JPS5966396A - Biological denitrification of waste water - Google Patents

Biological denitrification of waste water

Info

Publication number
JPS5966396A
JPS5966396A JP17539982A JP17539982A JPS5966396A JP S5966396 A JPS5966396 A JP S5966396A JP 17539982 A JP17539982 A JP 17539982A JP 17539982 A JP17539982 A JP 17539982A JP S5966396 A JPS5966396 A JP S5966396A
Authority
JP
Japan
Prior art keywords
tank
denitrification
liquid
nitrification
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17539982A
Other languages
Japanese (ja)
Other versions
JPH0135718B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP17539982A priority Critical patent/JPS5966396A/en
Publication of JPS5966396A publication Critical patent/JPS5966396A/en
Publication of JPH0135718B2 publication Critical patent/JPH0135718B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To denitrify night soil sludge or the like,by circulating most of a nitrified liquid in the step of nitrification to the first step of denitrification at a front stage to denitrify NOx in said circulated liquid, and introducing the remainder of said nitrified liquid together with returned sludge into the second step of denitrification. CONSTITUTION:Night soil 1 is let flow together with a circulated nitrified liquid 2 into the first denitrification tank 3 under an anaerobic condition, NOx in the nitrified liquid 2 is reductively decomposed into N2 by denitrifying bacteria using BOD components in the night soil 1 as a reducig agent, and then NH3 and residual BOD components in the night soil 1 are let flow into a nitrification tank 4 under an aerobic condition to nitrify NH3 into NOx and to oxidatively decompose residual BOD components. Most of the nitrified liqud is circulated to the first denitrification tank 3, while the remainder is let flow together with returned sludge 5 into the second denitrificatin tank 6 to reductively decompose NOx into N2 gas with mathanol 7 and a reaeration tank 8 to diffusively remove N2 gas in water under a condition opened to the atmosphere and then separated into solid matter and a liquid in a precipitation tank 9.

Description

【発明の詳細な説明】 本発明は、し尿系汚水などの濃厚な廃水の脱窒処理法(
以ド、本発明においては生し尿、浄化槽汚泥およびそれ
らの混合液などのし尿系汚水を単にし尿と略記する。)
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a denitrification treatment method for concentrated wastewater such as human waste water.
Hereinafter, in the present invention, human waste such as human waste, septic tank sludge, and a mixture thereof will be simply abbreviated as human waste. )
Regarding.

し尿中には高濃度の窒素化合物(以−ド、NYI3と略
記する)が含有されているが、通常のし尿処理装置でi
l−N113を除去することができず放流水中に残留す
る六−め、放流水域において赤潮などの富栄養化現象を
引き起している。このような問題を解決するため、し尿
の生物学的な脱窒処理装置が整備されつぐ)あるが、脱
窒処理装置は従来の単純なりOI)処理装置に比べてや
や複雑になり、そのため既設の801.)処理装置を脱
窒処理装置に改造するにも困難をft−>ている。また
、脱窒に際し還元剤として多量のメタノールが必要で、
運転費用が従来のBOD単独処理より高くなるという欠
点を有する。
Human waste contains a high concentration of nitrogen compounds (hereinafter abbreviated as NYI3), but normal human waste treatment equipment can remove the nitrogen compounds.
L-N113 cannot be removed and remains in the discharged water, causing eutrophication phenomena such as red tide in the discharged water area. In order to solve these problems, biological denitrification treatment equipment for human waste has been developed, but denitrification treatment equipment is somewhat more complex than conventional simple (OI) treatment equipment, so existing 801. ) It is also difficult to convert the processing equipment into a denitrification processing equipment. Additionally, a large amount of methanol is required as a reducing agent during denitrification.
It has the disadvantage that operating costs are higher than conventional BOD treatment alone.

本発明Il[、、脱窒処理方法を簡略化して既設の13
0D処理装置も容易に脱窒処理装置に改造可能にすると
ともに、メタノールの使用部を大幅に節減することがで
きる方法を提供することを目的とするものであり、し尿
系汚水などの高濃度のBOI) 。
The present invention Il [,, the denitrification treatment method is simplified and the existing 13
The purpose of this project is to provide a method that allows 0D treatment equipment to be easily converted into a denitrification treatment equipment and to significantly reduce the amount of methanol used. BOI).

窒素化合物を含有する廃水の生物学的脱窒法において、
順次第1脱窒素工程、硝化工程、$2脱窒素工程、再曝
気工程、固液分離工程を構成せしめ、前記硝化工程の硝
化液の大部分を前段の第1脱窒素工程へ循環せしめて循
環液中のNOxを廃水のBOD成分を利用して脱窒床処
理すると共に前記硝化工程の硝化液の残部を前記固液分
離工程から返送される汚泥と共に後段の第2脱窒素工程
に導き脱窒床処理し、次いで再曝気工程で再曝気処理し
たのち、固液分離工程で固液分離することを特徴とする
ものである。
In the biological denitrification method of wastewater containing nitrogen compounds,
A first denitrification process, a nitrification process, a $2 denitrification process, a reaeration process, and a solid-liquid separation process are configured in order, and most of the nitrified liquid from the nitrification process is circulated to the first denitrification process in the preceding stage. NOx in the liquid is treated with a denitrification bed using the BOD component of wastewater, and the remainder of the nitrified liquid from the nitrification process is led to the subsequent second denitrification process along with the sludge returned from the solid-liquid separation process for denitrification. The method is characterized in that it is subjected to bed treatment, then re-aerated in a re-aeration step, and then subjected to solid-liquid separation in a solid-liquid separation step.

次に、本発明の実施態様について第1図に基づいて説明
する。
Next, an embodiment of the present invention will be described based on FIG.

し尿1は、循環硝化液2とともに嫌気的条件にある第1
脱窒槽3に流入し、循環硝化液2中のN国は1〜尿1中
のBOD成分を還元剤として脱窒菌によってN2に丹で
還元分解されたのち、し尿1中のNH3と残留BOD成
分は次の好気的条件にある硝(PJ’74に流入し、N
t13はNO2:に硝化され、残留BOD成分は酸化分
解される。硝化液の大部分は第1脱窒槽3に循環され、
残部は返送汚泥5とともに第2脱窒槽6に流入し、メタ
、)−ルアあるいは他の有機物によりNOxがN2ガス
に還元分解されたのち、再曝気槽8に流入し、水中のN
2ガスが大気開放ドで放散除去されたのち、沈殿槽9で
固液分離され、上澄水10は直接あるいはさらに高度の
処理が行われて放btc、され沈殿汚泥の一部は第2脱
窒槽6に返送されZ、が、残部は余剰汚泥11として系
外に引抜かれ処[l)1.処分される。
Human waste 1 is stored in the primary tank under anaerobic conditions together with circulating nitrifying fluid 2.
Flowing into the denitrification tank 3, the N in the circulating nitrification liquid 2 is reduced and decomposed into N2 by denitrifying bacteria using the BOD components in the urine 1 as a reducing agent, and then converted to NH3 in the human waste 1 and residual BOD components. flows into the following aerobic conditions (PJ'74, N
t13 is nitrified to NO2:, and the remaining BOD components are oxidized and decomposed. Most of the nitrification liquid is circulated to the first denitrification tank 3,
The remainder flows into the second denitrification tank 6 together with the return sludge 5, and after NOx is reduced and decomposed into N2 gas by meta, )-lua or other organic matter, it flows into the re-aeration tank 8, where N in the water is decomposed.
After the two gases are diffused and removed by opening to the atmosphere, they are separated into solid and liquid in a settling tank 9, and the supernatant water 10 is released directly or after further advanced treatment into BTC, and a part of the settled sludge is sent to a second denitrification tank. 6 is returned to Z, but the remainder is pulled out of the system as surplus sludge 11 [l) 1. be disposed of.

第1 +;’lに示す如く本発明の第1脱窒槽3、硝化
槽4の脱窒、硝化は返送汚泥を伴わない一過性(one
 tbro++gh )の生物処理のため、従来のし尿
処理で常用さ7′1ている希釈水を犬祉テ注入する希釈
処理ン土好”まシ、<ない。この理由f、−1、L尿を
希釈するととにL−・−こ水量が増加し第1脱窒槽3.
硝化槽4に1−い″T、混合液中に浮遊[7ている硝化
菌あるいは脱窒菌が充分増殖するに足る滞留時間が確保
できなくな4.からである1、例えば、亜硝酸菌の増殖
速度μは水温15℃で01738であるから、菌の)イ
11留時間は増殖jlu度μの逆数、即し17′、−1
7,□7;3−ン5.8 Elμ が必要となる。菌体は液中に浮遊しているので、このこ
とは液の滞留時間が5,8日以上必要であるということ
と同義の意味をもつ。
As shown in 1st +;'l, denitrification and nitrification in the first denitrification tank 3 and nitrification tank 4 of the present invention are temporary (one
For biological treatment of tbro++gh), there is no dilution treatment in which diluted water, which is commonly used in conventional human waste treatment, is injected.The reason for this is that f, -1, L urine is When it is diluted, the amount of water increases and the first denitrification tank 3.
When the nitrification tank 4 is filled with 1-"T, it becomes impossible to secure enough residence time for the nitrifying bacteria or denitrifying bacteria floating in the mixed solution to multiply sufficiently. Since the growth rate μ is 01738 at a water temperature of 15°C, the residence time of the bacteria is the reciprocal of the growth rate μ, i.e. 17', -1
7, □7; 3-ton 5.8 Elμ is required. Since the bacterial cells are suspended in the liquid, this has the same meaning as requiring the residence time of the liquid to be 5 to 8 days or more.

し尿の槽あたりの滞留日数は次式で示されるから、一定
の滞留時間を保持するためには希釈水量に応じ−C槽容
積を大きくしなければならず、建設費用の増加という欠
点をもたらす。
Since the number of days that human waste remains in a tank is expressed by the following equation, in order to maintain a constant retention time, the capacity of the -C tank must be increased in accordance with the amount of dilution water, resulting in an increase in construction costs.

V(yy/) =RT(日)・・曲・面・(1) Q(e’/日) +  nQ(i/日)■:槽 容 f
*(、/) Q :し尿膜入量(n27日) n :希釈水倍数 RT:滞留時間(B′) 例えば、I(T = 5.8 Bとし、無希釈処理と2
倍の希釈水を用いた処理では、槽容積は(1)式よりそ
れぞれ5.8Q、 17.4Q と計算され、槽容積が
大きく異なってくる。したがって、やむを得ず希釈水を
注入する場合には、その分槽容積を大きくとらなければ
ならない。
V (yy/) = RT (day)... song/surface (1) Q (e'/day) + nQ (i/day)■: Tank capacity f
*(,/) Q: Amount of allantoic film (n27 days) n: Dilution water ratio RT: Residence time (B') For example, I (T = 5.8 B, no dilution treatment and 2
In the treatment using twice as much dilution water, the tank volumes are calculated as 5.8Q and 17.4Q, respectively, from equation (1), resulting in a large difference in tank volume. Therefore, if dilution water is unavoidably injected, the volume of the tank must be increased.

硝化液の循環量は、無希釈の場合にはし尿膜入量Qの2
0倍程度が望−ましいが、循環液−も希釈水の是に1っ
て変る。硝化液循環のlj的は、硝化液中のNOユイc
し尿のBOI)成分によって脱窒することにあるが、循
環量が一定の場合、次式に示す如く希釈水量の増加によ
−、で循環されるN0x−idが減少し、その分第2脱
窒槽に流入するNOxの蓋が増加する。これを式で表わ
すと、以Fのとおりである。
The circulating amount of nitrifying solution is 2 of the allantoic membrane input amount Q in the case of no dilution.
It is desirable that the dilution water be around 0 times, but the circulating fluid also changes depending on the dilution water. The target of nitrification liquid circulation is NOYC in nitrification liquid.
Denitrification is caused by the BOI component of human waste, but if the circulation amount is constant, as the amount of dilution water increases, as shown in the following equation, the amount of NOx-id circulated in the The amount of NOx flowing into the nitrogen tank increases. This can be expressed as the following formula.

N、 : ?g 1脱窒槽に循環されるNOx、−N 
(Kz/日)N2:弔2脱窒槽に流入するNO□−N 
(〃 )Z:し尿のNH3−N         (K
y/n? )n’ : l、尿投入htQに対する循環
倍数ところが、第2脱窒槽の脱窒には有価のメタノ−=
ル全使用しなければならないので、第2脱窒槽に流、入
″j′z)NOxの増加により運転費用が増加すること
になlノ好ましくない。したがって、経済的な処理な・
行うためには、渚)釈水の敏を+J能な限り減らすこと
が望ま1〜い。硝化菌、脱窒菌は温度上昇とともに活性
が増加するが、希釈水の注入は1〜尿のBOD 、 N
H3の酸化反応によって生じた反応熱による液温の上昇
を妨げることになり、菌の活性の上からも好ましくない
ので、希釈水の注入は可能な限り少量にすることが望−
ましい。
N: ? g 1 NOx, -N circulated to the denitrification tank
(Kz/day) N2: NO□-N flowing into the funeral 2 denitrification tank
(〃 )Z: NH3-N of human waste (K
y/n? ) n': l, circulation multiple for urine input htQ However, methanol is valuable for denitrification in the second denitrification tank =
Since all of the NOx must be used, it is undesirable that operating costs will increase due to an increase in the amount of NOx flowing into the second denitrification tank.
In order to do this, it is desirable to reduce Nagisa) Shakusui's sensitivity to +J as much as possible. The activity of nitrifying bacteria and denitrifying bacteria increases as the temperature rises, but injection of dilution water decreases the BOD of urine from 1 to N.
It is desirable to inject as little dilution water as possible, as this will prevent the rise in liquid temperature due to the heat of reaction generated by the oxidation reaction of H3, which is also undesirable from the standpoint of bacterial activity.
Delicious.

再曝気槽8流出水の固液分離は常用される沈殿法などの
他に加圧浮上法、遠心濃縮機のような機械的な固液分離
法を利用して返送汚泥濃度を増加すれば、第2脱窒槽6
混合液のMLSS誤度を高くすることができ、その分第
2脱窒槽6の容積を小さくすることができる。
For solid-liquid separation of the effluent from the reaeration tank 8, in addition to the commonly used sedimentation method, mechanical solid-liquid separation methods such as pressurized flotation and centrifugal concentrators can be used to increase the concentration of returned sludge. Second denitrification tank 6
The MLSS error of the mixed liquid can be increased, and the volume of the second denitrification tank 6 can be reduced accordingly.

次に、本発明と従来の第1脱窒槽に沈殿槽で固液分離し
た汚泥を返送する方式について、第2脱窒槽に流入する
No、 iを比較する。条件は、1−記循環倍数n’ 
=20、」−記希釈倍数n = 0、第1脱窒槽への汚
泥返送率r == 1 (r−返送汚泥濃度(/原水量
Q)とする。この条件において、従来方式では第1脱窒
槽に流入するNoよ−N(N1′)の割合は次式によっ
て0.91Zと削算され、これより第2脱窒槽に配分さ
れるNOx N(N蚤)fd Z  O,91Z = 
0.09Z  と計算さj−する。
Next, No. i flowing into the second denitrification tank will be compared between the present invention and the conventional method of returning sludge separated into solid and liquid in the sedimentation tank to the first denitrification tank. The condition is 1-th cyclic multiple n'
= 20,'' - dilution factor n = 0, sludge return rate to the first denitrification tank r = = 1 (r - return sludge concentration (/raw water amount Q). Under these conditions, in the conventional method, the first denitrification The ratio of No-N (N1') flowing into the nitrogen tank is reduced to 0.91Z by the following formula, and from this, NOx N (N flea) fd Z O,91Z = distributed to the second denitrification tank
Calculate it as 0.09Z.

一方、+(S 1脱窒槽に汚泥を返送しない本発明では
「;0であるから、N2はn’ −=20 、 n =
 0 ノドき(3)式よりN2 ’= 0.05Zと計
算され、従来法ンこ比べ約4″分のN0x−Nj、か@
2脱窒槽に流入しない。これより、本発明ではメタノー
ルの添加社は従来法に比べ約77、に減少することがわ
かる。
On the other hand, in the present invention where sludge is not returned to the denitrification tank +(S1;0, N2 is n' -=20, n =
0 From equation (3), N2' = 0.05Z is calculated, and compared to the conventional method, N0x-Nj is approximately 4", or
2 Does not flow into the denitrification tank. From this, it can be seen that in the present invention, the number of methanol additions is reduced to about 77 compared to the conventional method.

次に、現l″I:最も数の多い既設のし7尿嫌気性消化
処理方式全本発明の脱窒処理装置に改造する例について
第2.第3図に基づいて説、明する。
Next, an example of converting the most existing human waste anaerobic digestion method to the denitrification treatment apparatus of the present invention will be explained based on FIGS. 2 and 3.

第2図仁1、し尿の嫌気性消化処理方式の装置フローで
・ヲ】る1、シ尿1はいずれも嫌気条件にありガス攪拌
あン)いは機緘攪拌装置の配備されている第1消化槽1
2、第2消化槽13を経由L2てB OI)成分。
Figure 2 shows the flow of the equipment for anaerobic digestion of human waste. 1 digestion tank 1
2. B OI) component via L2 through the second digestion tank 13.

SSが分解除去されたのち返送汚泥5、希釈水16と混
合さねで曝気槽18に流入1〜、消化脱離液1,4中の
残留B ODが除去されたのち、沈殿槽9で固液分離す
るものである(15は消化汚泥を示す)。
After the SS is decomposed and removed, it is mixed with the returned sludge 5 and dilution water 16 to flow into the aeration tank 18. After the residual BOD in the digestion and desorption liquids 1 and 4 is removed, it is solidified in the settling tank 9. It separates liquid (15 indicates digested sludge).

第2図の消化処理方式は第3図に示すように、容易に本
発明方法を採用し得るように改造することができる。改
造に際し、硝化槽と[7て利用する第2消化槽工3は槽
を大気中に開放し、槽内に散気管などのディフ、−ザー
あるいはエアレータを設置して槽内液が好気条vトに保
たれるようにし、一方曝気槽18の前段は、第2脱窒槽
6として利用するだめ嫌気的条件が維持されるように配
慮しなければならない。
As shown in FIG. 3, the digestion treatment system shown in FIG. 2 can be easily modified to adopt the method of the present invention. When remodeling, the nitrification tank and the second digester used in construction 3 are opened to the atmosphere, and a diffuser such as an aeration pipe or an aerator is installed inside the tank to ensure that the liquid in the tank is kept under aerobic conditions. On the other hand, since the stage before the aeration tank 18 is used as the second denitrification tank 6, care must be taken to maintain anaerobic conditions.

このためには、曝気槽18前段を密閉して大気と遮断す
ればよいが、敢て密閉構造にしなくても、大気中の酸素
が充分溶解しないような回転羽根による緩速攪拌あるい
は少量の空気による緩やかな曝気を行っても、混合液を
攪拌しつつ液を嫌気的条件に保つことができる。曝気槽
18には隔壁19を設けて第2脱窒槽6と再曝気槽8と
に分離するとよいが、曝気槽18での混合液の流れが充
分な栓流(piston flow)であれば、敢て隔
壁19を設けなくても曝気の強度によって曝気槽前段部
を嫌気的条件、後段部を好気的条件に維持することがで
きる。
For this purpose, the front stage of the aeration tank 18 can be sealed to isolate it from the atmosphere, but even if the structure is not airtight, it is possible to use slow agitation with rotating blades or a small amount of air so that the oxygen in the atmosphere does not dissolve sufficiently. Even if mild aeration is performed, it is possible to maintain the liquid mixture under anaerobic conditions while stirring the liquid mixture. It is preferable to provide a partition wall 19 in the aeration tank 18 to separate it into the second denitrification tank 6 and the re-aeration tank 8, but if the flow of the mixed liquid in the aeration tank 18 is a sufficient piston flow, it is not necessary. Even without providing the partition wall 19, it is possible to maintain the front part of the aeration tank under anaerobic conditions and the rear part under aerobic conditions depending on the intensity of aeration.

また1管の新設部(d第2図と第3図を比較してわかる
よ・)に、循環ラインとメタノール(11給ラインのみ
である。し尿の消化4’! (12,13)はいずれも
し尿1511滞留分、合!130日分あり、水温15℃
においても充分の滞留日数(前述し7にように硝化槽の
滞留F(数は15℃において5,8日あればよい)があ
る。
In addition, 1 new pipe (as you can see by comparing Figures 2 and 3) has a circulation line and a methanol supply line (11). If 1,511 points of urine are retained, there is a total of 130 days worth of urine, and the water temperature is 15 degrees Celsius.
There is a sufficient number of retention days (as mentioned in 7 above, the retention time F in the nitrification tank is sufficient at 15° C. for 5 to 8 days).

以十の2L、、うに本発明によって次に述べるような火
きl効果を得ることができる。
According to the present invention, the following ignition effect can be obtained.

■ 従来のAir段の脱窒槽に固液分離した汚泥を返送
すイ、方式にlk:べ、本発明は前段で脱窒される割合
が多く後段で脱窒される分が大幅に減少できる力め、メ
タノールの添加楚を少なくできる。
■ The method of returning the solid-liquid separated sludge to the conventional Air stage denitrification tank is different from the method of the present invention: The present invention has the ability to significantly reduce the amount denitrified in the former stage, while the proportion denitrified in the latter stage is large. Therefore, the amount of methanol added can be reduced.

生物学的脱窒法において消費される桑品はほとんど4!
てメタノールであるので、本発明によって祢めて経済的
な脱窒処理を行うことができる。
Most of the mulberries consumed in biological denitrification are 4!
Since it is methanol, economical denitrification treatment can be performed according to the present invention.

■ 第1脱窒漕、硝化槽をm個性で運転することにより
処理プロ士スが簡単r(1され、既設のし5尿の嫌気性
消化槽を容易に脱窒プロセスに改造することができ、窒
素を含有しない処理水を放流することができる。
■ By operating the first denitrification tank and nitrification tank, the processing process is simplified (1), and the existing human waste anaerobic digestion tank can be easily converted to a denitrification process. , treated water that does not contain nitrogen can be discharged.

次に本発明の実施例CY: 、I−、−尿および人工濃
厚廃水で得だ試験結果について述べる。
Next, Example CY of the present invention: , I-, - Test results obtained with urine and artificially concentrated wastewater will be described.

1、試験装置 第1図に記載の装置。客間は次のとおり
1. Test device The device shown in Figure 1. The guest rooms are as follows.

第1脱望槽・・・・・・・・・・50を硝  化  槽
・・・ −・ ・50.7第2脱窒槽・・・・・・・・
・・ 5を再曝気槽・・・・・・・・・2,5t ■、試験条件と結果 (1)シ尿処理 第1表 処理条(’lと処理水質 1循 環 液 −:]OO//  ” Kje−N(t
/ 135001 40 1ミ返送汚泥量 5 // 
ji N)−13−N(’/ )131001 2 ’
1st denitrification tank...50 Nitrification tank... -50.7 2nd denitrification tank...
...5 Re-aeration tank...2,5t ■Test conditions and results (1) Urine treatment Table 1 Treatment column ('l and treated water quality 1 Circulation liquid -:]OO // ”Kje-N(t
/ 135001 40 1mm return sludge amount 5 //
ji N)-13-N('/ )131001 2'
.

従来法と比較するため、返送汚泥を第1脱窒槽に5t/
′日で流入せしめたところ、処理水中に約50I+1l
il/、/、のNO1〜Nが残留した。そこでメタノー
ルの添加tAを2.ByAK増加したところ、第1表の
如きNO。
In order to compare with the conventional method, 5 tons of returned sludge was transferred to the first denitrification tank.
Approximately 50 I + 1 liter was added to the treated water after 10 days.
il/, /, NO1 to N remained. Therefore, the addition tA of methanol was increased to 2. When ByAK was increased, it was NO as shown in Table 1.

−N−=’l’rの成績を得ることができた。I was able to obtain a score of -N-='l'r.

(2)人工濃厚廃水の処理 第2表 処理条件と処理水質 、循 環 液 量200  R’1NH3−N(n )
l 5oool、  O1( 11、’−/4カ蒔。5./11.1′1.11人人工
濃厚廃水処理についても、従来法と比較するだめ返送汚
泥を第1脱窒槽に21/日で流入せしめたところ、約4
0 m1iIAのNo3−Nが処理水中に残留したが、
メタノールの添加量を057/日から1.0 y/【コ
 に倍増しブこところ、第2表の!11]き処理水質を
得ることができた。
(2) Treatment of artificially concentrated wastewater Table 2 Treatment conditions, treated water quality, circulating fluid volume 200 R'1NH3-N(n)
l 5oool, O1 (11,'-/4 seeds.5./11.1'1.11 people) Regarding the treatment of artificially concentrated wastewater, compared to the conventional method, the return sludge was sent to the first denitrification tank in 21 days. When I let it flow in, it was about 4
0 m1iIA No3-N remained in the treated water, but
The amount of methanol added was doubled from 0.57/day to 1.0 y/[ko, as shown in Table 2! 11] quality of treated water could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示すフローシート、第2図
は苛来の嫌気性消化処理装置のフローシート、第3図は
第2図の装置を本発明方法を実施できるように改造し7
た装置のフローシートである。 1 ・[7尿、2・・・循環硝化液、3・・・第1脱窒
槽、4・・・硝化槽、5・・・返送汚泥、6・・・第2
脱窒槽、7・・・メタノール、8・・・再曝気槽、9・
・・沈殿槽、10・・・1−澄収、11・・・余剰汚泥
、12・・・第1消化槽、13・・・イ32消化槽、I
4・・・消化脱離液、15・・・消化汚泥、I6・・・
希釈水、18・・・曝気槽、19・・・隔壁。 特許出願人 荏原インフイルコ株式会社代理人弁理士 
喘  出  五  −
Fig. 1 is a flow sheet showing an embodiment of the present invention, Fig. 2 is a flow sheet of a conventional anaerobic digestion equipment, and Fig. 3 is a modified version of the equipment shown in Fig. 2 to be able to carry out the method of the present invention. 7
This is a flow sheet of the device. 1 ・[7 Urine, 2... Circulating nitrification liquid, 3... First denitrification tank, 4... Nitrification tank, 5... Return sludge, 6... Second
Denitrification tank, 7...methanol, 8...reaeration tank, 9.
...Sedimentation tank, 10...1-clarification, 11...excess sludge, 12...1st digestion tank, 13...A32 digestion tank, I
4... Digestion and desorption liquid, 15... Digested sludge, I6...
Dilution water, 18... Aeration tank, 19... Partition wall. Patent applicant: Patent attorney representing Ebara Infilco Co., Ltd.
Asthma 5 -

Claims (1)

【特許請求の範囲】[Claims] 1、シ尿系汚水などの高濃度のBOD 、窒素化合物を
含有する廃水の生物学的脱窒法において、順次第1脱窒
累工稈、硝化工程、第2脱窒素工程、再曝気工程、固液
分離工程を構成せしめ、前記硝化工程の硝化液の大部分
を前段の第1脱窒素二丁程へ循環せしめて循B液中のN
Oxを廃水のBOD成分を利用して脱窒未処理すると共
に前記硝化工程の硝化液の残部を前記固液分離工程から
返送される汚泥と共に後段の第2脱窒素工程に導き脱窒
未処理し、次いで再曝気工程で再曝気処理したのち、固
液分離工程で固液分離することを特徴とする廃水の生物
学的脱窒法。
1. In the biological denitrification method of wastewater containing high concentrations of BOD and nitrogen compounds, such as urine-based wastewater, the first denitrification process, nitrification process, second denitrification process, reaeration process, and solidification process are sequentially performed. A liquid separation process is configured, and most of the nitrified liquid from the nitrification process is circulated to the first two denitrification stages in the previous stage to remove N in the circulating liquid B.
Ox is denitrified using the BOD component of the wastewater, and the remainder of the nitrified liquid from the nitrification process is led to the subsequent second denitrification process along with the sludge returned from the solid-liquid separation process, where it is not denitrified. A biological denitrification method for wastewater, which is then subjected to re-aeration treatment in a re-aeration step, followed by solid-liquid separation in a solid-liquid separation step.
JP17539982A 1982-10-07 1982-10-07 Biological denitrification of waste water Granted JPS5966396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17539982A JPS5966396A (en) 1982-10-07 1982-10-07 Biological denitrification of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17539982A JPS5966396A (en) 1982-10-07 1982-10-07 Biological denitrification of waste water

Publications (2)

Publication Number Publication Date
JPS5966396A true JPS5966396A (en) 1984-04-14
JPH0135718B2 JPH0135718B2 (en) 1989-07-26

Family

ID=15995409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17539982A Granted JPS5966396A (en) 1982-10-07 1982-10-07 Biological denitrification of waste water

Country Status (1)

Country Link
JP (1) JPS5966396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504938A (en) * 1988-06-03 1991-10-31 エコクレ アーベー Method for removing nitrogen compounds from raw water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504938A (en) * 1988-06-03 1991-10-31 エコクレ アーベー Method for removing nitrogen compounds from raw water

Also Published As

Publication number Publication date
JPH0135718B2 (en) 1989-07-26

Similar Documents

Publication Publication Date Title
US4179374A (en) Apparatus for the treatment of wastewater
Bickers et al. Availability for denitrification of organic carbon in meat-processing wastestreams
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JPS6254075B2 (en)
JPS5966396A (en) Biological denitrification of waste water
JPS58146495A (en) Treatment of organic waste liquid
JPS6133638B2 (en)
JPS5980398A (en) Biological waste water disposal
JPS5442850A (en) Method of treating raw sewage
Coskuner et al. Performance assessment of a wastewater treatment plant treating weak campus wastewater
JPS59199098A (en) Treatment of organic filthy water
JPH03245897A (en) Method and apparatus for removing nitrogen from sewage
JPH0459959B2 (en)
JPS6216159B2 (en)
JPS5724699A (en) Disposal of highly concentrated waste liquid
JPH02139094A (en) Method and equipment for removing nitrogen from sewage
JPS5892498A (en) Biological denitrification of waste water
JP3440643B2 (en) Wastewater treatment method
JPS61197097A (en) Method for denitrifying waste water
JPH06170388A (en) Treatment of sewage
JPS59109293A (en) Biological denitrification method of waste water
JPS61125491A (en) Treatment of organic waste water
JPS58210898A (en) Biological denitrification method of waste water
JPS61216798A (en) Denitrification and dephosphorization of waste water
JPH0137197B2 (en)