WO2015190528A1 - Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE - Google Patents

Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE Download PDF

Info

Publication number
WO2015190528A1
WO2015190528A1 PCT/JP2015/066758 JP2015066758W WO2015190528A1 WO 2015190528 A1 WO2015190528 A1 WO 2015190528A1 JP 2015066758 W JP2015066758 W JP 2015066758W WO 2015190528 A1 WO2015190528 A1 WO 2015190528A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnetic field
temperature
frequency
khz
Prior art date
Application number
PCT/JP2015/066758
Other languages
French (fr)
Japanese (ja)
Inventor
森次 仲男
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54833617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015190528(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201580019461.6A priority Critical patent/CN106170837B/en
Priority to JP2016527844A priority patent/JP6137408B2/en
Priority to EP20160649.8A priority patent/EP3693980A1/en
Priority to ES15807434T priority patent/ES2791885T3/en
Priority to EP15807434.4A priority patent/EP3157021B1/en
Publication of WO2015190528A1 publication Critical patent/WO2015190528A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an Fe-based nanocrystalline alloy core wound with an Fe-based nanocrystalline alloy and a method for producing an Fe-based nanocrystalline alloy core.
  • Fe-based nanocrystalline alloys have excellent soft magnetic properties that can achieve both a high saturation magnetic flux density Bs and a high relative permeability ⁇ r, and are therefore used in cores such as common mode choke coils and high frequency transformers.
  • Fe—Cu—M′—Si—B Fe—Cu—M′—Si—B (M ′ is a group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo described in Patent Document 1).
  • M ′ is a group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo described in Patent Document 1).
  • the composition of the (at least one element selected) system is representative.
  • the Fe-based nanocrystalline alloy is obtained by microcrystalline (nanocrystallizing) an amorphous alloy obtained by rapidly solidifying a liquid phase alloy heated to a temperature equal to or higher than the melting point by heat treatment.
  • a method for rapid solidification from the liquid phase for example, a single roll method excellent in productivity is adopted.
  • the alloy obtained by rapid solidification takes the form of a ribbon or ribbon.
  • the Fe-based nanocrystalline alloy has different magnetic characteristics such as relative permeability ⁇ and squareness ratio by applying a temperature profile during heat treatment and applying a magnetic field in a specific direction during heat treatment.
  • Patent Document 2 in order to obtain an Fe-based nanocrystalline alloy having an initial relative permeability ⁇ i of 70,000 or more and a squareness ratio of 30% or less, a magnetic field is applied in the width direction of the alloy ribbon (core height direction). It has been proposed to heat-treat while applying. As specific examples of the heat treatment in Patent Document 2, various profiles have been proposed. Generally, the heat treatment is held while applying a magnetic field in the highest temperature range of the heat treatment. There are those that hold while applying a magnetic field over the cooling process and those that hold while applying the magnetic field from the highest temperature range to the cooling process.
  • Patent Document 2 The heat treatment method disclosed in Patent Document 2 is considered effective as a means for reducing the squareness ratio.
  • impedance relative permeability ⁇ rz As a characteristic index as a common mode choke, impedance relative permeability ⁇ rz is often used.
  • the impedance relative permeability ⁇ rz is described in, for example, JIS standard C2531 (revised in 1999).
  • the impedance relative permeability ⁇ rz can be considered as being equal to the absolute value of the complex relative permeability ( ⁇ r′ ⁇ i ⁇ r ′′) as shown in the following equation (for example, “Point of Magnetic Material Selection”, 1989). Issued on November 10, 2011, edited by Keizo Ota).
  • ⁇ rz ( ⁇ r ′ 2 + ⁇ r ′′ 2 ) 1/2
  • the real part ⁇ r ′ of the complex relative permeability in the above formula represents a magnetic flux density component with no phase delay with respect to the magnetic field, and generally corresponds to the magnitude of the impedance relative permeability ⁇ rz in the low frequency range.
  • the imaginary part ⁇ r ′′ represents a magnetic flux density component including a phase lag with respect to the magnetic field and corresponds to a loss of magnetic energy. In a high frequency range (for example, 50 kHz or more), the noise suppression effect becomes higher as the imaginary part ⁇ r ′′ is higher.
  • the impedance relative permeability ⁇ rz expressed by the above formula is used as an index for evaluating the noise suppression effect for a wide frequency band. If the impedance relative permeability ⁇ rz is a high value in a wide frequency band, it is excellent in the ability to absorb and remove common mode noise.
  • the present inventor has studied to make the impedance relative permeability ⁇ rz higher in a wide band of frequencies from 10 kHz to 1 MHz. As a result, it has been recognized that it is difficult to obtain a high impedance relative permeability ⁇ rz in a wide frequency band with the heat treatment profiles described in Patent Document 1 and Patent Document 2.
  • the present invention has been made in view of the above, and an Fe-based nanocrystalline alloy core having a high impedance relative permeability ⁇ rz in a wide frequency band from 10 kHz to 1 MHz, and a method for producing the Fe-based nanocrystalline alloy core.
  • the purpose is to provide.
  • the frequency is 10 kHz to 1 MHz by applying a magnetic field only within a specific temperature range during the temperature rising period.
  • the present inventors have found that an Fe-based nanocrystalline alloy core having a high impedance relative permeability ⁇ rz can be obtained in a wide band of the present invention.
  • the core according to the embodiment of the present invention includes a heat treatment step in which a nano-crystallizable Fe-based amorphous alloy ribbon is wound and then heated to a crystallization temperature region and cooled.
  • a core produced through The impedance relative permeability ⁇ rz of the core is More than 90,000 at a frequency of 10 kHz 40,000 or more at a frequency of 100 kHz, and More than 8,500 at 1MHz frequency It is.
  • the impedance relative permeability ⁇ rz of the core is 105,000 or more at a frequency of 10 kHz, 45,000 or more at a frequency of 100 kHz, and More than 9,000 at 1MHz frequency It is preferable that
  • the Fe-based nanocrystalline alloy ribbon preferably has a thickness of 9 ⁇ m or more and 20 ⁇ m or less.
  • a method for producing a core comprises heating a nano-crystallizable Fe-based amorphous alloy ribbon and then heating to a crystallization temperature region, A heat treatment step of cooling, wherein the heat treatment step is within a temperature range during a temperature rise period corresponding to a temperature from a high crystallization start temperature of 25 ° C. to a high temperature of 60 ° C. of the crystallization start temperature in a differential scanning calorimeter. Limiting, it has a magnetic field application process which applies a magnetic field to the height direction of the core in 10 minutes or more and 60 minutes or less.
  • the heat treatment step is performed within a temperature range during the temperature increase period from a high crystallization start temperature of 30 ° C. to a high crystallization start temperature of 50 ° C. in a differential scanning calorimeter. It is preferable to include a magnetic field applying step of applying a magnetic field in the height direction of the core in 15 to 40 minutes.
  • a magnetic field having a magnetic field strength of 50 kA / m or more and 300 kA / m or less is applied in the height direction of the core in the magnetic field application step.
  • an Fe-based nanocrystalline alloy ribbon having a thickness of 9 ⁇ m or more and 20 ⁇ m or less.
  • a method for producing an Fe-based nanocrystalline alloy ribbon includes a step of preparing an Fe-based amorphous alloy ribbon capable of nanocrystallization, and winding the Fe-based amorphous alloy ribbon. Including a step of forming a wound body, a heat treatment step of heating and cooling the wound body to a crystallization temperature region, and a step of applying a magnetic field to the wound body during the heat treatment step.
  • the step of applying the magnetic field is at least one in a temperature range from a high crystallization start temperature of 25 ° C. to a high crystallization start temperature of 60 ° C. indicated by the differential scanning calorimeter during the temperature rising period of the heat treatment step.
  • a magnetic field of a predetermined strength (for example, 50 kA / m) or more is applied along the height direction of the wound body (the width direction of the alloy ribbon) during the period of the portion, and a part of the temperature rise period A magnetic field greater than or equal to the predetermined intensity in a period Not applied to the wound body. More specifically, the magnetic field is applied within a time range of 10 minutes or more and 60 minutes or less, limited to a temperature range from 25 ° C. as the crystallization start temperature to 60 ° C. as the crystallization start temperature. The magnetic field is not applied in a temperature range other than the above temperature range during the temperature rising period.
  • a predetermined strength for example, 50 kA / m
  • a magnetic field having a predetermined strength or higher is not applied during a temperature rising period equal to or lower than the crystallization start temperature or when reaching the maximum temperature of the heat treatment step (a temperature higher than 60 ° C. than the crystallization start temperature).
  • an Fe-based nanocrystalline alloy core having a high impedance relative permeability ⁇ rz can be obtained in a wide frequency band from 10 kHz to 1 MHz.
  • the Fe-based nanocrystalline alloy core can be manufactured. For this reason, it is optimal for a common mode choke or the like in which characteristics in a wide frequency band from 10 kHz to 1 MHz are important.
  • FIG. 3 is a diagram showing a measurement result of a Fe-based amorphous alloy ribbon described in Example 1 using a differential scanning calorimeter (DSC). It is a graph which shows that the frequency characteristic of impedance relative permeability (micro
  • a magnetic field when a magnetic field is applied in the width direction of the wound ribbon (the height direction as the core) to obtain the Fe-based nanocrystalline alloy, it is limited to a specific temperature range of the temperature rising period.
  • a heat treatment step is performed while applying a magnetic field.
  • the temperature is limited to a temperature range during a temperature rising period from a high crystallization start temperature of 25 ° C. to a high crystallization start temperature of 60 ° C. in the differential scanning calorimeter. Then, a magnetic field application step is performed in which a magnetic field is applied in the height direction of the core for a time of 10 minutes to 60 minutes.
  • the magnetic field is applied only during a specific period of the temperature rising period, and when the maximum temperature of the heat treatment is reached or during the period of the cooling process after reaching the maximum temperature. Does not apply a magnetic field.
  • the maximum temperature of the heat treatment is typically higher than the temperature of 60 ° C. higher than the crystallization start temperature.
  • the “temperature increase period” means a period before the maximum temperature is reached, and before reaching the maximum temperature, the temperature is increased, decreased, and maintained at a constant temperature.
  • the state may be included.
  • the heat treatment is held for a certain time at a specific temperature within the temperature range. May be done to do.
  • the temperature may be monotonously increased at a constant temperature increase rate, or the temperature increase rate may be changed in the middle.
  • FIG. 6 is a graph showing the frequency characteristic of the impedance relative permeability obtained by the experiment of the present inventor, and the frequency of the impedance relative permeability of the core (core C1) when no magnetic field is applied during the heat treatment. The characteristics and the frequency characteristics of the impedance relative permeability of the core (core C2) when a magnetic field is applied throughout the heat treatment period are shown.
  • the impedance relative permeability ⁇ rz of the core C1 greatly exceeds the impedance permeability ⁇ rz of the core C2 (always magnetic field applied).
  • the impedance permeability ⁇ rz of the core C2 is higher than the impedance permeability ⁇ rz of the core C1.
  • the impedance relative permeability ⁇ rz in the low frequency region (according to the experiments by the present inventor, in particular, the real part ⁇ r of the complex relative permeability) It was confirmed that the impedance ratio permeability ⁇ rz in the high frequency range tends to be improved.
  • the present inventor has recognized that the improvement in the impedance relative permeability ⁇ rz on the low frequency side and the improvement in the impedance relative permeability ⁇ rz on the high frequency side are contradictory.
  • the present inventors repeated various experiments on heat treatment in a magnetic field, we confirmed the existence of conditions with little decrease in impedance relative permeability on the low frequency side in heat treatment at low temperature for a short time, and conducted further diligent studies. I did it.
  • the heat treatment step it is limited to a temperature range during the temperature rising period corresponding to from the high crystallization start temperature of 25 ° C. in the differential scanning calorimeter to the high crystallization start temperature of 60 ° C. Improving the impedance relative permeability ⁇ rz in the high frequency range while suppressing the decrease in the impedance relative permeability ⁇ rz in the low frequency range by applying a magnetic field in the height direction of the core for a time of 60 minutes or less. I found out that I can.
  • ⁇ rz at a frequency of 10 kHz is 90,000 to 115,000 and ⁇ rz at a frequency of 100 kHz.
  • 40,000 to 49,000 and a ⁇ rz of 8,500 to 15,000 at a frequency of 1 MHz can be obtained.
  • the impedance relative permeability ⁇ rz can be maximized in a wide frequency band from a frequency of 10 kHz to 1 MHz by applying a magnetic field limited within a certain temperature range of the temperature raising period.
  • the mechanism of how the magnetic field application limited to a certain temperature range of the temperature rising period contributes to each of ⁇ ′ and ⁇ ′′ has not been elucidated.
  • the above crystallization start temperature is determined by a differential scanning calorimeter. It is difficult to accurately measure the true crystallization start temperature, and identification by a differential scanning calorimeter (DSC) is effective.
  • the temperature at which an exothermic reaction due to the start of nanocrystallization was detected during the temperature rise was defined as the crystallization start temperature (see FIG. 5).
  • the crystallization start temperature means a value obtained when the measurement conditions of the differential scanning calorimeter are performed at a heating rate of 10 ° C./min.
  • the heat treatment temperature is controlled so that the temperature distribution in the actual heat treatment furnace becomes plus or minus 5 ° C. or less, taking into consideration the capacity of the heat treatment furnace and the amount of heat generated by crystallization of the amorphous alloy ribbon to be heat treated. It is preferable to control. Thereby, the magnetic properties of the alloy after heat treatment can be stabilized.
  • the strength of the applied magnetic field is preferably 50 kA / m or more and 300 kA / m or less. If the applied magnetic field is too weak, it is difficult to impart induced magnetic anisotropy under actual working conditions. If it is too high, induced magnetic anisotropy tends to be imparted too much. A more preferable range is 60 kA / m or more and 280 kA / m.
  • the magnetic field to be applied is a relatively weak magnetic field of less than 50 kA / m
  • An elongated amorphous alloy ribbon can be obtained by melting an alloy having the above composition to a melting point or higher and rapidly solidifying it by a single roll method.
  • the thickness of the amorphous alloy ribbon is preferably 9 ⁇ m or more and 30 ⁇ m or less. If it is less than 9 ⁇ m, the mechanical strength of the ribbon is insufficient, and it is easy to break during handling. When it exceeds 30 ⁇ m, it is difficult to stably obtain an amorphous state. In addition, when the amorphous alloy ribbon is nanocrystallized and used as a core for high frequency applications, an eddy current is generated in the ribbon, and the loss due to the eddy current increases as the ribbon becomes thicker. Therefore, a more preferable thickness is 9 ⁇ m to 20 ⁇ m, and a thickness of 15 ⁇ m or less is further preferable.
  • the width of the amorphous alloy ribbon is preferably 10 mm or more from the practical shape of the core. Since a cost can be reduced by slitting (cutting) a wide alloy ribbon, a wide width is preferable, but a width of 250 mm or less is preferable for stable production of the alloy ribbon. In order to manufacture more stably, 70 mm width or less is more preferable.
  • the heat treatment for nanocrystallization is preferably performed in an inert gas such as nitrogen, and the maximum temperature reached is preferably more than 560 ° C. and 600 ° C. or less.
  • the temperature is 560 ° C. or lower or exceeds 600 ° C., magnetostriction increases, which is not preferable.
  • the holding time at the highest temperature is not specifically set and is 0 minute (no holding time), nanocrystallization can be performed. In consideration of the heat capacity of the total amount of the alloy to be heat-treated and the stability of the characteristics, it can be held for 3 hours or less.
  • the temperature profile of the heat treatment is, for example, compared with a temperature increase rate of 3 to 5 ° C./min from room temperature to near the temperature at which nanocrystallization starts (typically 20 ° C. lower than the crystallization start temperature).
  • the temperature is rapidly increased, and thereafter, from the vicinity of the above-mentioned nanocrystallization start temperature to 60 ° C higher than the start temperature of nanocrystallization (or to the highest temperature reached), the average is 0.2 to 1.0 ° C / min.
  • Stable nanocrystallization can be performed by increasing the temperature at a moderate temperature increase rate. Note that it is preferable to cool at a cooling rate of 2 to 5 ° C./min from the highest temperature to 200 ° C.
  • the alloy can be taken out into the atmosphere at 100 ° C. or lower.
  • a heat treatment step may be performed in which a nano-crystallizable Fe-based amorphous alloy ribbon is wound to produce an annular body, and then heated to a crystallization temperature region and cooled.
  • a predetermined induced magnetic anisotropy can be imparted.
  • This Fe-based amorphous alloy ribbon was slit (cut) to a width of 15 mm, and then wound around an outer diameter of 31 mm and an inner diameter of 21 mm to produce a toroidal core (height 15 mm).
  • the crystallization start temperature of this alloy was 500 ° C. as measured by a differential scanning calorimeter (DSC).
  • the produced core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG.
  • the magnetic field is applied for 30 minutes in a temperature range of 530 to 550 ° C. (a temperature range from a high crystallization start temperature of 30 ° C. to a high crystallization start temperature of 50 ° C.).
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the core.
  • the magnetic field strength was 280 kA / m.
  • the maximum temperature reached in the heat treatment is 580 ° C.
  • the impedance relative permeability ⁇ rz was measured using HP4194A manufactured by Agilent Technologies under the conditions of an oscillation level of 0.5 V and an average of 16.
  • the insulation coated conductor was passed through the center of the toroidal core and connected to an input / output terminal for measurement.
  • Example 1 the impedance relative permeability ⁇ rz was 98,000 at 10 kHz, 42,000 at 100 kHz, and 8,600 at 1 MHz.
  • Example 2 Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Only the temperature range of magnetic field application and the magnetic field strength are different from those of the first embodiment (FIG. 1), and other conditions are the same as those of the first embodiment.
  • the magnetic field is applied for 15 minutes in a temperature range of 540 to 550 ° C. (temperature range from 40 ° C. as the crystallization start temperature to 50 ° C. as the crystallization start temperature).
  • the magnetic field strength was 160 kA / m.
  • Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • Example 2 the impedance relative permeability ⁇ rz was 109,000 at 10 kHz, 47,000 at 100 kHz, and 9,500 at 1 MHz. That is, a higher impedance relative permeability ⁇ rz could be obtained at each frequency of 10 kHz, 100 kHz, and 1 MHz compared to Example 1.
  • Example 3 A single-roll method using a molten alloy (at the same as in Example 1) consisting of atomic percent, Cu: 1%, Nb: 3%, Si: 15.5%, B: 6.5%, remaining Fe and inevitable impurities To obtain an Fe-based amorphous alloy ribbon having a width of 50 mm and a thickness of 10 ⁇ m. A toroidal core was similarly produced using this Fe-based amorphous alloy ribbon having a thickness of 10 ⁇ m (13 ⁇ m in Example 1). In the same manner as in Example 2, the prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • Example 3 the impedance relative permeability ⁇ rz was 91,000 at 10 kHz, 46,000 at 100 kHz, and 9,300 at 1 MHz.
  • Example 4 Using the Fe-based amorphous alloy ribbon having a thickness of 13 ⁇ m described in Example 1, a toroidal core was similarly produced. A magnetic field was applied to the prepared core at an intensity of 160 kA / m for 15 minutes at a heat treatment temperature in the range of 530 ° C. to 540 ° C. Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • Example 4 the impedance permeability ⁇ rz was 90,000 at 10 kHz, 46,000 at 100 kHz, and 10,000 at 1 MHz.
  • Comparative Example 1 Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The manufactured core was heat-treated with the temperature and magnetic field application profile shown in FIG. 3 without applying a magnetic field (no magnetic field). As can be seen from FIG. 3, the temperature profile in Comparative Example 1 is the same as in Example 1.
  • Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • Comparative Example 2 Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. As can be seen from FIG. 4, the temperature profile in Comparative Example 2 is the same as in Example 1.
  • Example 2 the magnetic field strength in the magnetic field application is the same as in Example 1 (FIG. 1), but the temperature range of the magnetic field application reaches the cooling after reaching the highest equivalent temperature of 580 ° C. from the start of the heat treatment. is there.
  • the temperature range of this magnetic field application is outside the scope of the present invention.
  • Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • the application of the magnetic field was continuously performed for about 60 minutes over a temperature range of 480 to 520 ° C. (temperature range from 20 ° C. lower than the crystallization start temperature to 20 ° C. higher than the crystallization start temperature).
  • the magnetic field application direction was the width direction of the alloy ribbon, that is, the core height direction, and the magnetic field strength was 120 kA / m.
  • Table 1 shows the measurement results of impedance relative permeability ⁇ rz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
  • FIG. 6 shows frequency characteristics of impedance relative permeability ⁇ rz in the core (core E1) according to the embodiment of the present invention (similar to Example 2) and the core (core R1) according to the above reference example.
  • FIG. 6 also shows the core (core C1) when no magnetic field is applied corresponding to Comparative Example 1, and the core (core C2) when the magnetic field corresponding to Comparative Example 2 is continuously applied. Yes.
  • the magnetic field is applied for a relatively short time at the crystallization start temperature of 25 ° C. or higher and 60 ° C. or lower (typically, the magnetic field is not applied when the maximum temperature is reached) as in the embodiment of the present invention (core E1). It was confirmed that the impedance relative permeability ⁇ rz was improved not only in the high frequency range but also in the low frequency range. As described above, in the embodiment of the present invention, a unique effect of improving the impedance relative permeability ⁇ rz in the low frequency region is obtained even in the form in which the magnetic field is applied in the specific period before the maximum temperature.
  • a core exhibiting a high impedance relative permeability ⁇ rz corresponding to a wide frequency band is provided, and is suitably used in a common mode choke coil, a high frequency transformer, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Provided is an Fe-based nanocrystalline alloy core that is obtained by winding an Fe-based nanocrystalline alloy ribbon and that has a core impedance relative permeability (µrz) of 90,000 or more at a frequency of 10 kHz, 40,000 or more at a frequency of 100 kHz, and 8,500 or more at a frequency of 1 MHz. The Fe-based nanocrystalline alloy core is produced through a heat treatment step that includes a magnetic field application step in which a magnetic field is applied in the height direction of the core for 10-60 minutes, within a temperature range during a heat increase period corresponding to 25 °C above the crystallization onset temperature to 60 °C above the crystallization onset temperature according to a differential scanning calorimeter.

Description

Fe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法Fe-based nanocrystalline alloy core and method for producing Fe-based nanocrystalline alloy core
 本発明は、Fe基ナノ結晶合金を巻回したFe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法に関する。 The present invention relates to an Fe-based nanocrystalline alloy core wound with an Fe-based nanocrystalline alloy and a method for producing an Fe-based nanocrystalline alloy core.
 Fe基ナノ結晶合金は、高い飽和磁束密度Bsと高い比透磁率μrとを両立できる優れた軟磁気特性を備えているため、コモンモードチョークコイル、高周波トランス等のコアに使用されている。 Fe-based nanocrystalline alloys have excellent soft magnetic properties that can achieve both a high saturation magnetic flux density Bs and a high relative permeability μr, and are therefore used in cores such as common mode choke coils and high frequency transformers.
 Fe基ナノ結晶合金の組成としては、特許文献1に記載されているFe-Cu-M’-Si-B(M’は、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群から選択される少なくとも1種の元素)系の組成が代表的である。 As the composition of the Fe-based nanocrystalline alloy, Fe—Cu—M′—Si—B (M ′ is a group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo described in Patent Document 1). The composition of the (at least one element selected) system is representative.
 Fe基ナノ結晶合金は、融点以上の温度に熱せられた液相の合金を急冷凝固することによって得られた非晶質合金を、熱処理によって微結晶化(ナノ結晶化)することにより得られる。液相から急冷凝固する方法としては、例えば、生産性に優れる単ロール法が採用される。急冷凝固により得られた合金は、薄帯状・リボン状の形態となる。 The Fe-based nanocrystalline alloy is obtained by microcrystalline (nanocrystallizing) an amorphous alloy obtained by rapidly solidifying a liquid phase alloy heated to a temperature equal to or higher than the melting point by heat treatment. As a method for rapid solidification from the liquid phase, for example, a single roll method excellent in productivity is adopted. The alloy obtained by rapid solidification takes the form of a ribbon or ribbon.
 Fe基ナノ結晶合金は、熱処理時の温度プロファイルや、熱処理時に磁場を特定の方向に印加することにより、比透磁率μや角形比等の磁気特性が異なってくる。 The Fe-based nanocrystalline alloy has different magnetic characteristics such as relative permeability μ and squareness ratio by applying a temperature profile during heat treatment and applying a magnetic field in a specific direction during heat treatment.
 例えば、特許文献2では、初比透磁率μiが70,000以上、角形比が30%以下のFe基ナノ結晶合金を得るために、合金リボンの幅方向(コアの高さ方向)に磁場を印加しながら熱処理することが提案されている。特許文献2における熱処理の具体的な例としては種々のプロファイルが提案されているが、大別して、熱処理の最高到達温度域において磁場を印加しながら保持するもの、昇温過程から最高到達温度域を経て冷却過程にかけて磁場を印加しながら保持するもの、最高到達温度域から冷却過程にかけて磁場を印加しながら保持するものがある。 For example, in Patent Document 2, in order to obtain an Fe-based nanocrystalline alloy having an initial relative permeability μi of 70,000 or more and a squareness ratio of 30% or less, a magnetic field is applied in the width direction of the alloy ribbon (core height direction). It has been proposed to heat-treat while applying. As specific examples of the heat treatment in Patent Document 2, various profiles have been proposed. Generally, the heat treatment is held while applying a magnetic field in the highest temperature range of the heat treatment. There are those that hold while applying a magnetic field over the cooling process and those that hold while applying the magnetic field from the highest temperature range to the cooling process.
特公平4-4393号公報Japanese Patent Publication No. 4-4393 特開平7-278764号公報Japanese Patent Laid-Open No. 7-278774
 前述の特許文献2に開示されている熱処理方法は、角形比を低下させる手段として有効であると考えられる。 The heat treatment method disclosed in Patent Document 2 is considered effective as a means for reducing the squareness ratio.
 ところで、コモンモードチョークとして使用される周波数帯域として、低い周波数から高い周波数に対応できる用途、具体的には10kHz帯から1MHz帯に対応できる用途が求められている。 By the way, as a frequency band used as a common mode choke, there is a demand for an application that can correspond to a low frequency to a high frequency, specifically, an application that can correspond to a 10 kHz band to a 1 MHz band.
 コモンモードチョークとしての特性指標として、インピーダンス比透磁率μrzを使用することが多い。インピーダンス比透磁率μrzについては、例えばJIS規格C2531(1999年改正)に記載されている。インピーダンス比透磁率μrzは、以下の式に示すように、複素比透磁率(μr’-iμr’’)の絶対値に等しいものとして考えることができる(例えば、「磁性材料選択のポイント」、1989年11月10日発行、編者:太田恵造)。
 μrz=(μr’2+μr”21/2
As a characteristic index as a common mode choke, impedance relative permeability μrz is often used. The impedance relative permeability μrz is described in, for example, JIS standard C2531 (revised in 1999). The impedance relative permeability μrz can be considered as being equal to the absolute value of the complex relative permeability (μr′−iμr ″) as shown in the following equation (for example, “Point of Magnetic Material Selection”, 1989). Issued on November 10, 2011, edited by Keizo Ota).
μrz = (μr ′ 2 + μr ″ 2 ) 1/2
 上記式における複素比透磁率の実数部μr’は、磁界に対して位相の遅れがない磁束密度成分を表し、一般に、低周波数域におけるインピーダンス比透磁率μrzの大きさに対応する。一方、虚数部μr’’は磁界に対する位相の遅れを含む磁束密度成分を表し、磁気エネルギーの損失分に相当する。高周波数域(例えば、50kHz以上)においては、虚数部μr’’が高いほどノイズ抑制の効果が高くなる。 The real part μr ′ of the complex relative permeability in the above formula represents a magnetic flux density component with no phase delay with respect to the magnetic field, and generally corresponds to the magnitude of the impedance relative permeability μrz in the low frequency range. On the other hand, the imaginary part μr ″ represents a magnetic flux density component including a phase lag with respect to the magnetic field and corresponds to a loss of magnetic energy. In a high frequency range (for example, 50 kHz or more), the noise suppression effect becomes higher as the imaginary part μr ″ is higher.
 上記の式で表されるインピーダンス比透磁率μrzは、広い周波数帯域に対するノイズ抑制効果を評価する指標として用いられる。インピーダンス比透磁率μrzが、広い周波数帯域で高い値であれば、コモンモードノイズの吸収・除去能力に優れていることになる。 The impedance relative permeability μrz expressed by the above formula is used as an index for evaluating the noise suppression effect for a wide frequency band. If the impedance relative permeability μrz is a high value in a wide frequency band, it is excellent in the ability to absorb and remove common mode noise.
 本発明者は、周波数10kHzから1MHzの広い帯域において、前記インピーダンス比透磁率μrzをより高くするための検討を行った。その結果、特許文献1や特許文献2に記載の熱処理プロファイルでは、広い周波数帯域で高いインピーダンス比透磁率μrzを得るのが困難であることを認識した。 The present inventor has studied to make the impedance relative permeability μrz higher in a wide band of frequencies from 10 kHz to 1 MHz. As a result, it has been recognized that it is difficult to obtain a high impedance relative permeability μrz in a wide frequency band with the heat treatment profiles described in Patent Document 1 and Patent Document 2.
 本発明は、上記を鑑みてなされたものであり、周波数10kHzから1MHzの広い周波数帯域において、高いインピーダンス比透磁率μrzを有するFe基ナノ結晶合金コア、及びFe基ナノ結晶合金コアの製造方法を提供することを目的とする。 The present invention has been made in view of the above, and an Fe-based nanocrystalline alloy core having a high impedance relative permeability μrz in a wide frequency band from 10 kHz to 1 MHz, and a method for producing the Fe-based nanocrystalline alloy core. The purpose is to provide.
 本発明者は、Fe基非晶質合金を熱処理により微結晶化(ナノ結晶化)させる際、その昇温期間中の特定温度範囲内に限定して磁場を印加することにより、周波数10kHzから1MHzの広い帯域において、高いインピーダンス比透磁率μrzを有するFe基ナノ結晶合金コアが得られることを見出し、本発明に到達した。 When the present inventors microcrystallize (nanocrystallize) an Fe-based amorphous alloy by heat treatment, the frequency is 10 kHz to 1 MHz by applying a magnetic field only within a specific temperature range during the temperature rising period. The present inventors have found that an Fe-based nanocrystalline alloy core having a high impedance relative permeability μrz can be obtained in a wide band of the present invention.
 <1>Fe基ナノ結晶合金コア
 本発明の実施形態によるコアは、ナノ結晶化可能なFe基非晶質合金リボンを巻回した後、結晶化温度領域に加熱し、冷却する、熱処理工程を経て作製されるコアであって、
前記コアのインピーダンス比透磁率μrzが、
周波数10kHzで、90,000以上、
周波数100kHzで、40,000以上、かつ、
周波数1MHzで、8,500以上、
である。
<1> Fe-based nanocrystalline alloy core The core according to the embodiment of the present invention includes a heat treatment step in which a nano-crystallizable Fe-based amorphous alloy ribbon is wound and then heated to a crystallization temperature region and cooled. A core produced through
The impedance relative permeability μrz of the core is
More than 90,000 at a frequency of 10 kHz
40,000 or more at a frequency of 100 kHz, and
More than 8,500 at 1MHz frequency
It is.
 また、本発明のある実施形態において、
前記コアのインピーダンス比透磁率μrzは、
周波数10kHzで、105,000以上、
周波数100kHzで、45,000以上、かつ、
周波数1MHzで、9,000以上、
であることが好ましい。
In an embodiment of the present invention,
The impedance relative permeability μrz of the core is
105,000 or more at a frequency of 10 kHz,
45,000 or more at a frequency of 100 kHz, and
More than 9,000 at 1MHz frequency
It is preferable that
 また、本発明のある実施形態において、前記Fe基ナノ結晶合金リボンの厚さは、9μm以上20μm以下であることが好ましい。 In an embodiment of the present invention, the Fe-based nanocrystalline alloy ribbon preferably has a thickness of 9 μm or more and 20 μm or less.
 <2>Fe基ナノ結晶合金コアの製造方法
 本発明の実施形態によるコアの製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを巻回した後、結晶化温度領域に加熱し、冷却する、熱処理工程を有し、前記熱処理工程は、示差走査熱量計での結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までに相当する昇温期間中の温度範囲内に限定して、10分以上60分以下で前記コアの高さ方向に磁場を印加する磁場印加工程を有する。
<2> Method for Producing Fe-Based Nanocrystalline Alloy Core A method for producing a core according to an embodiment of the present invention comprises heating a nano-crystallizable Fe-based amorphous alloy ribbon and then heating to a crystallization temperature region, A heat treatment step of cooling, wherein the heat treatment step is within a temperature range during a temperature rise period corresponding to a temperature from a high crystallization start temperature of 25 ° C. to a high temperature of 60 ° C. of the crystallization start temperature in a differential scanning calorimeter. Limiting, it has a magnetic field application process which applies a magnetic field to the height direction of the core in 10 minutes or more and 60 minutes or less.
 本発明のある実施形態による製造方法において、前記熱処理工程は、示差走査熱量計での結晶化開始温度の30℃高温から結晶化開始温度の50℃高温までの前記昇温期間中の温度範囲内に限定して、15分以上40分以下で前記コアの高さ方向に磁場を印加する磁場印加工程を有することが好ましい。 In the manufacturing method according to an embodiment of the present invention, the heat treatment step is performed within a temperature range during the temperature increase period from a high crystallization start temperature of 30 ° C. to a high crystallization start temperature of 50 ° C. in a differential scanning calorimeter. It is preferable to include a magnetic field applying step of applying a magnetic field in the height direction of the core in 15 to 40 minutes.
 また、本発明の実施形態による製造方法において、前記磁場印加工程では、コアの高さ方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加することが好ましい。 In the manufacturing method according to the embodiment of the present invention, it is preferable that a magnetic field having a magnetic field strength of 50 kA / m or more and 300 kA / m or less is applied in the height direction of the core in the magnetic field application step.
 また、本発明の実施形態による製造方法では、厚さが9μm以上20μm以下のFe基ナノ結晶合金リボンを用いることが好ましい。 Moreover, in the manufacturing method according to the embodiment of the present invention, it is preferable to use an Fe-based nanocrystalline alloy ribbon having a thickness of 9 μm or more and 20 μm or less.
 また、本発明の実施形態において、Fe基ナノ結晶合金リボンの製造方法は、ナノ結晶化可能なFe基非晶質合金リボンを用意する工程と、前記Fe基非晶質合金リボンを巻回して巻回体を形成する工程と、前記巻回体を結晶化温度領域に加熱し、冷却する熱処理工程と、前記熱処理工程中に、前記巻回体に対して磁場を印加する工程とを包含し、前記磁場を印加する工程は、前記熱処理工程の昇温期間中における、示差走査熱量計が示す結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までの温度範囲内の少なくとも一部の期間において所定の強度(例えば、50kA/m)以上の磁場を前記巻回体の高さ方向(合金リボンの幅方向)に沿って印加し、かつ、前記昇温期間中の一部の期間において前記所定の強度以上の磁場を前記巻回体に印加しない。より具体的には、前記結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までの温度範囲内に内に限定して、10分以上60分以下の時間だけ磁場を印加するとともに、昇温期間中の上記温度範囲以外の温度域では磁場の印加を行わない。この工程において、前記結晶化開始温度以下の昇温期間中や、熱処理工程の最高温度(結晶化開始温度よりも60℃超高温の温度である)到達時には前記所定の強度以上の磁場を印加しない。 In an embodiment of the present invention, a method for producing an Fe-based nanocrystalline alloy ribbon includes a step of preparing an Fe-based amorphous alloy ribbon capable of nanocrystallization, and winding the Fe-based amorphous alloy ribbon. Including a step of forming a wound body, a heat treatment step of heating and cooling the wound body to a crystallization temperature region, and a step of applying a magnetic field to the wound body during the heat treatment step. The step of applying the magnetic field is at least one in a temperature range from a high crystallization start temperature of 25 ° C. to a high crystallization start temperature of 60 ° C. indicated by the differential scanning calorimeter during the temperature rising period of the heat treatment step. A magnetic field of a predetermined strength (for example, 50 kA / m) or more is applied along the height direction of the wound body (the width direction of the alloy ribbon) during the period of the portion, and a part of the temperature rise period A magnetic field greater than or equal to the predetermined intensity in a period Not applied to the wound body. More specifically, the magnetic field is applied within a time range of 10 minutes or more and 60 minutes or less, limited to a temperature range from 25 ° C. as the crystallization start temperature to 60 ° C. as the crystallization start temperature. The magnetic field is not applied in a temperature range other than the above temperature range during the temperature rising period. In this step, a magnetic field having a predetermined strength or higher is not applied during a temperature rising period equal to or lower than the crystallization start temperature or when reaching the maximum temperature of the heat treatment step (a temperature higher than 60 ° C. than the crystallization start temperature). .
 本発明の実施形態によれば、周波数10kHzから1MHzの広い周波数帯域において、高いインピーダンス比透磁率μrzを有するFe基ナノ結晶合金コアを得ることができる。また、前記Fe基ナノ結晶合金コアを製造することができる。このため、周波数10kHzから1MHzの広い周波数帯域での特性が重要となるコモンモードチョーク等に最適である。 According to the embodiment of the present invention, an Fe-based nanocrystalline alloy core having a high impedance relative permeability μrz can be obtained in a wide frequency band from 10 kHz to 1 MHz. In addition, the Fe-based nanocrystalline alloy core can be manufactured. For this reason, it is optimal for a common mode choke or the like in which characteristics in a wide frequency band from 10 kHz to 1 MHz are important.
本発明実施例1の熱処理と磁場の印加のプロファイルを説明する図である。It is a figure explaining the profile of the heat processing of this invention Example 1, and the application of a magnetic field. 本発明実施例2の熱処理と磁場の印加のプロファイルを説明する図である。It is a figure explaining the profile of the heat processing of this invention Example 2, and the application of a magnetic field. 比較例1の熱処理と磁場の印加(無磁場)のプロファイルを説明する図である。It is a figure explaining the profile of the heat processing of the comparative example 1, and application of a magnetic field (no magnetic field). 比較例2の熱処理と磁場の印加のプロファイルを説明する図である。It is a figure explaining the profile of the heat processing of the comparative example 2, and the application of a magnetic field. 実施例1に記載のFe基非晶合金リボンの示差走査熱量計(DSC)での測定結果を示す図である。FIG. 3 is a diagram showing a measurement result of a Fe-based amorphous alloy ribbon described in Example 1 using a differential scanning calorimeter (DSC). 熱処理中の磁場印加の態様が異なることによって、インピーダンス比透磁率μrzの周波数特性が変化することを示すグラフである。It is a graph which shows that the frequency characteristic of impedance relative permeability (micro | micron | mu) rz changes by the aspect of the magnetic field application during heat processing changing.
 以下、図面を参照しながら、本発明の実施形態について詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施形態においては、巻回したリボンの幅方向(コアとしては高さ方向)に磁場を印加してFe基ナノ結晶合金を得る際、昇温期間の特定温度範囲内に限定して磁場を印加しながら熱処理工程を行う。 In the embodiment of the present invention, when a magnetic field is applied in the width direction of the wound ribbon (the height direction as the core) to obtain the Fe-based nanocrystalline alloy, it is limited to a specific temperature range of the temperature rising period. A heat treatment step is performed while applying a magnetic field.
 具体的には、本発明の実施形態による熱処理工程では、示差走査熱量計での結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までの昇温期間中の温度範囲内に限定して、10分以上60分以下の時間だけコアの高さ方向に磁場を印加する磁場印加工程を行う。 Specifically, in the heat treatment step according to the embodiment of the present invention, the temperature is limited to a temperature range during a temperature rising period from a high crystallization start temperature of 25 ° C. to a high crystallization start temperature of 60 ° C. in the differential scanning calorimeter. Then, a magnetic field application step is performed in which a magnetic field is applied in the height direction of the core for a time of 10 minutes to 60 minutes.
 このように本発明の実施形態によるコアの製造は、昇温期間のうちの特定期間においてのみ磁場を印加するものとしており、熱処理の最高温度到達時や、最高温度を経て冷却過程にかけての期間には磁場を印加しない。なお、本発明の実施形態において、熱処理の最高温度は、典型的には、結晶化開始温度の60℃高温の温度よりも高い温度である。 As described above, in the manufacture of the core according to the embodiment of the present invention, the magnetic field is applied only during a specific period of the temperature rising period, and when the maximum temperature of the heat treatment is reached or during the period of the cooling process after reaching the maximum temperature. Does not apply a magnetic field. In the embodiment of the present invention, the maximum temperature of the heat treatment is typically higher than the temperature of 60 ° C. higher than the crystallization start temperature.
 本明細書において、「昇温期間」とは、最高到達温度に達するよりも前の期間を意味するものであり、最高到達温度に達する前であれば、昇温、降温、一定の温度保持の状態を含んでいても良い。例えば、上記の結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までの昇温期間中の温度範囲内という場合において、熱処理は、上記温度範囲内の特定の温度で一定時間保持を行うように行われても良い。また、温度を単調に一定の昇温速度で昇温させても良いし、途中で昇温速度を変更しても良い。 In this specification, the “temperature increase period” means a period before the maximum temperature is reached, and before reaching the maximum temperature, the temperature is increased, decreased, and maintained at a constant temperature. The state may be included. For example, in the case where the temperature is in the temperature range during the temperature rising period from 25 ° C. higher than the crystallization start temperature to 60 ° C. higher than the crystallization start temperature, the heat treatment is held for a certain time at a specific temperature within the temperature range. May be done to do. Further, the temperature may be monotonously increased at a constant temperature increase rate, or the temperature increase rate may be changed in the middle.
 ここで、本発明者が、上記のように熱処理工程における昇温期間中の特定温度範囲内でのみ磁場を印加することを想起するに至った理由を説明する。 Here, the reason why the inventor has come to recall that the magnetic field is applied only within the specific temperature range during the temperature rising period in the heat treatment step as described above will be described.
 図6は、本発明者の実験によって得られたインピーダンス比透磁率の周波数特性を示すグラフであり、熱処理中に磁場の印加を行わなかったときのコア(コアC1)のインピーダンス比透磁率の周波数特性と、熱処理期間中の全体にわたって磁場の印加を行ったときのコア(コアC2)のインピーダンス比透磁率の周波数特性とを示している。 FIG. 6 is a graph showing the frequency characteristic of the impedance relative permeability obtained by the experiment of the present inventor, and the frequency of the impedance relative permeability of the core (core C1) when no magnetic field is applied during the heat treatment. The characteristics and the frequency characteristics of the impedance relative permeability of the core (core C2) when a magnetic field is applied throughout the heat treatment period are shown.
 図6からわかるように、例えば100kHz以下の低周波域においては、コアC1(磁場無印加)のインピーダンス比透磁率μrzが、コアC2(常時磁場印加)のインピーダンス透磁率μrzを大きく上回る。一方で、1MHzを超える高周波域では、コアC2のインピーダンス透磁率μrzが、コアC1のインピーダンス透磁率μrzよりも高くなることが観察される。このことから、熱処理中に磁場を印加してコアに磁気異方性を付与すると、低周波域でのインピーダンス比透磁率μrz(本発明者の実験によると、特に複素比透磁率の実数部μr’)が低下する傾向があり、一方で、高周波域でのインピーダンス比透磁率μrzは向上させ得る傾向があることが確認できた。 As can be seen from FIG. 6, in a low frequency range of 100 kHz or less, for example, the impedance relative permeability μrz of the core C1 (no magnetic field applied) greatly exceeds the impedance permeability μrz of the core C2 (always magnetic field applied). On the other hand, in a high frequency region exceeding 1 MHz, it is observed that the impedance permeability μrz of the core C2 is higher than the impedance permeability μrz of the core C1. From this, when magnetic anisotropy is imparted to the core by applying a magnetic field during the heat treatment, the impedance relative permeability μrz in the low frequency region (according to the experiments by the present inventor, in particular, the real part μr of the complex relative permeability) It was confirmed that the impedance ratio permeability μrz in the high frequency range tends to be improved.
 このように、本発明者は、低周波側のインピーダンス比透磁率μrzの向上と高周波側のインピーダンス比透磁率μrzの向上は相反するものという認識を持っていた。しかし、本発明者等が磁場中の熱処理について種々の実験を繰り返すうちに、低温、短時間の熱処理において低周波側のインピーダンス比透磁率の低下の少ない条件の存在を確認し、さらに鋭意検討をおこなった。 As described above, the present inventor has recognized that the improvement in the impedance relative permeability μrz on the low frequency side and the improvement in the impedance relative permeability μrz on the high frequency side are contradictory. However, as the present inventors repeated various experiments on heat treatment in a magnetic field, we confirmed the existence of conditions with little decrease in impedance relative permeability on the low frequency side in heat treatment at low temperature for a short time, and conducted further diligent studies. I did it.
 その結果、熱処理工程において、示差走査熱量計での結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までに相当する昇温期間中の温度範囲内に限定して、10分以上60分以下の時間だけ前記コアの高さ方向に磁場を印加することによって、低周波域でのインピーダンス比透磁率μrzの低下を抑制しながら、高周波域でのインピーダンス比透磁率μrzを向上させることができることを見出した。特に、上記の温度範囲内において上記の時間だけ磁場を印加すれば、低周波域でのインピーダンス透磁率μrzの低下を抑制できることのみならず、磁場無印加の場合よりも向上させる可能性があることを見出した。これにより、周波数10kHzから1MHzの広い周波数帯域において、高いインピーダンス比透磁率μrzを有するコアを得ることができた。 As a result, in the heat treatment step, it is limited to a temperature range during the temperature rising period corresponding to from the high crystallization start temperature of 25 ° C. in the differential scanning calorimeter to the high crystallization start temperature of 60 ° C. Improving the impedance relative permeability μrz in the high frequency range while suppressing the decrease in the impedance relative permeability μrz in the low frequency range by applying a magnetic field in the height direction of the core for a time of 60 minutes or less. I found out that I can. In particular, if a magnetic field is applied for the above time within the above temperature range, not only can a decrease in impedance permeability μrz in the low frequency region be suppressed, but also there is a possibility of improvement over the case where no magnetic field is applied. I found. As a result, a core having a high impedance relative permeability μrz could be obtained in a wide frequency band from 10 kHz to 1 MHz.
 上記のように、昇温期間中における特定の温度範囲内に限定して特定の時間だけ磁場印加を行う熱処理方法によれば、周波数10kHzにおけるμrzが90,000~115,000、周波数100kHzにおけるμrzが40,000~49,000、かつ、周波数1MHzにおけるμrzが8,500~15,000であるコアを得ることができる。 As described above, according to the heat treatment method in which a magnetic field is applied only for a specific time within a specific temperature range during the temperature rising period, μrz at a frequency of 10 kHz is 90,000 to 115,000 and μrz at a frequency of 100 kHz. Of 40,000 to 49,000 and a μrz of 8,500 to 15,000 at a frequency of 1 MHz can be obtained.
 なお、前記昇温期間のある温度範囲内に限定した磁場印加によれば、周波数10kHzから1MHzの広い周波数帯域におけるインピーダンス比透磁率μrzの極大化が可能となったと推測される。しかしながら、昇温期間のある温度範囲内に限定した磁場印加が、μ’、μ”のそれぞれへどのように寄与しているかについてのメカニズムは、解明できていない。 Note that it is presumed that the impedance relative permeability μrz can be maximized in a wide frequency band from a frequency of 10 kHz to 1 MHz by applying a magnetic field limited within a certain temperature range of the temperature raising period. However, the mechanism of how the magnetic field application limited to a certain temperature range of the temperature rising period contributes to each of μ ′ and μ ″ has not been elucidated.
 また、上記の結晶化開始温度は、示差走査熱量計により定められる。真の結晶化開始温度を正確に測定するのは困難であり、示差走査熱量計(DSC:Differential Scanning Calorimetry)による同定が有効である。昇温時、ナノ結晶化の開始による発熱反応が検出される温度を結晶化開始温度とした(図5参照)。本明細書において、結晶化開始温度は、示差走査熱量計の測定条件を昇温速度10℃/分で行ったときのものを意味する。 The above crystallization start temperature is determined by a differential scanning calorimeter. It is difficult to accurately measure the true crystallization start temperature, and identification by a differential scanning calorimeter (DSC) is effective. The temperature at which an exothermic reaction due to the start of nanocrystallization was detected during the temperature rise was defined as the crystallization start temperature (see FIG. 5). In the present specification, the crystallization start temperature means a value obtained when the measurement conditions of the differential scanning calorimeter are performed at a heating rate of 10 ° C./min.
 熱処理温度の制御は、熱処理炉の容量や、熱処理される非晶質合金リボンが結晶化することによる発熱量を考慮しながら、実際の熱処理炉内の温度分布がプラスマイナス5℃以下になるように制御することが好ましい。これにより、熱処理後の合金の磁気特性を安定させることができる。 The heat treatment temperature is controlled so that the temperature distribution in the actual heat treatment furnace becomes plus or minus 5 ° C. or less, taking into consideration the capacity of the heat treatment furnace and the amount of heat generated by crystallization of the amorphous alloy ribbon to be heat treated. It is preferable to control. Thereby, the magnetic properties of the alloy after heat treatment can be stabilized.
 印加する磁場の強度は、50kA/m以上300kA/m以下とすることが好ましい。印加する磁場が弱すぎると、実作業条件での誘導磁気異方性の付与が難しくなり、また、高すぎると誘導磁気異方性が付与されすぎる傾向になる。より好ましい範囲は、60kA/m以上280kA/mである。 The strength of the applied magnetic field is preferably 50 kA / m or more and 300 kA / m or less. If the applied magnetic field is too weak, it is difficult to impart induced magnetic anisotropy under actual working conditions. If it is too high, induced magnetic anisotropy tends to be imparted too much. A more preferable range is 60 kA / m or more and 280 kA / m.
 なお、印加する磁場が50kA/m未満の比較的弱い磁場であれば、熱処理工程の任意の期間に印加したとしてもインピーダンス比透磁率にはほとんど影響が及ばないことが本願発明者によって確認された。したがって、本発明の実施形態において、50kA/m未満の弱い磁場の印加は、磁場を印加していないものと見なしてよい。 In addition, if the magnetic field to be applied is a relatively weak magnetic field of less than 50 kA / m, it was confirmed by the present inventor that even if it is applied during an arbitrary period of the heat treatment step, the impedance relative permeability is hardly affected. . Therefore, in an embodiment of the present invention, application of a weak magnetic field of less than 50 kA / m may be regarded as not applying a magnetic field.
 ナノ結晶化可能なFe基非晶質合金としては、例えば、一般式:(Fe1-aa100-x-y-z-α-β-γCuxSiyzM’αM”βXγ(原子%)(ただし、MはCo及び/又はNiであり、M’はNb,Mo,Ta,Ti,Zr,Hf,V,Cr,Mn及びWからなる群から選ばれた少なくとも1種の元素、M”はAl,白金族元素,Sc,希土類元素,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC、Ge、P、Ga、Sb、In、Be、Asからなる群から選ばれた少なくとも1種の元素、a,x,y,z,α,β及びγはそれぞれ0≦a≦0.5,0.1≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦30、0≦α≦20,0≦β≦20及び0≦γ≦20を満たす。)により表される組成の合金を使用することができる。 Examples of the Fe-based amorphous alloy that can be nanocrystallized include, for example, the general formula: (Fe 1-a M a ) 100-xyz- α - β - γ Cu x Si y B z M′α M ″ βXγ (atomic%) (Where M is Co and / or Ni, and M ′ is at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W, M ″) Is at least one element selected from the group consisting of Al, platinum group elements, Sc, rare earth elements, Zn, Sn, Re, and X is a group consisting of C, Ge, P, Ga, Sb, In, Be, As At least one element selected from a, x, y, z, α, β, and γ is 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3, 0 ≦ y ≦ 30, and 0 ≦ z, respectively. ≦ 25, 5 ≦ y + z ≦ 30, 0 ≦ α ≦ 20, 0 ≦ β ≦ 20 and 0 ≦ γ ≦ 20). Can.
 前記組成の合金を、融点以上に溶融し、単ロール法により、急冷凝固することで、長尺状の非晶質合金リボン(薄帯)を得ることができる。 An elongated amorphous alloy ribbon (strip) can be obtained by melting an alloy having the above composition to a melting point or higher and rapidly solidifying it by a single roll method.
 非晶質合金リボンの厚さは、9μm以上30μm以下が好ましい。9μm未満では、リボンの機械的強度が不十分でハンドリングの際に破断しやすい。30μmを超えると、非晶質状態を安定に得られにくくなる。また、非晶質合金リボンをナノ結晶化後、コアとして高周波用途に使用する場合、リボンには渦電流が発生するが、前記渦電流による損失は、リボンが厚いほど、大きくなる。そのため、より好ましい厚さは、9μm~20μmであり、15μm以下の厚さがさらに好ましい。 The thickness of the amorphous alloy ribbon is preferably 9 μm or more and 30 μm or less. If it is less than 9 μm, the mechanical strength of the ribbon is insufficient, and it is easy to break during handling. When it exceeds 30 μm, it is difficult to stably obtain an amorphous state. In addition, when the amorphous alloy ribbon is nanocrystallized and used as a core for high frequency applications, an eddy current is generated in the ribbon, and the loss due to the eddy current increases as the ribbon becomes thicker. Therefore, a more preferable thickness is 9 μm to 20 μm, and a thickness of 15 μm or less is further preferable.
 非晶質合金リボンの幅は、コアの実用的な形状から、10mm幅以上が好ましい。広幅の合金リボンをスリットする(裁断する)ことにより低コスト化が可能となるので、広幅が好ましいが、合金リボンの安定した製造には250mm幅以下が好ましい。より安定に製造するためには70mm幅以下がより好ましい。 The width of the amorphous alloy ribbon is preferably 10 mm or more from the practical shape of the core. Since a cost can be reduced by slitting (cutting) a wide alloy ribbon, a wide width is preferable, but a width of 250 mm or less is preferable for stable production of the alloy ribbon. In order to manufacture more stably, 70 mm width or less is more preferable.
 ナノ結晶化のための熱処理は、窒素などの不活性ガス中で行うのが好ましく、最高到達温度としては560℃超600℃以下が好ましい。560℃以下または600℃を超える場合は、磁歪が大きくなるため好ましくない。最高到達温度での保持時間は、特に設定せず0分(保持時間無し)であってもナノ結晶化させることができる。熱処理する合金全体量の熱容量と特性の安定性を考慮して、3時間以下の間で保持することもできる。 The heat treatment for nanocrystallization is preferably performed in an inert gas such as nitrogen, and the maximum temperature reached is preferably more than 560 ° C. and 600 ° C. or less. When the temperature is 560 ° C. or lower or exceeds 600 ° C., magnetostriction increases, which is not preferable. Even if the holding time at the highest temperature is not specifically set and is 0 minute (no holding time), nanocrystallization can be performed. In consideration of the heat capacity of the total amount of the alloy to be heat-treated and the stability of the characteristics, it can be held for 3 hours or less.
 熱処理の温度プロファイルとしては、室温からナノ結晶化が開始する温度近傍まで(典型的には、結晶化開始温度よりも20℃低温まで)は、例えば3~5℃/分の昇温速度で比較的急速に昇温し、その後、上記ナノ結晶化開始温度近傍からナノ結晶化の開始温度の60℃高温まで(あるいは、最高到達温度まで)は、平均0.2~1.0℃/分の緩やかな昇温速度で昇温することで、安定したナノ結晶化を行うことができる。尚、最高到達温度から200℃までは、2~5℃/分の冷却速度で冷却することが好ましい。通常100℃以下で、合金を大気中に取り出すことができる。 The temperature profile of the heat treatment is, for example, compared with a temperature increase rate of 3 to 5 ° C./min from room temperature to near the temperature at which nanocrystallization starts (typically 20 ° C. lower than the crystallization start temperature). The temperature is rapidly increased, and thereafter, from the vicinity of the above-mentioned nanocrystallization start temperature to 60 ° C higher than the start temperature of nanocrystallization (or to the highest temperature reached), the average is 0.2 to 1.0 ° C / min. Stable nanocrystallization can be performed by increasing the temperature at a moderate temperature increase rate. Note that it is preferable to cool at a cooling rate of 2 to 5 ° C./min from the highest temperature to 200 ° C. Usually, the alloy can be taken out into the atmosphere at 100 ° C. or lower.
 磁性部品として使用する場合は、ナノ結晶化可能なFe基非晶質合金リボンを巻回して環状体を作製した後、結晶化温度領域に加熱し、冷却する、熱処理工程を行えばよい。この時の磁場の印加は、前記環状体(コア)の高さ方向とすることで、所定の誘導磁気異方性を付与することができる。 When used as a magnetic component, a heat treatment step may be performed in which a nano-crystallizable Fe-based amorphous alloy ribbon is wound to produce an annular body, and then heated to a crystallization temperature region and cooled. By applying the magnetic field at this time in the height direction of the annular body (core), a predetermined induced magnetic anisotropy can be imparted.
 (実施例1)
 原子%で、Cu:1%、Nb:3%、Si:15.5%、B:6.5%、残部Fe及び不可避不純物からなる合金溶湯を単ロ-ル法により急冷し、幅50mm、厚さ13μmのFe基非晶合金リボンを得た。このFe基非晶合金リボンを、幅15mmにスリット(裁断)した後、外径31mm、内径21mmに巻回し、トロイダルコアを作製した(高さ15mm)。図5に示すように、示差走査熱量計(DSC)での測定により、この合金の結晶化開始温度は500℃であった。
Example 1
Atomic%, Cu: 1%, Nb: 3%, Si: 15.5%, B: 6.5%, the molten alloy consisting of the balance Fe and inevitable impurities was quenched by a single roll method, and the width was 50 mm, A Fe-based amorphous alloy ribbon having a thickness of 13 μm was obtained. This Fe-based amorphous alloy ribbon was slit (cut) to a width of 15 mm, and then wound around an outer diameter of 31 mm and an inner diameter of 21 mm to produce a toroidal core (height 15 mm). As shown in FIG. 5, the crystallization start temperature of this alloy was 500 ° C. as measured by a differential scanning calorimeter (DSC).
 作製したコアに対して、図1に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。磁場の印加は、530~550℃の温度範囲(結晶化開始温度の30℃高温から結晶化開始温度の50℃高温の温度範囲)で30分間行っている。磁場印加方向は合金リボンの幅方向すなわちコアの高さ方向とした。磁場強度は、280kA/mとした。尚、熱処理における最高到達温度は580℃である。 The produced core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. The magnetic field is applied for 30 minutes in a temperature range of 530 to 550 ° C. (a temperature range from a high crystallization start temperature of 30 ° C. to a high crystallization start temperature of 50 ° C.). The magnetic field application direction was the width direction of the alloy ribbon, that is, the height direction of the core. The magnetic field strength was 280 kA / m. The maximum temperature reached in the heat treatment is 580 ° C.
 熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzを測定した。結果を表1に示す。 The impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment was measured. The results are shown in Table 1.
 インピーダンス比透磁率μrzの測定は、アジレレントテクノロジー社製HP4194Aを用いて、オシレーションレベル0.5V、アベレージ16の条件で行った。絶縁被覆導線を、トロイダルコアの中央部に貫通させて、入出力端子に接続し測定した。 The impedance relative permeability μrz was measured using HP4194A manufactured by Agilent Technologies under the conditions of an oscillation level of 0.5 V and an average of 16. The insulation coated conductor was passed through the center of the toroidal core and connected to an input / output terminal for measurement.
 実施例1では、インピーダンス比透磁率μrzは、10kHzで98,000であり、100kHzで42,000であり、1MHzで8,600であった。 In Example 1, the impedance relative permeability μrz was 98,000 at 10 kHz, 42,000 at 100 kHz, and 8,600 at 1 MHz.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2)
 実施例1に記載のFe基非晶質合金を用いて、同様にトロイダルコアを作製した。作製したコアに対して、図2に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。磁場印加の温度範囲と磁場強度のみが実施例1(図1)と異なっており、他の条件は実施例1と同様である。
(Example 2)
Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Only the temperature range of magnetic field application and the magnetic field strength are different from those of the first embodiment (FIG. 1), and other conditions are the same as those of the first embodiment.
 磁場の印加は、540~550℃の温度範囲(結晶化開始温度の40℃高温から結晶化開始温度の50℃高温の温度範囲)で15分間行っている。磁場強度は、160kA/mとした。熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。 The magnetic field is applied for 15 minutes in a temperature range of 540 to 550 ° C. (temperature range from 40 ° C. as the crystallization start temperature to 50 ° C. as the crystallization start temperature). The magnetic field strength was 160 kA / m. Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 実施例2ではインピーダンス比透磁率μrzは、10kHzで109,000であり、100kHzで47,000であり、1MHzで9,500であった。つまり、実施例1に比べて10kHz、100kHz、1MHzの各周波数で、より高いインピーダンス比透磁率μrzを得ることができていた。 In Example 2, the impedance relative permeability μrz was 109,000 at 10 kHz, 47,000 at 100 kHz, and 9,500 at 1 MHz. That is, a higher impedance relative permeability μrz could be obtained at each frequency of 10 kHz, 100 kHz, and 1 MHz compared to Example 1.
 (実施例3)
 原子%で、Cu:1%、Nb:3%、Si:15.5%、B:6.5%、残部Fe及び不可避不純物からなる合金溶湯(実施例1と同様)を単ロ-ル法により急冷し、幅50mm、厚さ10μmのFe基非晶合金リボンを得た。この厚さ10μm(実施例1では13μm)のFe基非晶合金リボンを用いて、同様にトロイダルコアを作製した。作製したコアに対して、実施例2と同様に、図2に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。
Example 3
A single-roll method using a molten alloy (at the same as in Example 1) consisting of atomic percent, Cu: 1%, Nb: 3%, Si: 15.5%, B: 6.5%, remaining Fe and inevitable impurities To obtain an Fe-based amorphous alloy ribbon having a width of 50 mm and a thickness of 10 μm. A toroidal core was similarly produced using this Fe-based amorphous alloy ribbon having a thickness of 10 μm (13 μm in Example 1). In the same manner as in Example 2, the prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 実施例3では、インピーダンス比透磁率μrzは、10kHzで91,000であり、100kHzで46,000であり、1MHzで9,300であった。 In Example 3, the impedance relative permeability μrz was 91,000 at 10 kHz, 46,000 at 100 kHz, and 9,300 at 1 MHz.
 (実施例4)
 実施例1に記載の厚さ13μmのFe基非晶質合金リボンを用いて、同様にトロイダルコアを作製した。作製したコアに対して、熱処理温度が530℃~540℃の範囲で、15分間、160kA/mの強度で磁場を印加した。熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。
Example 4
Using the Fe-based amorphous alloy ribbon having a thickness of 13 μm described in Example 1, a toroidal core was similarly produced. A magnetic field was applied to the prepared core at an intensity of 160 kA / m for 15 minutes at a heat treatment temperature in the range of 530 ° C. to 540 ° C. Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 実施例4では、インピーダンス透磁率μrzは、10kHzで90,000であり、100kHzで46,000であり、1MHzで10,000であった。 In Example 4, the impedance permeability μrz was 90,000 at 10 kHz, 46,000 at 100 kHz, and 10,000 at 1 MHz.
 (比較例1)
 実施例1に記載のFe基非晶質合金を用いて、同様にトロイダルコアを作製した。作製したコアを図3に示す温度及び磁場印加のプロファイルで、磁場印加をすることなく(無磁場で)熱処理を行った。図3からわかるように、比較例1における温度プロファイルは、実施例1と同様である。
(Comparative Example 1)
Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The manufactured core was heat-treated with the temperature and magnetic field application profile shown in FIG. 3 without applying a magnetic field (no magnetic field). As can be seen from FIG. 3, the temperature profile in Comparative Example 1 is the same as in Example 1.
 熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。 Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 磁場を印加しない比較例1と、実施例1及び2とを比較すると、各周波数で、比較例1のインピーダンス比透磁率μrzの値は、実施例1及び2の値未満である。 Comparing Comparative Example 1 without applying a magnetic field with Examples 1 and 2, the value of impedance relative permeability μrz of Comparative Example 1 is less than that of Examples 1 and 2 at each frequency.
 (比較例2)
 実施例1に記載のFe基非晶質合金を用いて、同様にトロイダルコアを作製した。作製したコアを図4に示す温度及び磁場印加のプロファイルで熱処理及び磁場印加を行った。図4からわかるように、比較例2における温度プロファイルは、実施例1と同様である。
(Comparative Example 2)
Using the Fe-based amorphous alloy described in Example 1, a toroidal core was similarly produced. The prepared core was subjected to heat treatment and magnetic field application with the temperature and magnetic field application profiles shown in FIG. As can be seen from FIG. 4, the temperature profile in Comparative Example 2 is the same as in Example 1.
 比較例2では、磁場印加における磁場強度は、実施例1(図1)と同様であるが、磁場印加の温度範囲が、熱処理開始時から、最高等到達温度580℃を経て冷却に至るものである。この磁場印加の温度範囲は、本発明の範囲外である。 In Comparative Example 2, the magnetic field strength in the magnetic field application is the same as in Example 1 (FIG. 1), but the temperature range of the magnetic field application reaches the cooling after reaching the highest equivalent temperature of 580 ° C. from the start of the heat treatment. is there. The temperature range of this magnetic field application is outside the scope of the present invention.
 熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。 Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 比較例2と、実施例1及び2とを比較すると、各周波数で、比較例2のインピーダンス比透磁率μrzの値は、実施例1及び2の値未満である。 Comparing Comparative Example 2 with Examples 1 and 2, the value of impedance relative permeability μrz of Comparative Example 2 is less than that of Examples 1 and 2 at each frequency.
 (参考例)
 参考例として、実施例2と同様の組成および形状を有するトロイダルコアに対して、熱処理工程の昇温期間において、より低い温度域でより長い時間、磁場印加を行った時のインピーダンス比透磁率について説明する。
(Reference example)
As a reference example, with respect to the toroidal core having the same composition and shape as in Example 2, the impedance relative permeability when a magnetic field is applied for a longer time in a lower temperature range in the temperature rising period of the heat treatment step. explain.
 本参考例において、磁場の印加は、480~520℃の温度範囲(結晶化開始温度の20℃低温から結晶化開始温度の20℃高温の温度範囲)にわたって約60分間継続的に行った。また、磁場印加方向は合金リボンの幅方向すなわちコアの高さ方向であり、磁場強度は120kA/mであった。 In this reference example, the application of the magnetic field was continuously performed for about 60 minutes over a temperature range of 480 to 520 ° C. (temperature range from 20 ° C. lower than the crystallization start temperature to 20 ° C. higher than the crystallization start temperature). The magnetic field application direction was the width direction of the alloy ribbon, that is, the core height direction, and the magnetic field strength was 120 kA / m.
 熱処理後のコアの10kHz、100kHz、1MHzでのインピーダンス比透磁率μrzの測定結果を表1に示す。 Table 1 shows the measurement results of impedance relative permeability μrz at 10 kHz, 100 kHz, and 1 MHz of the core after the heat treatment.
 図6は、本発明の実施形態(実施例2と同様)によるコア(コアE1)および上記の参考例によるコア(コアR1)におけるインピーダンス比透磁率μrzの周波数特性を示す。また、図6には、比較例1に対応する磁場無印加の場合のコア(コアC1)、および、上記比較例2に対応する磁場を印加し続けた場合のコア(コアC2)も示している。 FIG. 6 shows frequency characteristics of impedance relative permeability μrz in the core (core E1) according to the embodiment of the present invention (similar to Example 2) and the core (core R1) according to the above reference example. FIG. 6 also shows the core (core C1) when no magnetic field is applied corresponding to Comparative Example 1, and the core (core C2) when the magnetic field corresponding to Comparative Example 2 is continuously applied. Yes.
 図6からわかるように、コアR1のように、結晶化開始温度の25℃高温よりも低い結晶化開始温度近傍での温度域において、約60分間磁場を印加すると、磁場無印加の場合(コアC1)に比べて低周波域でのインピーダンス比透磁率μrzが低下する場合がある。ただし、100kHzよりも高い高周波域では、コアC1よりもコアR1の方がインピーダンス比透磁率が高くなる傾向がある。 As can be seen from FIG. 6, when a magnetic field is applied for about 60 minutes in the temperature range near the crystallization start temperature lower than the 25 ° C. crystallization start temperature, as in the core R1, no magnetic field is applied (core Compared to C1), the impedance relative permeability μrz in the low frequency region may be lowered. However, in a high frequency region higher than 100 kHz, the impedance relative permeability tends to be higher in the core R1 than in the core C1.
 一方で、本発明の実施形態(コアE1)のように結晶化開始温度の25℃以上60℃以下(典型的には最高温度到達時には磁場を印加しない)において比較的短い時間だけ磁場を印加すると、高周波域だけでなく、低周波域においてもインピーダンス比透磁率μrzの向上が確認された。このように、本発明の実施形態では、最高到達温度以前の特定期間において磁場を印加する形態のなかでも、低周波域のインピーダンス比透磁率μrzをも向上させるという特異な効果が奏される。 On the other hand, when the magnetic field is applied for a relatively short time at the crystallization start temperature of 25 ° C. or higher and 60 ° C. or lower (typically, the magnetic field is not applied when the maximum temperature is reached) as in the embodiment of the present invention (core E1). It was confirmed that the impedance relative permeability μrz was improved not only in the high frequency range but also in the low frequency range. As described above, in the embodiment of the present invention, a unique effect of improving the impedance relative permeability μrz in the low frequency region is obtained even in the form in which the magnetic field is applied in the specific period before the maximum temperature.
 本発明の実施形態によれば、広い周波数帯域に対応して高いインピーダンス比透磁率μrzを示すコアが提供され、コモンモードチョークコイルや高周波トランス等において好適に用いられる。 According to the embodiment of the present invention, a core exhibiting a high impedance relative permeability μrz corresponding to a wide frequency band is provided, and is suitably used in a common mode choke coil, a high frequency transformer, or the like.

Claims (8)

  1.  Fe基ナノ結晶合金リボンを巻回したコアであって、
     前記コアのインピーダンス比透磁率μrzが、
     周波数10kHzで、90,000以上、
     周波数100kHzで、40,000以上、かつ、
     周波数1MHzで、8,500以上、
     である、Fe基ナノ結晶合金コア。
    A core wound with a Fe-based nanocrystalline alloy ribbon,
    The impedance relative permeability μrz of the core is
    More than 90,000 at a frequency of 10 kHz
    40,000 or more at a frequency of 100 kHz, and
    More than 8,500 at 1MHz frequency
    A Fe-based nanocrystalline alloy core.
  2.  前記コアのインピーダンス比透磁率μrzが、
     周波数10kHzで、105,000以上、
     周波数100kHzで、45,000以上、かつ、
     周波数1MHzで、9,000以上、
     である、請求項1に記載のFe基ナノ結晶合金コア。
    The impedance relative permeability μrz of the core is
    105,000 or more at a frequency of 10 kHz,
    45,000 or more at a frequency of 100 kHz, and
    More than 9,000 at 1MHz frequency
    The Fe-based nanocrystalline alloy core according to claim 1, wherein
  3.  前記Fe基ナノ結晶合金リボンの厚さが、9μm以上20μm以下である、請求項1または2に記載のFe基ナノ結晶合金コア。 The Fe-based nanocrystalline alloy core according to claim 1 or 2, wherein the Fe-based nanocrystalline alloy ribbon has a thickness of 9 µm or more and 20 µm or less.
  4.  ナノ結晶化可能なFe基非晶質合金リボンを巻回した後、結晶化温度領域に加熱し、冷却する熱処理工程を有する、Fe基ナノ結晶合金リボンを巻回したコアの製造方法であって、
     前記熱処理工程は、
     示差走査熱量計での結晶化開始温度の25℃高温から結晶化開始温度の60℃高温までに相当する昇温期間中の温度範囲内に限定して、10分以上60分以下で前記コアの高さ方向に磁場を印加する磁場印加工程を有する、
    Fe基ナノ結晶合金コアの製造方法。
    A method of manufacturing a core wound with an Fe-based nanocrystalline alloy ribbon, comprising a heat treatment step of winding and cooling a nano-crystallizable Fe-based amorphous alloy ribbon to a crystallization temperature region and then cooling. ,
    The heat treatment step includes
    It is limited to a temperature range during a temperature rising period corresponding to from a high crystallization start temperature of 25 ° C. to a high crystallization start temperature of 60 ° C. in the differential scanning calorimeter. Having a magnetic field application step of applying a magnetic field in the height direction,
    A method for producing an Fe-based nanocrystalline alloy core.
  5.  前記熱処理工程は、
     示差走査熱量計での結晶化開始温度の30℃高温から結晶化開始温度の50℃高温までに相当する前記昇温期間中の温度範囲内に限定して、15分以上40分以下で前記コアの高さ方向に磁場を印加する磁場印加工程を有する、請求項4に記載のFe基ナノ結晶合金コアの製造方法。
    The heat treatment step includes
    In the differential scanning calorimeter, the core is formed within a temperature range of 15 minutes to 40 minutes, limited to a temperature range during the temperature increase period corresponding to a temperature from 30 ° C. as the crystallization start temperature to 50 ° C. as the crystallization start temperature. The manufacturing method of the Fe group nanocrystal alloy core of Claim 4 which has a magnetic field application process which applies a magnetic field to the height direction of this.
  6.  前記コアの高さ方向に、磁場強度50kA/m以上300kA/m以下の磁場を印加する、請求項4または5に記載のFe基ナノ結晶合金コアの製造方法。 The method for producing an Fe-based nanocrystalline alloy core according to claim 4 or 5, wherein a magnetic field having a magnetic field strength of 50 kA / m or more and 300 kA / m or less is applied in the height direction of the core.
  7.  前記Fe基ナノ結晶合金リボンの厚さが、9μm以上20μm以下である、請求項4から6のいずれかに記載のFe基ナノ結晶合金コアの製造方法。 The method for producing an Fe-based nanocrystalline alloy core according to any one of claims 4 to 6, wherein the thickness of the Fe-based nanocrystalline alloy ribbon is 9 µm or more and 20 µm or less.
  8.  製造されたコアのインピーダンス比透磁率μrzが、
     周波数10kHzで、90,000以上、
     周波数100kHzで、40,000以上、かつ、
     周波数1MHzで、8,500以上、
     である、請求項4から7のいずれかに記載のFe基ナノ結晶合金コアの製造方法。
    The impedance relative permeability μrz of the manufactured core is
    More than 90,000 at a frequency of 10 kHz
    40,000 or more at a frequency of 100 kHz, and
    More than 8,500 at 1MHz frequency
    The manufacturing method of the Fe group nanocrystal alloy core in any one of Claim 4 to 7 which is these.
PCT/JP2015/066758 2014-06-10 2015-06-10 Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE WO2015190528A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580019461.6A CN106170837B (en) 2014-06-10 2015-06-10 The manufacture method of Fe Based Nanocrystalline Alloys magnetic core and Fe Based Nanocrystalline Alloys magnetic cores
JP2016527844A JP6137408B2 (en) 2014-06-10 2015-06-10 Fe-based nanocrystalline alloy core and method for producing Fe-based nanocrystalline alloy core
EP20160649.8A EP3693980A1 (en) 2014-06-10 2015-06-10 Fe-based nanocrystalline alloy core
ES15807434T ES2791885T3 (en) 2014-06-10 2015-06-10 Method for producing Fe-based nanocrystalline alloy core
EP15807434.4A EP3157021B1 (en) 2014-06-10 2015-06-10 Method for producing fe-based nanocrystalline alloy core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014119178 2014-06-10
JP2014-119178 2014-06-10

Publications (1)

Publication Number Publication Date
WO2015190528A1 true WO2015190528A1 (en) 2015-12-17

Family

ID=54833617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066758 WO2015190528A1 (en) 2014-06-10 2015-06-10 Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE

Country Status (5)

Country Link
EP (2) EP3157021B1 (en)
JP (1) JP6137408B2 (en)
CN (1) CN106170837B (en)
ES (1) ES2791885T3 (en)
WO (1) WO2015190528A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
WO2020162480A1 (en) * 2019-02-05 2020-08-13 日立金属株式会社 Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
CN112410531A (en) * 2020-11-12 2021-02-26 中国科学院宁波材料技术与工程研究所 Nanocrystalline alloy and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180171444A1 (en) * 2016-12-15 2018-06-21 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
CN109754974B (en) * 2019-03-07 2021-06-01 中国科学院宁波材料技术与工程研究所 Nanocrystalline alloy magnetic core and preparation method thereof
CN111151745B (en) * 2019-12-28 2021-06-04 同济大学 Modification method of iron-based material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596360A (en) * 1982-07-02 1984-01-13 Sony Corp Heat treatment of amorphous magnetic alloy
JPH0296306A (en) * 1988-06-10 1990-04-09 Nippon Telegr & Teleph Corp <Ntt> Amorphous magnetic thin-band winding core
JPH05267031A (en) * 1992-02-14 1993-10-15 Takeshi Masumoto Magnetic core material
JP2000328206A (en) * 1999-03-12 2000-11-28 Hitachi Metals Ltd Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP2001316724A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Method for manufacturing high frequency core
WO2015046140A1 (en) * 2013-09-27 2015-04-02 日立金属株式会社 METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473782B1 (en) * 1990-03-27 1997-08-27 Kabushiki Kaisha Toshiba Magnetic core
JPH044393A (en) 1990-04-20 1992-01-08 Hitachi Ltd Vibration control element of piping, piping with vibration control element, and pressure transmitting apparatus with vibration control element
JP2909349B2 (en) * 1993-05-21 1999-06-23 日立金属株式会社 Nanocrystalline soft magnetic alloy ribbon and magnetic core with insulating film formed thereon, pulse generator, laser device, accelerator
JP3719449B2 (en) * 1994-04-15 2005-11-24 日立金属株式会社 Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JPH0917623A (en) * 1995-06-30 1997-01-17 Hitachi Metals Ltd Nano crystal alloy magnetic core and its manufacture
KR101534208B1 (en) * 2008-08-22 2015-07-06 아키히로 마키노 ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596360A (en) * 1982-07-02 1984-01-13 Sony Corp Heat treatment of amorphous magnetic alloy
JPH0296306A (en) * 1988-06-10 1990-04-09 Nippon Telegr & Teleph Corp <Ntt> Amorphous magnetic thin-band winding core
JPH05267031A (en) * 1992-02-14 1993-10-15 Takeshi Masumoto Magnetic core material
JP2000328206A (en) * 1999-03-12 2000-11-28 Hitachi Metals Ltd Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP2001316724A (en) * 2000-05-10 2001-11-16 Alps Electric Co Ltd Method for manufacturing high frequency core
WO2015046140A1 (en) * 2013-09-27 2015-04-02 日立金属株式会社 METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
JP2019201215A (en) * 2016-09-29 2019-11-21 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP2021002663A (en) * 2016-09-29 2021-01-07 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP7028290B2 (en) 2016-09-29 2022-03-02 日立金属株式会社 Manufacturing method of nanocrystal alloy magnetic core
WO2020162480A1 (en) * 2019-02-05 2020-08-13 日立金属株式会社 Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
JPWO2020162480A1 (en) * 2019-02-05 2021-12-02 日立金属株式会社 Manufacturing method of wound core, alloy core and wound core
JP7143903B2 (en) 2019-02-05 2022-09-29 日立金属株式会社 Wound magnetic core, alloy core and manufacturing method of wound magnetic core
US11749430B2 (en) 2019-02-05 2023-09-05 Proterial, Ltd. Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
CN112410531A (en) * 2020-11-12 2021-02-26 中国科学院宁波材料技术与工程研究所 Nanocrystalline alloy and preparation method thereof
CN112410531B (en) * 2020-11-12 2022-03-08 中国科学院宁波材料技术与工程研究所 Nanocrystalline alloy and preparation method thereof

Also Published As

Publication number Publication date
EP3157021B1 (en) 2020-03-25
JPWO2015190528A1 (en) 2017-04-20
EP3693980A1 (en) 2020-08-12
EP3157021A4 (en) 2018-05-23
CN106170837B (en) 2018-04-10
EP3157021A1 (en) 2017-04-19
JP6137408B2 (en) 2017-05-31
CN106170837A (en) 2016-11-30
ES2791885T3 (en) 2020-11-06

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP6137408B2 (en) Fe-based nanocrystalline alloy core and method for producing Fe-based nanocrystalline alloy core
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP6046357B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP6024831B2 (en) Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP6786841B2 (en) Magnetic core and its manufacturing method, and in-vehicle parts
JP4636365B2 (en) Fe-based amorphous alloy ribbon and magnetic core
WO2017154561A1 (en) Fe-based alloy composition, soft magnetic material, magnetic member, and electrical/electronic part and instrument
JP7143903B2 (en) Wound magnetic core, alloy core and manufacturing method of wound magnetic core
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP6327835B2 (en) Laminated magnetic body, laminated magnetic core and manufacturing method thereof
JP7452335B2 (en) Method for manufacturing Fe-based nanocrystalline alloy magnetic core
WO2023032913A1 (en) METHOD FOR PRODUCING Fe-BASED AMORPHOUS ALLOY RIBBON AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY RIBBON
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527844

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015807434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015807434

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE