JPS5965484A - Manufactue of semiconductor device - Google Patents

Manufactue of semiconductor device

Info

Publication number
JPS5965484A
JPS5965484A JP17501182A JP17501182A JPS5965484A JP S5965484 A JPS5965484 A JP S5965484A JP 17501182 A JP17501182 A JP 17501182A JP 17501182 A JP17501182 A JP 17501182A JP S5965484 A JPS5965484 A JP S5965484A
Authority
JP
Japan
Prior art keywords
layer
gate electrode
opening
ohmic
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17501182A
Other languages
Japanese (ja)
Other versions
JPH024139B2 (en
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17501182A priority Critical patent/JPS5965484A/en
Publication of JPS5965484A publication Critical patent/JPS5965484A/en
Publication of JPH024139B2 publication Critical patent/JPH024139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To realize excellent FET characteristics through reducing influence of a surface depletion layer by a method wherein the distance between ohmic electrodes and a gate electrode is not more than 1.0mum and the gate electrode and source/drain ohmic electrodes are formed by self-alignment. CONSTITUTION:An SiO2 film 22 is side-etched for the formation of an opening 26 larger than an opening 25. Further, an Al layer 21 is side-etched for the formation of an opening 27 larger than the opening 26, and a gate electrode 1 is formed, by means of heater-evaporation of Al, with its size dependent upon the size of the opening 25. Unnecessary part is removed of the Al layer 21, and the gate electrode 1 is retained, covered with a coating layer 28. Vertical evaporation of an ohmic metal results in the formation of a source, drain electrodes 2, 3. The substrate is rotated and subjected to etching effected by an ion beam with an angle of incidence of 45 deg. for the elimination of an ohmic metal layer 31 located on the coating film 28. By this, a GaAs MESFET is formed wherein a source, drain electrodes 2, 3 are formed by self-alignment, separated from the coating film 28. With the effect of the surface depletion layer being reduced as such, the distance can be not more than 1.0mum between the ohmic electrodes and the gate electrode.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、判にショットキーバリ
アゲート型電界効果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a Schottky barrier gate field effect transistor.

GaAS半導体はSi に比べて5〜6倍と大きな電子
移動度ケ有し、このh速性に大きな特徴があるために、
最近超高速の集、積回路(以下ICと称す)に応用する
研究開発が活発に行なわれている。
GaAS semiconductors have an electron mobility that is 5 to 6 times larger than that of Si, and this h-speed is a major feature, so
Recently, research and development has been actively conducted on applications to ultra-high-speed integrated circuits (hereinafter referred to as ICs).

仁のG&A111Cの能動素子としては、基本的に第1
図に示すようなショットキーバリアゲート型電界効果ト
ランジスタ(以下MESFETと称す)・が提案されて
い超。
The active element of Jin's G&A111C is basically the first one.
A Schottky barrier gate field effect transistor (hereinafter referred to as MESFET) as shown in the figure has been proposed.

これは、プレーナ構造と呼ばれ、第1図に示すよう半絶
縁性QaAa基板4上にエピタキシャル成長やイオン注
入により厚さ約0.2μrrl)n形動作層5を形成し
、ホトレジスト膜全用いたりフトオフ法などによりゲー
ト電極1ヶ形成し、マスクの位置合せ全行ない同様にリ
フトオフ法などによりソースおよびドレインのオーミッ
ク性電極2,3葡形成した比較的簡単な構造のものであ
る。
This is called a planar structure, and as shown in FIG. 1, an n-type active layer 5 (about 0.2 μrrl thick) is formed on a semi-insulating QaAa substrate 4 by epitaxial growth or ion implantation. This is a relatively simple structure in which one gate electrode is formed by a method, etc., the mask is fully aligned, and ohmic electrodes 2 and 3 for the source and drain are formed by a lift-off method.

しかしこのようなプレーナ構造の製造方法では、オーミ
ック性電極?形成するために目合せが必要であり、目合
せ精度は最良の機器においても±0.5μm位であり、
実用機では±1.0μm位である。
However, in the manufacturing method of such a planar structure, is it possible to use ohmic electrodes? Alignment is necessary to form, and the alignment accuracy is around ±0.5 μm even with the best equipment.
In a practical machine, it is about ±1.0 μm.

このような目合せ装置?用いて製造するMl、:5FE
Tではオーミック性電榎とゲート電極との電極間隔t1
.0μm以下にすることは実際上困難である。
An alignment device like this? Ml produced using: 5FE
T is the electrode distance t1 between the ohmic conductor and the gate electrode.
.. It is actually difficult to reduce the thickness to 0 μm or less.

一方ゲート%I極間のQaAs動作層表面では、表面で
の結晶性の乱れや気体の吸着などにょジ、第2図に示す
ように表面空乏層6が発生し実効的な動作層が薄くなり
、オーミック性電極とゲート電e とO’a、極間隔が
長い場合にはゲートソー増用のa、0作層抵抗(ソース
直列抵抗)が増大して、相互コンダクタンスgmが著し
く低下し、良好なFET4″1′性葡得ることが睡しい
On the other hand, on the surface of the QaAs active layer between the gate %I poles, due to disturbances in crystallinity and gas adsorption on the surface, a surface depletion layer 6 is generated as shown in Figure 2, and the effective active layer becomes thinner. , ohmic electrode and gate electrode e and O'a, when the electrode spacing is long, the a, 0 layer resistance (source series resistance) of the gate saw increases, the mutual conductance gm decreases significantly, and a good It is difficult to obtain FET4''1' characteristics.

本発明の目的は上記のよ、うな問題点に鑑みてなされた
ものであり、表面空乏層の影#’に小さくして良好なF
ET特性ケ得るために、オーミックロユ電極とゲート電
極との電極間隔hi、oμrn以下にすることr可ti
[!、にし、かつ、ゲート1m 4bとソースおよびド
レインのオーミック性電極を自己整合的に形成する電界
効果トランジスタの製造方法を提供することにある。
The object of the present invention has been made in view of the above-mentioned problems, and is to reduce the shadow #' of the surface depletion layer and improve F
In order to obtain the ET characteristics, it is possible to make the electrode distance between the ohmic Royle electrode and the gate electrode less than hi, oμrn.
[! It is an object of the present invention to provide a method for manufacturing a field effect transistor in which the gate 1m4b and the ohmic electrodes of the source and drain are formed in a self-aligned manner.

本発明によれば半導体基板動作層上にゲート電極を形成
する工程と、該ゲート電極近傍全被覆層で覆う工程と、
オーミック性金r16に被着する工程と、前記被覆層上
の前記オーミック性金属を除去し、てソースおよびドレ
イン電極音形成する工程?有することを特徴とする半導
体装置の製造方法が得られる。
According to the present invention, a step of forming a gate electrode on a semiconductor substrate active layer, a step of covering the entire vicinity of the gate electrode with a covering layer,
A step of depositing ohmic gold R16, and a step of removing the ohmic metal on the coating layer to form source and drain electrodes. A method for manufacturing a semiconductor device is obtained.

次に本発明の実施例を図面音用いて説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第3図(a)〜(i)は本発明半導体装置の製造方法の
−・実施例?示す工程図である。
3(a) to 3(i) are examples of the method for manufacturing a semiconductor device of the present invention? FIG.

第3図(a)のように半絶縁性GaAs基板にイオン注
入法により形成した不純物濃度的2 X 10 Cm 
r厚さ約0.2μmのn形動作層24の上に、第1)酋
21としてアルミニウムAtk2.0μmスパッタ蒸着
し、第2層22として二酸化シリコン5iO2t0.3
μmスパッタ蒸漸蒸着第3層23としてホトレジスト膜
1.0μmf塗布し1.0μm長のゲート電極パターン
の開口25i設ける。
As shown in FIG. 3(a), an impurity concentration of 2×10 Cm was formed by ion implantation on a semi-insulating GaAs substrate.
On the n-type active layer 24 with a thickness of approximately 0.2 μm, aluminum Atk 2.0 μm is sputter-deposited as the first layer 21, and silicon dioxide 5iO2t0.3 is used as the second layer 22.
A 1.0 μm thick photoresist film is applied as the third layer 23 by μm sputter evaporation, and an opening 25i of a gate electrode pattern with a length of 1.0 μm is provided.

そして第3図(b)VC,示す如くSiO2膜22上2
2會バツフアド弗酸0.5μmサイドエツチングして開
口25より広い開口26を設け、更にAt層21を60
℃リン酸により1.5μmサイドエツチングして開口2
6より広い開口27を設け、第3図(e)のようにゲー
ト金屑としてアルミニウムAtf0.3μmヒータ蒸着
して開口25により決まるゲート電極1が形成され、ア
セトンでホトレジスト膜23’lH溶してホトレジスト
膜23上の余分なゲート金属層30も同時に除去し、第
3図(d)のようにゲート電極1の上に一酸化シリコン
5lot−0.9μmヒータ蒸着して第2層の開口26
により決まる被覆層28に形成する。。
3(b) VC, as shown, 2 on the SiO2 film 22.
Buffered hydrofluoric acid was side-etched by 0.5 μm for two days to form an opening 26 wider than the opening 25, and the At layer 21 was then etched by 60 μm.
Opening 2 was side-etched by 1.5 μm using phosphoric acid at °C.
6, and as shown in FIG. 3(e), the gate electrode 1 defined by the opening 25 is formed by evaporating aluminum Atf0.3 μm as gate metal scraps using a heater, and then dissolving the photoresist film 23'lH with acetone. The excess gate metal layer 30 on the photoresist film 23 is also removed at the same time, and as shown in FIG.
The coating layer 28 is formed according to the following. .

次に第3図(e)のようにAt層21’に60℃リン酸
で溶して余分な層會除去し、ゲート電極1が被佼層28
で覆われたもの?残し、第3図(f)のようにオーミッ
ク性金FAA u、Ge −P t 2000 A k
垂直に蒸着することによシンースおよびドレイン電極2
.3が形成され、第3図(g)のようにホトレジスト膜
29を厚さ1.0μm スピン塗布して乾燥し、第3図
(h)のようvCArイオンミーリングにょ9、基板を
回転してイオン入射角45°で被覆膜28上のオーミッ
ク性金属層31がなくなるまでエツチング除去し、第3
図(i)のように残ったホトレジスト膜29をはぐり液
で除去することにょシ、ソースおよびドレイン電極2,
3が被覆層28により分離されて自己整合的に形成され
たGaAs  MESFETが完成する。
Next, as shown in FIG. 3(e), the At layer 21' is dissolved in phosphoric acid at 60°C to remove the excess layer, and the gate electrode 1 is removed from the covered layer 21'.
Something covered in? As shown in Fig. 3(f), ohmic gold FAA u, Ge -P t 2000 A k
Thin source and drain electrodes 2 by vertical deposition
.. 3 is formed, a photoresist film 29 is spin-coated to a thickness of 1.0 μm as shown in FIG. 3(g) and dried, and the substrate is rotated to remove ions by vCARr ion milling 9 as shown in FIG. 3(h). The ohmic metal layer 31 on the coating film 28 is removed by etching at an incident angle of 45° until the ohmic metal layer 31 is removed.
As shown in Figure (i), the remaining photoresist film 29 is removed with a stripping solution, and the source and drain electrodes 2,
3 are separated by a covering layer 28 to complete a self-aligned GaAs MESFET.

SiO□層22全22ドエツチングするバッファド弗酸
液としては、50%弗酸水と40%弗化アンモニウム水
vt:t4で混合したものffllo℃で用いると、0
.5μmサイドエッチニ/グされるまでの時間は8分で
あり、ばらつきは±0.1μmと小きく精度よく行なわ
れる。また、被Jaj−の横幅を小さくするためにヒー
タ蒸着の一酸化シリコン5iOt−用いたが、二酸化シ
リコン5io2、窒化シリコン、窒化チタンなどであっ
てもよく、これらを電子ビーム蒸着、スパッタ蒸着して
もよい。
The buffered hydrofluoric acid solution for etching all 22 of the SiO□ layers 22 is a mixture of 50% hydrofluoric acid water and 40% ammonium fluoride water vt: t4.
.. It takes 8 minutes to perform the 5 μm side etching, and the variation is as small as ±0.1 μm, making the process highly accurate. Further, in order to reduce the width of the Jaj-, heater-deposited silicon monoxide 5iOt- was used, but silicon dioxide 5io2, silicon nitride, titanium nitride, etc. may also be used, and these can be deposited by electron beam evaporation or sputter evaporation. Good too.

この実施例によると、ゲート電極とソースおよびドレイ
ン電極との間隔は被憬層の横幅により決定する。本実施
例では、被覆層の横幅は第2層22のサイドエツチング
量により決まフ、1μm以下に設定することは容易であ
る。第2層22として用いた二酸化シリコン5i02は
エツチング液の組成と液温などの条件を決めるとサイド
エッチング量會エツチング時間で制御することが可能で
ある。
According to this embodiment, the distance between the gate electrode and the source and drain electrodes is determined by the width of the covered layer. In this embodiment, the width of the covering layer is determined by the amount of side etching of the second layer 22, and can easily be set to 1 μm or less. The silicon dioxide 5i02 used as the second layer 22 can be controlled by controlling the side etching amount and etching time by determining conditions such as the composition and temperature of the etching solution.

そして、このようにして形成したゲート幅20μm、ゲ
ート長1.0μm、電極間隔0.5μmc7)MISF
ETの相互’zyダクタンスgmは3.2 m Sであ
り、従来のようにホトレジスト膜の目金せて電極間隔1
.2μmで形成したもののgmは1.8mSでちり、本
発明による電極間隔が短かいMESFETのgmは、従
来のものに較べて2倍近い値となっている。
Then, the gate width 20 μm, gate length 1.0 μm, and electrode spacing 0.5 μm c7) MISF
The mutual 'zy ductance gm of ET is 3.2 mS, and as in the conventional case, the electrode spacing is 1
.. The gm of the MESFET formed with a thickness of 2 μm is 1.8 mS, and the gm of the MESFET with short electrode spacing according to the present invention is nearly twice that of the conventional one.

本発明によると、表面空乏層の影響荀小さくしてオーミ
ック性電極とゲート電極との電極間隔を1.0μm以下
にすること全可能にした電界効果トランジスタが得られ
る。
According to the present invention, it is possible to obtain a field effect transistor in which the influence of the surface depletion layer is reduced and the distance between the ohmic electrode and the gate electrode can be reduced to 1.0 μm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の最も基本的なプレーナ構造のショットキ
ーゲート型MESFETの断面図−1第2図はこのブレ
ーナ構造MESFETの動作層表面に表面空乏層が発生
している状態?示す図、第3図(a)〜(i)は本発明
の製造方法の一実施flLk説明するだめの工程図であ
る。図において、 1・・・・・・ゲート電極、2・・・・・・ソース電極
、3・・・・・・ドレイン電極、4・・・・・・半絶縁
性基板、5.24・・・・・・半導体動作層、6・・・
・・・表面空乏層、21・・・・・・第1層、22・・
・・・・第2層、23・・・・・・第3層、25926
.27・・・・・・各層の開口、28・・・・・・被覆
層である。 茅1図 第2図 (d) (シ) (C) 簑 3 図
Figure 1 is a cross-sectional view of the most basic conventional planar structure Schottky gate MESFET - 1 Figure 2 shows a state in which a surface depletion layer is generated on the active layer surface of this planar structure MESFET? The figures shown in FIGS. 3(a) to 3(i) are process diagrams for explaining one implementation of the manufacturing method of the present invention. In the figure, 1... Gate electrode, 2... Source electrode, 3... Drain electrode, 4... Semi-insulating substrate, 5.24... ...Semiconductor operating layer, 6...
...Surface depletion layer, 21...First layer, 22...
...Second layer, 23...Third layer, 25926
.. 27... Openings in each layer, 28... Covering layer. Fig. 1 Fig. 2 (d) (shi) (C) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 半導体基板動作層上にゲート電極を形成する工程と、該
ゲート電極近傍を被覆層で覆う工程と、オーミック性金
属葡被着する工程と、前記被覆層上の前記オーミック性
金属全除去してソースおよびドレイン電極音形成する工
程會有するとと勿特徴とする半導体装置の製造方法。
A step of forming a gate electrode on a semiconductor substrate active layer, a step of covering the vicinity of the gate electrode with a covering layer, a step of depositing an ohmic metal, and a step of completely removing the ohmic metal on the covering layer to form a source. and a process for forming a drain electrode sound.
JP17501182A 1982-10-05 1982-10-05 Manufactue of semiconductor device Granted JPS5965484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17501182A JPS5965484A (en) 1982-10-05 1982-10-05 Manufactue of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17501182A JPS5965484A (en) 1982-10-05 1982-10-05 Manufactue of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5965484A true JPS5965484A (en) 1984-04-13
JPH024139B2 JPH024139B2 (en) 1990-01-26

Family

ID=15988651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17501182A Granted JPS5965484A (en) 1982-10-05 1982-10-05 Manufactue of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5965484A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100482A (en) * 1980-01-14 1981-08-12 Matsushita Electric Ind Co Ltd Manufacture of fet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100482A (en) * 1980-01-14 1981-08-12 Matsushita Electric Ind Co Ltd Manufacture of fet

Also Published As

Publication number Publication date
JPH024139B2 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
JPS5950567A (en) Manufacture of field effect transistor
JPS6032364A (en) Manufacture of semiconductor device
US4997779A (en) Method of making asymmetrical gate field effect transistor
JPS6351550B2 (en)
US5376812A (en) Semiconductor device
JPS5965484A (en) Manufactue of semiconductor device
JPS61156887A (en) Manufacture of fet
JP3211786B2 (en) Method for manufacturing semiconductor device
JPS6037172A (en) Manufacture of field effect transistor
JP3018791B2 (en) Method for manufacturing field effect transistor
JPS60115268A (en) Manufacture of semiconductor device
JPS6323366A (en) Manufacture of field-effect transistor
JPS5975673A (en) Manufacture of semiconductor device
JPS60234375A (en) Manufacture of schottky gate type field effect transistor
JPS60776A (en) Manufacture of semiconductor device
JPS61216487A (en) Manufacture of semiconductor device
JP2707612B2 (en) Method for manufacturing field effect transistor
JPH01161873A (en) Manufacture of semiconductor device
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPS5965485A (en) Manufacture of semiconductor device
JPS59172776A (en) Manufacture of semiconductor device
JPS6015978A (en) Manufacture of field effect transistor
JPS6272175A (en) Manufacture of semiconductor device
JPS6037176A (en) Manufacture of field effect transistor
JPH05175243A (en) Manufacture of semiconductor device