JPS596360A - Heat treatment of amorphous magnetic alloy - Google Patents

Heat treatment of amorphous magnetic alloy

Info

Publication number
JPS596360A
JPS596360A JP57115864A JP11586482A JPS596360A JP S596360 A JPS596360 A JP S596360A JP 57115864 A JP57115864 A JP 57115864A JP 11586482 A JP11586482 A JP 11586482A JP S596360 A JPS596360 A JP S596360A
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic
thin strip
alloy
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57115864A
Other languages
Japanese (ja)
Other versions
JPH0375624B2 (en
Inventor
Yoshitaka Ochiai
落合 祥隆
Masatoshi Hayakawa
正俊 早川
Koichi Aso
阿蘇 興一
Akira Kamihira
上平 暁
Hideki Matsuda
秀樹 松田
Kazuhide Hotai
保田井 和秀
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57115864A priority Critical patent/JPS596360A/en
Publication of JPS596360A publication Critical patent/JPS596360A/en
Publication of JPH0375624B2 publication Critical patent/JPH0375624B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the heat treatment of a large amount of or/and a continuous amorphous magnetic alloy, by a method wherein an amorphous magnetic alloy thin strip is applied with a magnetic field sufficient for being equalized in induction magnetic anisotropy in two directions crossing at right angles in the main surface of said thin strip at the Curie temp. thereof or less and the crystallization temp. thereof or less to be subjected to heat treatment. CONSTITUTION:An amorphous magnetic alloy thin strip 1 is wound cylindrically and, for example, a solenoid coil 2 is provided to the cylindrical thin strip 1 to apply a magnetic field H1 thereto in the longitudinal direction thereof at the Curie temp. of said alloy or less and the crystallization temp. thereof or less to carry out heat treatment. By this method, induction magnetic anisotropy K//l is generated in the longitudinal direction within the main surface of the thin strip 1. In the next step, an external magnetic field H3 is applied to the same cylindrical thin strip in the width direction thereof under the same temp. condition as mensioned above to carry out heat treatment. In this case, induction magnetic anisotopy Krt. anglel is generated in the direction crossing the longitudinal direction at right angles within the main surface of the thin strip 1 to complete heat treatment in a time satisfying the condition of K//lapprox.=Krt. anglel. By this method, an amorphous magnetic alloy having high permeability capable of being used as a soft magnetic material can be prepared by a mass production system.

Description

【発明の詳細な説明】 本発明は、非晶質磁性合金の熱処理方法に係り、特に高
い透磁率の非晶質磁性合金を大量および/または連続的
に容易に製造することができる非晶質磁性合金の熱処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treatment of an amorphous magnetic alloy, and particularly to a method for heat treatment of an amorphous magnetic alloy, which can easily produce an amorphous magnetic alloy having a high magnetic permeability in large quantities and/or continuously. The present invention relates to a method for heat treatment of magnetic alloys.

超急冷法、スパッタ及びメッキ法で製造された非晶質磁
性材料は、製造されたままの状態では透磁率(μ′)が
通常低い値を示すので軟磁性材料として直接利用するこ
とが不可能である。磁歪零材の組成において非晶質磁性
材の透磁率を決定しているのは、製造中に誘導される異
方性、つまり誘導磁気異方性がある。この誘導磁気異方
性が磁場中の熱処理により自由に制御できるという事実
に基づき、先に本発明者らは非晶質磁性合金薄板上の任
意の直交座標軸においてKix : Kiy (Kfx
 : x方向の誘導磁気異方性、 Ki7 : y方向
の誘導磁気異方性)の条件を満足する磁場中熱処理を施
した時、著しい透磁率の改善が得られることを提案した
。しかし、かかる本発明者らの提案では、原理の呈示は
しても実用上、大量および/または連続的に処理するこ
とに難点があった。
Amorphous magnetic materials manufactured by ultra-quenching, sputtering, and plating methods usually have low magnetic permeability (μ') in the as-manufactured state, so they cannot be used directly as soft magnetic materials. It is. What determines the magnetic permeability of an amorphous magnetic material in the composition of a magnetostrictive material is anisotropy induced during manufacturing, that is, induced magnetic anisotropy. Based on the fact that this induced magnetic anisotropy can be freely controlled by heat treatment in a magnetic field, the present inventors previously calculated Kix : Kiy (Kfx
We proposed that when heat treatment is performed in a magnetic field that satisfies the following conditions: induced magnetic anisotropy in the x direction, Ki7: induced magnetic anisotropy in the y direction, a significant improvement in magnetic permeability can be obtained. However, although this proposal by the present inventors has presented the principle, it is difficult to process in large quantities and/or continuously in practice.

本発明は、このよ5な実情に鑑みてなされたものであり
、誘導磁気異方性の等方的条件を満たし、かつ大量およ
び/または連続的に熱処理を可能にした非晶質磁性合金
の熱処理方法を提供するものである。
The present invention was made in view of these five circumstances, and provides an amorphous magnetic alloy that satisfies the isotropic condition of induced magnetic anisotropy and that can be heat-treated in large quantities and/or continuously. A heat treatment method is provided.

本発明においては、非晶質磁性合金薄帯に対して、この
合金のキュリ一温度以下でかつ結晶化温度以下で非晶質
磁性合金薄帯の主面内の第1の方向に誘導磁気異方性を
発生させるに充分な磁場を印加して熱処理し、上記合金
のキュリ一温度以下でかつ結晶化温度以下で非晶質磁性
合金薄帯の主面内で第1の方向に対して直交する第2の
方向VC。
In the present invention, an induced magnetic change is applied to an amorphous magnetic alloy ribbon in a first direction in the principal plane of the amorphous magnetic alloy ribbon at a temperature below the Curie temperature and below the crystallization temperature of the alloy. Heat treatment is performed by applying a magnetic field sufficient to generate orientation, and the amorphous magnetic alloy ribbon is perpendicular to the first direction in the main plane at a temperature below the Curie temperature and below the crystallization temperature of the alloy. A second direction VC.

その第1の方向の誘導磁気異方性と第2の方向の誘導磁
気異方性が等しくなるに充分な磁界を印加して熱処理す
ることを特徴とするものである。これによって、誘導磁
気異方性の等方的条件を満たし、大量および/または連
続的に非晶質磁性合金を熱処理することができる。
The heat treatment is performed by applying a magnetic field sufficient to make the induced magnetic anisotropy in the first direction equal to the induced magnetic anisotropy in the second direction. Thereby, the isotropic condition of induced magnetic anisotropy can be satisfied, and the amorphous magnetic alloy can be heat-treated in large quantities and/or continuously.

以下、図面を用いて本発明による非晶質磁性合金の熱処
理方法の例を詳述する。
Hereinafter, an example of the heat treatment method for an amorphous magnetic alloy according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の一例を示す。本例においては非晶質磁
性合金薄帯(1)を筒状に巻き、これに例えばソレノイ
ドコイル(2)を施してこの合金のキュリ一温度以下で
かつ結晶化温度以下の温度で、筒状の円周方向即ち薄帯
(1)の長手方向に磁場H1を印加して熱処理し、薄帯
(1)の主面内の長手方向に誘導磁気異方性Kl/Qを
発生させる。次に同じ前状態の薄帯(1)にこの合金の
キュリ一温度以下でかつ結晶化温度以下の温度で、薄帯
(1)の幅方向に外部磁場H2を印加して熱処理し、薄
帯(1)の主面内でその長手方向と直交する幅方向に誘
導磁気異方性KLQを発生させ、Kttg = Klg
の条件を満足する時間で熱処理を終える。すなわち、こ
の場合磁場H2を印加すると磁場H1で発生したに//
lが減少しつつ之と直交するKlが増大するのでKnQ
= Klgとなる時点で熱処理を終える。
FIG. 1 shows an example of the invention. In this example, an amorphous magnetic alloy ribbon (1) is wound into a cylindrical shape, and a solenoid coil (2), for example, is applied to this to form a cylindrical shape at a temperature below the Curie temperature and below the crystallization temperature of the alloy. Heat treatment is performed by applying a magnetic field H1 in the circumferential direction, that is, in the longitudinal direction of the ribbon (1), to generate induced magnetic anisotropy Kl/Q in the longitudinal direction within the main surface of the ribbon (1). Next, the ribbon (1) in the same previous state is heat-treated by applying an external magnetic field H2 in the width direction of the ribbon (1) at a temperature below the Curie temperature and below the crystallization temperature of this alloy. Induced magnetic anisotropy KLQ is generated in the width direction perpendicular to the longitudinal direction within the principal plane of (1), and Kttg = Klg
Finish the heat treatment in a time that satisfies the following conditions. That is, in this case, when applying the magnetic field H2, the result generated by the magnetic field H1 //
As l decreases, Kl, which is orthogonal to it, increases, so KnQ
The heat treatment is finished at the time when = Klg.

この方法によれば、大量に非晶質磁性合金に対する熱処
理が可能になる。特にこの方法はトランス用コア向けに
適している。この方法では筒状に巻いた状態で磁場中熱
処理を施すので熱処理後の非晶質磁性合金薄帯(1)が
そり曲がる慣れがある。
According to this method, it is possible to heat treat a large amount of amorphous magnetic alloy. This method is particularly suitable for transformer cores. In this method, the amorphous magnetic alloy ribbon (1) is subjected to heat treatment in a magnetic field while being wound into a cylindrical shape, so the amorphous magnetic alloy ribbon (1) tends to warp after the heat treatment.

第2図は本発明の他の例である。本例は非晶質磁性合金
薄帯(1)を平板の状態で一方に移送し、その移送途上
の第1の位置において例えばソレノイドコイル(2)を
用いて該合金のキュリ一温度以下でかつ結晶化温度以下
の温度で薄帯(1)の長手方向に磁場H1を印加して熱
処理し、薄帯(1)の主面内の朱子方向に誘導磁気異方
性に//Qを発生させる。次に移送途上の第2の位置に
おいて、同様に合金のキュリ一温度以下でかつ結晶化温
度以下の温度で。
FIG. 2 is another example of the present invention. In this example, an amorphous magnetic alloy ribbon (1) is transferred in the form of a flat plate to one side, and at a first position during the transfer, for example, a solenoid coil (2) is used to cool the alloy to below the Curie temperature. Heat treatment is performed by applying a magnetic field H1 in the longitudinal direction of the ribbon (1) at a temperature below the crystallization temperature to generate induced magnetic anisotropy //Q in the satin direction within the main surface of the ribbon (1). . Then, at a second location during the transfer, similarly at a temperature below the Curie temperature and below the crystallization temperature of the alloy.

薄帯(1)の幅方向に外部磁場H2を印加して熱処理し
、薄帯(1)の主面内で長手方向と直交する幅方向に誘
導磁気異方性に1gを発生させ、 Ktti = K旦
の条件を満足する時間で熱処理を終える。
The ribbon (1) is heat-treated by applying an external magnetic field H2 in the width direction to generate an induced magnetic anisotropy of 1 g in the width direction perpendicular to the longitudinal direction within the main surface of the ribbon (1), and Ktti = The heat treatment is completed in a time that satisfies the conditions of K days.

この方法によれば、非晶質磁性合金薄帯(1)が平板の
状態で磁場中熱処理されるので熱処理後の薄帯(1)の
そり曲りを防ぎ、しかも大量かつ連続的に非晶質磁性合
金の熱処理を可能にする。従ってこの方法で熱処理され
た非晶質磁性合金薄帯はそり曲りがなく平板状に得られ
るので、爾後の打抜き、エツチング等の加工性がよく、
例えば磁気ヘッド等の軟磁性コア材用に適するものであ
る。
According to this method, since the amorphous magnetic alloy ribbon (1) is heat-treated in a flat plate state in a magnetic field, it is possible to prevent the ribbon (1) from warping after the heat treatment, and to continuously form amorphous alloys in large quantities. Enables heat treatment of magnetic alloys. Therefore, since the amorphous magnetic alloy ribbon heat-treated by this method is obtained in a flat plate shape without warping, it has good workability in subsequent punching, etching, etc.
For example, it is suitable for soft magnetic core materials such as magnetic heads.

尚、第1図及び第2図において磁場H1及びH2を印加
する順序は問わない。つまり、上例では磁場H1を先に
し磁場H2を後に印加したが、逆の磁場H2を先にし磁
場H,x、 u、に印加してもよい。いずれの順序にお
いてもHl、H2の磁場中熱処理においてKttg ’
、 Kigの条件を満足させることで本発明は達成され
る。従って本質的には磁場は交流、直流を間はない。
Note that the order in which the magnetic fields H1 and H2 are applied in FIGS. 1 and 2 does not matter. That is, in the above example, the magnetic field H1 was applied first and the magnetic field H2 was applied later, but the opposite magnetic field H2 may be applied first to the magnetic fields H, x, and u. In any order, Kttg' in Hl, H2 magnetic field heat treatment
The present invention is achieved by satisfying the conditions of Kig. Therefore, there is essentially no difference between alternating current and direct current in magnetic fields.

また、上例では薄帯(1)の主面上において、その長手
方向と之に直交する幅方向に夫々磁場H1及びH2を印
加したが、その他主面内における任意の直交座標軸にお
いて互に直交する方向に磁場H1及びH2を印加しても
よい。
In addition, in the above example, magnetic fields H1 and H2 were applied on the main surface of the ribbon (1) in the width direction perpendicular to the longitudinal direction, respectively, but the magnetic fields H1 and H2 were applied in the width direction perpendicular to the longitudinal direction of the ribbon (1), respectively, but the magnetic fields H1 and H2 were applied in the width direction perpendicular to the longitudinal direction of the ribbon (1). The magnetic fields H1 and H2 may be applied in the directions.

また、第1図及び第2図ではすべて炉中で熱処理が行な
われる。
Further, in both FIGS. 1 and 2, heat treatment is performed in a furnace.

更に1図示せざるも、例えば第2図の例においてさらに
薄帯(1)の移送途上の第3の位置において薄帯(1)
の板面に対して垂直方向に外部磁場H3を印加して該合
金のキュリ一温度以下でかつ結晶化温度以下の温度で 
熱処理し、3次元的に誘導磁気異方性を略等しくするよ
うになすことも可能である。このときはさらに高周波領
域の透磁率向上が期待できる。
Furthermore, although not shown in FIG. 2, for example, in the example of FIG.
An external magnetic field H3 is applied perpendicularly to the plate surface of the alloy at a temperature below the Curie temperature and below the crystallization temperature.
It is also possible to make the induced magnetic anisotropy substantially equal three-dimensionally by heat treatment. In this case, further improvement in magnetic permeability in the high frequency region can be expected.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例(1) 試料はFe5Co75Si4B16 (結晶化温度42
0’C,−+ユリ一温度570℃)で厚み約20μm、
長さ約iomの非晶質磁性合金薄帯を使用し、これを筒
状に巻き、第1図に示す熱処理法を用い℃最初に熱処理
温度Ta = 360℃、時間fa = 30m1n、
磁場H2==2.4 KOeで誘導磁気異方性を与えた
。然る後、熱処理温度Ta = 300’C1時間ta
= 10m1n 、磁場H1= 300eの条件で熱処
理を行った。表1に、その結果を示す。透磁率の測定磁
界は10m0eである。
Example (1) The sample was Fe5Co75Si4B16 (crystallization temperature 42
0'C, - + lily temperature 570℃) thickness approximately 20μm,
An amorphous magnetic alloy ribbon with a length of about iom was used, wound into a cylindrical shape, and heat-treated using the heat treatment method shown in Fig. 1. Initially, the temperature Ta = 360 °C, the time fa = 30 m1n,
Induced magnetic anisotropy was given with a magnetic field H2==2.4 KOe. After that, heat treatment temperature Ta = 300'C1 hour ta
The heat treatment was performed under the conditions of = 10 m1n and magnetic field H1 = 300e. Table 1 shows the results. The magnetic field for measuring magnetic permeability is 10 m0e.

表   1 実施例(2) 実施例(1)と同じ試料を用い%第2図の熱処理法(磁
場を印加する順序は逆)により最初の第1の位置で熱処
理温度Ta = 360℃、時間ta =3Qmln 
S磁場H2−2,4KOeで誘導磁気異方性を与え1次
の位置で熱処理温度Ta = 300℃、時間ta =
 10m1n 。
Table 1 Example (2) Using the same sample as in Example (1), heat treatment was performed at the first position using the heat treatment method shown in Figure 2 (the order of applying the magnetic field was reversed) at Ta = 360°C and time ta. =3Qmln
Induced magnetic anisotropy was given in the S magnetic field H2-2,4KOe, and heat treatment was performed at the primary position at temperature Ta = 300°C and time ta =
10m1n.

磁場H1−300eの条件で熱処理を行った。この結果
は上記表1と同じであった。
Heat treatment was performed under the condition of magnetic field H1-300e. The results were the same as in Table 1 above.

上述せる如く、本発明によれば非晶質磁性合金に対して
誘導磁気異方性の等方的条件を満たし。
As described above, according to the present invention, the isotropic condition of induced magnetic anisotropy is satisfied for an amorphous magnetic alloy.

かつ大量または/および連続的な熱処理が可能となるも
ので、従って軟磁性材料として使用し得る高い透磁率の
非晶質磁性合金の量産化を可能にするものである。
Moreover, it enables large-scale and/or continuous heat treatment, thus making it possible to mass-produce amorphous magnetic alloys with high magnetic permeability that can be used as soft magnetic materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明における熱処理工程の例
を示す概略図である。 (1)は非晶質磁性合金薄帯、(2)はソレノイドコイ
ル、(Hl ) (H2)は印加磁界である。 第1頁の続き 0発 明 者 林和彦 横浜市保土ケ谷区藤塚町174番 地ソニー株式会社中央研究所内
FIGS. 1 and 2 are schematic diagrams showing examples of heat treatment steps in the present invention, respectively. (1) is an amorphous magnetic alloy ribbon, (2) is a solenoid coil, and (Hl) (H2) is an applied magnetic field. Continued from page 1 0 Inventor Kazuhiko Hayashi Sony Corporation Central Research Laboratory, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama City

Claims (1)

【特許請求の範囲】[Claims] 非晶質磁性合金薄帯に対して、該合金のキュリ一温度以
下でかつ結晶化温度以下で該薄帯の主面内の第1の方向
に誘導磁気異方性を発生させるに充分な磁場を印加して
熱処理し、該合金のキュリ一温度以下でかつ結晶化温度
以下で該薄帯の主面内で上記第1の方向に対して直交す
る第2の方向に、該第1の方向の誘導磁気異方性と該第
2の方向の誘導磁気異方性が等しくなるに充分な磁界を
印加して熱処理することを特徴とする非晶質磁性合金の
熱処理方法。
A magnetic field sufficient to generate induced magnetic anisotropy in a first direction in the principal plane of the amorphous magnetic alloy ribbon at a temperature below the Curie temperature and below the crystallization temperature of the alloy. is applied in a second direction perpendicular to the first direction within the main surface of the ribbon at a temperature below the Curie temperature and below the crystallization temperature of the alloy. 1. A method for heat treatment of an amorphous magnetic alloy, comprising applying a magnetic field sufficient to make the induced magnetic anisotropy in the second direction equal to the induced magnetic anisotropy in the second direction.
JP57115864A 1982-07-02 1982-07-02 Heat treatment of amorphous magnetic alloy Granted JPS596360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115864A JPS596360A (en) 1982-07-02 1982-07-02 Heat treatment of amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115864A JPS596360A (en) 1982-07-02 1982-07-02 Heat treatment of amorphous magnetic alloy

Publications (2)

Publication Number Publication Date
JPS596360A true JPS596360A (en) 1984-01-13
JPH0375624B2 JPH0375624B2 (en) 1991-12-02

Family

ID=14673033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115864A Granted JPS596360A (en) 1982-07-02 1982-07-02 Heat treatment of amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS596360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172513A (en) * 1987-12-26 1989-07-07 Tokin Corp Method and apparatus for heat treating wound magnetic core of thin amorphous alloy strip
US4928382A (en) * 1985-08-23 1990-05-29 Hitachi Maxell, Ltd. Method of the production of a magnetic head
US5676767A (en) * 1994-06-30 1997-10-14 Sensormatic Electronics Corporation Continuous process and reel-to-reel transport apparatus for transverse magnetic field annealing of amorphous material used in an EAS marker
US5684459A (en) * 1995-10-02 1997-11-04 Sensormatic Electronics Corporation Curvature-reduction annealing of amorphous metal alloy ribbon
US5786762A (en) * 1994-06-30 1998-07-28 Sensormatic Electronics Corporation Magnetostrictive element for use in a magnetomechanical surveillance system
WO2015190528A1 (en) * 2014-06-10 2015-12-17 日立金属株式会社 Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
CN106575567A (en) * 2014-07-28 2017-04-19 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928382A (en) * 1985-08-23 1990-05-29 Hitachi Maxell, Ltd. Method of the production of a magnetic head
JPH01172513A (en) * 1987-12-26 1989-07-07 Tokin Corp Method and apparatus for heat treating wound magnetic core of thin amorphous alloy strip
US5676767A (en) * 1994-06-30 1997-10-14 Sensormatic Electronics Corporation Continuous process and reel-to-reel transport apparatus for transverse magnetic field annealing of amorphous material used in an EAS marker
US5786762A (en) * 1994-06-30 1998-07-28 Sensormatic Electronics Corporation Magnetostrictive element for use in a magnetomechanical surveillance system
AU704801B2 (en) * 1995-04-12 1999-05-06 Sensormatic Electronics, LLC Continuous process and reel-to-reel transport apparatus for transverse magnetic field annealing of amorphous material used in an EAS marker
US5684459A (en) * 1995-10-02 1997-11-04 Sensormatic Electronics Corporation Curvature-reduction annealing of amorphous metal alloy ribbon
WO2015190528A1 (en) * 2014-06-10 2015-12-17 日立金属株式会社 Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
CN106170837A (en) * 2014-06-10 2016-11-30 日立金属株式会社 Fe Based Nanocrystalline Alloys magnetic core and the manufacture method of Fe Based Nanocrystalline Alloys magnetic core
JPWO2015190528A1 (en) * 2014-06-10 2017-04-20 日立金属株式会社 Fe-based nanocrystalline alloy core and method for producing Fe-based nanocrystalline alloy core
CN106575567A (en) * 2014-07-28 2017-04-19 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core

Also Published As

Publication number Publication date
JPH0375624B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
JPH0525946B2 (en)
JPS599157A (en) Heat treatment of amorphous magnetic alloy
CN106282508A (en) A kind of heat treatment method preparing nanometer crystal alloy
JPS596360A (en) Heat treatment of amorphous magnetic alloy
US5494534A (en) Method of heat treating an amorphous soft magnetic article
US4473415A (en) Method of manufacturing an amorphous magnetic alloy
US4194932A (en) Fe/Cr/Co Permanent magnetic alloys and method of production thereof
JPS5825449A (en) Amorphous magnetic alloy for magnetic head
JPS582567B2 (en) Method for manufacturing anisotropic Fe-Cr-Co magnet alloy
JPS59170248A (en) Heat treatment of amorphous alloy
JPS6246408A (en) Production of magnetic head
JPS61295612A (en) Electromagnetic device
JPS6043899B2 (en) High effective permeability non-quality alloy
JPS59121805A (en) Manufacture of wound core
KR970009414B1 (en) Soft magnetic material & processing method
JPS5893311A (en) Coil core and manufacture thereof
JPS60208815A (en) Manufacture of wound iron core
JPS5914609A (en) Thermal processing for amorphous magnetic material
JP2739574B2 (en) Heat treatment method for amorphous soft magnetic material
JPH031513A (en) Manufacture of soft magnetic thin film
JPS60181237A (en) Manufacture of amorphous magnetic alloy having small iron loss
JPS60145360A (en) Amorphous magnetic alloy and its manufacture
JPS5980906A (en) Magnetic core
JPS60263414A (en) Formation of soft magnetic thin film
JPS63255371A (en) Heat treatment of amorphous soft magnetic material