JPS5969949A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5969949A
JPS5969949A JP18045082A JP18045082A JPS5969949A JP S5969949 A JPS5969949 A JP S5969949A JP 18045082 A JP18045082 A JP 18045082A JP 18045082 A JP18045082 A JP 18045082A JP S5969949 A JPS5969949 A JP S5969949A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
layer
silicon layer
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18045082A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP18045082A priority Critical patent/JPS5969949A/en
Publication of JPS5969949A publication Critical patent/JPS5969949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To enable fine processing and multilayer wiring for improving the degree of integration of an element by forming a polycrystalline silicon layer on a substrate directly or through an intermediate layer, coating the predetermined region of the silicon layer with a mask and changing the polycrystalline silicon layer except the predetermined region into an oxide layer through selective oxidation. CONSTITUTION:A SiO2 layer 12 is formed through selective oxidation while using a nitride film 11 as a mask. A section except regions, which must function as a gate, a source and a drain, is coated with a resist film 4, and the oxide film can be etched, but window sections 6 are bored to the regions, which must function as the source and the drain, by using an etching liquid resisting the process such as a fluoric acid group etching liquid in the polycrystalline silicon. A polycrystalline silicon layer 13 of low resistance containing a V family element impurity such as phosphorus and a nitride film 11 are formed to the whole main surface of the substrate 1, the nitride films 11 are left only to electrode contact sections for the source, the gate and the drain, the oxide layer 14 is formed through selective oxidation while an impurity is diffused to the source and drain regions and the polycrystalline silicon layer, and an N type layer 7 is formed. When the nitride films 11 are removed, an MOSFET can be completed.

Description

【発明の詳細な説明】 本発明は拡散領域、絶縁層あるいは電極層などの微細化
された構造を有する半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having a miniaturized structure such as a diffusion region, an insulating layer, or an electrode layer.

例えば高集積度が要求されるMO8ICのような半導体
装置は、一般に微細化が要求されるため。
For example, semiconductor devices such as MO8IC, which require a high degree of integration, generally require miniaturization.

ゲート電極などの加工精度の向上、浅い拡散深さの正確
な制御、多層配線の容易な面の平坦化が望まれる。第1
図(5)〜(ハ)はNチャネルMO8FETの製造方法
を示しP形シリコン基板1の主表面にS i02酸化膜
2を形成し〔第1図(5)〕、さらにその上にCVD法
により多結晶シリコン層、3を堆積し口次いで光蝕刻法
を用いでゲートとなるべき領域屹レジスト膜4を残す〔
第1図但)〕。このレジスト膜4をマスクとしてゲート
部以外の多結晶シリコン層3および酸化膜2をエツチン
グによって除去する〔第1図(Q )。その後、主表面
の全面をCVD法によるS i 02膜5により被覆し
〔第1図(Ll :] 、ゲート部を取り囲む形で酸化
膜5を除去して窓部6を犀出させ〔第1図(”? ) 
、 ’p4:f=晶シリコン層3および酸化膜2をマス
クとしてこの窓部よりイオン注入などにより不純物を導
入してN形層7を形成する〔第1図η〕。次に1例えば
CVD法でSiNあるいはSiO3などのパッシベーシ
ョン膜8を形成した後、〔第1図(G) )、この膜8
に電析接触孔を明け。
It is desired to improve the processing accuracy of gate electrodes, etc., accurately control the shallow diffusion depth, and flatten the surface to facilitate multilayer wiring. 1st
Figures (5) to (c) show a method for manufacturing an N-channel MO8FET, in which an Si02 oxide film 2 is formed on the main surface of a P-type silicon substrate 1 [Figure 1 (5)], and then a CVD method is applied on top of the Si02 oxide film 2. A polycrystalline silicon layer 3 is deposited, and then photoetching is used to leave a resist film 4 in the area that will become the gate.
(Figure 1)). Using this resist film 4 as a mask, the polycrystalline silicon layer 3 and oxide film 2 other than the gate portion are removed by etching [FIG. 1(Q)]. Thereafter, the entire main surface is covered with an Si 02 film 5 by CVD method [FIG. figure("? )
, 'p4:f=Using the crystalline silicon layer 3 and the oxide film 2 as masks, impurities are introduced through this window by ion implantation or the like to form the N-type layer 7 [FIG. 1 η]. Next, after forming a passivation film 8 of SiN or SiO3 by, for example, the CVD method [FIG. 1(G)], this film 8 is
Open a contact hole for electrodeposition.

M蒸着膜などによりゲート電極9.ソース、ドレイン電
極10を設ける〔第1図σ」〕ことにより、児版板の上
にゲート酸化膜2を介して多結晶シリコンJa 3 、
電極9を備えた構造を有するMO3F’ETができ上が
る。このようなλ遣方法では、多結晶シリコン層3の微
細加工8廂によりチャンネル長が決定されるため、微細
化が進むにつれ多結晶シリコンのエツチングの際のサイ
ドエッチ量およびそのばらつきを許容範囲内におさめる
ことが重要になってきている。最近、サイドエッチ惜の
小さなポリシリコンのエツチング方法として反応性イオ
ンエツチングなどの方法が開発されているが下地材料の
制約や汚染の問題があり、ゲート部のポリシリコン層の
加工には適用困難である。さら1こ。
Gate electrode 9. by M vapor deposition film or the like. By providing the source and drain electrodes 10 [Fig.
A MO3F'ET having a structure including an electrode 9 is completed. In this λ method, the channel length is determined by the 8-sided microfabrication of the polycrystalline silicon layer 3, so as miniaturization progresses, the amount of side etching and its dispersion during etching of polycrystalline silicon can be kept within an allowable range. It is becoming increasingly important to keep this in mind. Recently, methods such as reactive ion etching have been developed as a method for etching polysilicon with minimal side etch, but there are restrictions on the underlying material and problems with contamination, making it difficult to apply to processing the polysilicon layer in the gate area. be. One more.

微細化と素子の集積度という観点から多層配線技術が要
求された場合、基板表面上に形成される眉間の段差のた
めに配線に欠陥が生じやすい問題がある。
When multilayer wiring technology is required from the viewpoint of miniaturization and element integration, there is a problem in that wiring is prone to defects due to the difference in level between the eyebrows formed on the surface of the substrate.

本発明は、これらの問題を解決して素子の集積度を高め
るための微細加工と多層配線が可能である半導体装置の
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that allows fine processing and multilayer wiring in order to solve these problems and increase the degree of integration of elements.

この目的は半導体基板上に直接または中間層を介して多
結晶シリコン層を設けた後その所定の領域をマスクで核
って選択酸化により所定の領域以外の多結晶シリコン層
を酸化層とすることによって達成される。
The purpose of this is to provide a polycrystalline silicon layer directly or via an intermediate layer on a semiconductor substrate, then selectively oxidize the polycrystalline silicon layer in a predetermined region using a mask to oxidize the polycrystalline silicon layer other than the predetermined region. achieved by.

以下図を引用して本発明の実施例について説明する。第
2図四〜σ)は本発明によるMOS FE T製造工程
を示し、第1図と共通の部分には同一の符号が符されて
いる。P形シリコン基板lの上にS + 02膜2を形
成し〔第2図(A) ) 、その上に多結晶シリコン層
3および窒化シリコン膜11をCVD法などで被櫨する
〔第2図(乃〕。次いで光蝕刻法を用いてゲートとなる
べき領域のみに窒化膜11を残し〔第2図(q〕、この
窒化膜をマスクとして選択酸化し、8102層12を生
成する〔第2図匹)。つぎにゲート、ソース、ドレイン
となるべき領域を除いてレジスト膜4で被覆し〔第2図
匹)〕、酸化膜をエツチングできるが多結晶シリコンは
それに耐えるエツチング液1例えば弗酸系のエツチング
液を用いてソース、ドレインとなるべき領域に窓部6を
明ける〔第2図(F′) )。この方法によれば、多結
晶シリコンの酸化条件を適切に選ぶことによりサイドエ
ッチ量を極力少なくすることが可能であると同時1こ、
エツチング液件に加工精度が左右されないので、多結晶
シリコンの加工精度が著しく向上する。つづいて第2図
O)に示すように基板1の主表面全体にりんのようなV
複元素不純物を含む低抵抗の多結晶シリコン層13およ
び窒化膜11を形成した後、ソース、ゲート、ドレイン
のための電極接触部のみに窒化膜11を残し〔第2図に
)〕1選択酸化を行って酸化層14を形成すると同時に
ソース、ドレイン領域および多結晶シリコン層への不純
物の拡散を行い、N形層7を形成する〔第2図(■)〕
。この後窒化膜11を除去すれば第2図(J)に示す構
造を有するMO8FETができ上がる。不純物を添加し
た低抵抗多結晶シリコン層13は所定の領域へのN形層
7の形成のための拡散不純物源として役立つほか、ソー
スおよびドレイン電極ならびに不純物の拡散された多結
晶シリコン層3と共にゲート電極として役立ち、さらに
選択酸化により酸化層14(!:なった部分は絶縁層あ
るいは保護膜として働く。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 (4-σ) shows the manufacturing process of a MOS FET according to the present invention, and parts common to those in FIG. 1 are denoted by the same reference numerals. An S + 02 film 2 is formed on a P-type silicon substrate l [FIG. 2(A)], and a polycrystalline silicon layer 3 and a silicon nitride film 11 are deposited thereon by CVD or the like [FIG. 2(A)]. (No.) Next, a photoetching method is used to leave the nitride film 11 only in the region that will become the gate [Fig. 2 (q)], and selective oxidation is performed using this nitride film as a mask to generate the 8102 layer 12 [Fig. 2 (q)]. Next, the regions that are to become the gate, source, and drain are covered with a resist film 4 (see Figure 2).The oxide film can be etched, but polycrystalline silicon can withstand this with an etching solution 1 such as hydrofluoric acid. A window 6 is opened in the region to become the source and drain using a suitable etching solution [FIG. 2 (F')]. According to this method, by appropriately selecting the oxidation conditions for polycrystalline silicon, it is possible to minimize the amount of side etching, and at the same time,
Since machining accuracy is not affected by etching liquid conditions, the machining accuracy of polycrystalline silicon is significantly improved. Next, as shown in Figure 2 O), phosphorus-like V
After forming a low-resistance polycrystalline silicon layer 13 containing multi-element impurities and a nitride film 11, 1 selective oxidation is performed, leaving the nitride film 11 only at the electrode contact areas for the source, gate, and drain (see Figure 2). At the same time, impurities are diffused into the source and drain regions and the polycrystalline silicon layer to form the N-type layer 7 [Figure 2 (■)].
. Thereafter, by removing the nitride film 11, a MO8FET having the structure shown in FIG. 2(J) is completed. The impurity-doped low-resistance polycrystalline silicon layer 13 serves as a diffused impurity source for forming the N-type layer 7 in a predetermined region, and also serves as a source and drain electrode and the gate along with the impurity-diffused polycrystalline silicon layer 3. The oxidized layer 14 (!) serves as an electrode, and the portion formed by selective oxidation serves as an insulating layer or a protective film.

以上述べたように本発明によれば、多結晶シリコン層を
部分的に酸化することにより、酸化された部分のみのエ
ツチングによる多結晶シリコン層の微細加工を行ったり
、酸化された部分を層間絶縁膜、酸化されない部分を拡
散不純物源あるいは電極、配線に利用したりすると吉が
できるので。
As described above, according to the present invention, by partially oxidizing a polycrystalline silicon layer, microfabrication of the polycrystalline silicon layer can be performed by etching only the oxidized portion, and interlayer insulation of the oxidized portion can be performed. It is a good idea to use the part of the film that is not oxidized as a source of diffused impurities, electrodes, or wiring.

半導体素子の微細化、製造工程の単純化に有効なばかり
でなく、段差部は多結晶シリコンの微細加工工程で発生
するだけでその他の部分では平坦η面が得られ、多層配
線上にも極めて有利である。
Not only is it effective for miniaturizing semiconductor devices and simplifying the manufacturing process, but the step part is only generated during the microfabrication process of polycrystalline silicon, and the rest of the area has a flat η plane, making it extremely suitable for multilayer wiring. It's advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)〜(財)はNチャネルMO8FETの従来
の製造工程を示す断面図、第2図(A)〜(J)は本発
明によるNチャネルMO8FETの製造工程の一実施例
を示す断面図である。 1・・・シリコン基板、3−多結晶シ1ノコン層、11
・・・窒化膜、12.14・・・rり化層、13・・・
不純物添加多結晶シリコン層。 −fi 圀 − −)PZ I′¥1
Figures 1 (A) to (F) are cross-sectional views showing the conventional manufacturing process of an N-channel MO8FET, and Figures 2 (A) to (J) show an example of the manufacturing process of an N-channel MO8FET according to the present invention. FIG. 1... Silicon substrate, 3-Polycrystalline silicon layer, 11
...Nitride film, 12.14...Rriding layer, 13...
Doped polycrystalline silicon layer. -fi 圀- -)PZ I'¥1

Claims (1)

【特許請求の範囲】 1)半導体基板上に直接または中間層を介して多結晶シ
リコン層を設けたのち該層の所定の領域をマスクで覆っ
て選択酸化により該所定の領域以外の多結晶シリコン層
を酸化層とすることを特徴とする半導体装置の製造方法
。 2、特許請求の範囲第1項記載の方法において。 生成された酸化層をエツチングで除去することを特徴と
する半導体装置の製造方法。 3)特許請求の範囲第1項記載の方法において。 多結晶シリコン層として不純物の添加されたものを用い
ることを特徴とする半導体装置の製造方法。 4)特許請求の範囲第3項記載の方法において、
[Claims] 1) After providing a polycrystalline silicon layer directly or via an intermediate layer on a semiconductor substrate, a predetermined region of the layer is covered with a mask, and selective oxidation is performed to remove polycrystalline silicon from areas other than the predetermined region. A method for manufacturing a semiconductor device, characterized in that the layer is an oxide layer. 2. In the method according to claim 1. A method for manufacturing a semiconductor device, characterized in that a generated oxide layer is removed by etching. 3) In the method according to claim 1. A method of manufacturing a semiconductor device, characterized in that a polycrystalline silicon layer to which impurities are added is used. 4) In the method according to claim 3,
JP18045082A 1982-10-14 1982-10-14 Manufacture of semiconductor device Pending JPS5969949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18045082A JPS5969949A (en) 1982-10-14 1982-10-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18045082A JPS5969949A (en) 1982-10-14 1982-10-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5969949A true JPS5969949A (en) 1984-04-20

Family

ID=16083437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18045082A Pending JPS5969949A (en) 1982-10-14 1982-10-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5969949A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376688A (en) * 1976-12-17 1978-07-07 Nec Corp Production of semiconductor device
JPS5377185A (en) * 1976-12-20 1978-07-08 Fujitsu Ltd Electrode formation method of semiconductor device
JPS5710248A (en) * 1980-05-20 1982-01-19 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376688A (en) * 1976-12-17 1978-07-07 Nec Corp Production of semiconductor device
JPS5377185A (en) * 1976-12-20 1978-07-08 Fujitsu Ltd Electrode formation method of semiconductor device
JPS5710248A (en) * 1980-05-20 1982-01-19 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
US4268321A (en) Method of fabricating a semiconductor device having channel stoppers
US4549340A (en) Method of making CMOS semiconductor device using specially positioned, retained masks, and product formed thereby
US4551907A (en) Process for fabricating a semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JPS5969949A (en) Manufacture of semiconductor device
JPS59231864A (en) Semiconductor device
JPH05243264A (en) Manufacture of transistor
JPH0481327B2 (en)
JPS5856436A (en) Manufacture of semiconductor device
JPS60200572A (en) Manufacture of semiconductor device
JPS6161539B2 (en)
JPH06196498A (en) Semiconductor device and manufacture thereof
JPS628028B2 (en)
JPS5815278A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPH0248146B2 (en)
JPH03171722A (en) Manufacture of semiconductor device
JPS59136973A (en) Semiconductor device
JPS59210659A (en) Manufacture of metal oxide semiconductor device
JPS6065544A (en) Manufacture of semiconductor device
JPH065622A (en) Manufacture of polyside gate structure of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPS6377156A (en) Manufacture of semiconductor device