1982-03-08 Nisshin Steel Co Ltd Austenite stainless steel with superior stress corrosion cracking resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741357A (en) * 1980-08-26 1982-03-08 Nisshin Steel Co Ltd Austenite stainless steel with superior stress corrosion cracking resistance

Similar Documents

Publication Publication Date Title
KR20130123463A (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
US20090081069A1 (en) Austenitic stainless steel
JPH06279951A (en) Ferritic stainless steel for water heater
JP3815227B2 (en) Martensitic stainless steel welded joint with excellent strain aging resistance
JP3156170B2 (en) Martensitic stainless steel for line pipe
JP3555579B2 (en) High corrosion resistance martensitic stainless steel
JPS59215469A (en) Austenitic stainless steel with superior stress corrosion cracking resistance
KR102094614B1 (en) Welding composition for hyper duplex stainless steel and method for manufacturing welding part using the same
JP2006283148A (en) WELDED STEEL PIPE HAVING EXCELLENT Cr-FREE SOUR RESISTANCE CHARACTERISTIC
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPS6366379B2 (en)
JPS5970749A (en) Austenitic stainless steel with superior stress corrosion cracking resistance
Ogawa et al. Hydrogen cracking in duplex stainless steel weldments
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JPH0588298B2 (en)
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JP2668116B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPH034619B2 (en)
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JPS629661B2 (en)
JP2000063997A (en) Welded tube of martensitic stainless steel
JPH04228547A (en) Ferritic stainless steel excellent in intergranular corrosion resistance, tube making property, and strength at high temperature
JPS61221344A (en) Copper alloy material for water or hot water supply piping
JPS62134196A (en) Welding material for austenitic stainless steel
JP3679982B2 (en) Boron-containing stainless steel