JPS5963567A - Method and device for measuring velocity in using oxygen - Google Patents

Method and device for measuring velocity in using oxygen

Info

Publication number
JPS5963567A
JPS5963567A JP17401082A JP17401082A JPS5963567A JP S5963567 A JPS5963567 A JP S5963567A JP 17401082 A JP17401082 A JP 17401082A JP 17401082 A JP17401082 A JP 17401082A JP S5963567 A JPS5963567 A JP S5963567A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
measurement container
calibration
measurement
calibration solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17401082A
Other languages
Japanese (ja)
Other versions
JPH0464026B2 (en
Inventor
Masao Kaneko
金子 政雄
Akio Matsumoto
松本 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17401082A priority Critical patent/JPS5963567A/en
Publication of JPS5963567A publication Critical patent/JPS5963567A/en
Publication of JPH0464026B2 publication Critical patent/JPH0464026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To obtain a method and device for measurement with which a calibration value and a correction value can be obtained while a dissolved oxygen electrode is kept immersed in an aeration tank by determining the calibration value corresponding to the change in the characteristic of said electrode and the correction value corresponding to the consumption of the dissolved oxygen by the filth sticking and depositing on the inside wall of a measuring vessel thereby enabling the exact measurement of the velocity in using oxygen. CONSTITUTION:The inside of a measuring vessel 21 for aeration is filled positively with a calibrating liquid, and while the calibrating liquid is kept stirred with a rotor 10 by driving a stirrer 9, air is supplied through an air supply port 11 for aeration so that the calibrating liquid in the vessel 21 is aerated until the liquid attains the satd. concn. of the dissolved oxygen. The calibrating liquid having the satd. concn. of the dissolved oxygen is measured with a dissolved oxygen electrode 3 and a dissolved oxygen measuring device 4. On the other hand, the water temp. of the calibrating liquid is measured by a temp. sensor 28 and a temp. measuring device 29. The concn. of the satd. dissolved oxygen changes with the water temp. and the value thereof is known. The known satd. concn. of the dissolved oxygen is thus determined from the water temp. of the calibrating liquid. The difference between the known satd. concn. of the dissolved oxygen and the value actually measured with the device 4 is the contamination of the electrode 3 and the change in the characteristic intrinsic to the electrode with time.

Description

【発明の詳細な説明】 〔技術分野の説明〕 本発明は活性汚泥処理においでfil、(、気槽内の混
合液の酊不利用速lf(全l1111定する酸素第11
用速度抑1冗方ン、1冊および伍[fに門−1−る。
Detailed Description of the Invention [Description of the Technical Field] The present invention relates to activated sludge treatment in which the oxygen unutilization rate lf (total 1111
Use speed control 1 redundant, 1 book and 5 [f ni gate-1-ru].

し発明の技術的IN 、jjT、 ;i、−よr戸′間
顧点〕活性汚泥処即とは、1)9. ty(槽の汚性汚
泥中に存在する微生物が、汗水中(τ含寸jする有槓汚
燭物質を、水中の溶存酸素を利用して酸化することがら
なりたっている。微生物tj1有機汚濁物質の酸化のた
めに溶存酸素を利用するだけでなく、微生物自体が生命
を帷持するためにも溶存ド素を利用している。tit生
物がこのように溶存酸素を消費するため、活性汚泥処理
を効果的に行なうには、微生物の必要とするjp隼を曝
気により供給する必要がある。
TECHNICAL INVENTION OF THE INVENTION Activated sludge treatment means: 1) 9. The microorganisms present in the dirty sludge in the tank oxidize the pollutant substances in the sweat water (τ containing j) using the dissolved oxygen in the water. In addition to using dissolved oxygen for the oxidation of carbon dioxide, the microorganisms themselves also use dissolved oxygen to sustain life.Since activated sludge treatment In order to do this effectively, it is necessary to supply the microorganisms with aeration.

従って、微生物の酸素利用速度が活性汚泥処理における
重要な相律となる。
Therefore, the oxygen utilization rate of microorganisms is an important phase law in activated sludge treatment.

従来の酸素利用速度測定装置は第1図に示す構造であっ
た。すなわち、2 H: if!II定容器で、1曝気
槽1内に没〃iされており、この測定容器2の内部の試
料水と接する位置に溶存酸素電極3を取付けている。こ
の溶存r+Q塁?Tt極3の出力は溶存酸素1Hll 
5ii器4に送られ、ここて溶存¥9.素沢度として測
定される。測定容器2の上部と下部にはそれぞれピンチ
パルプ等の開閉弁5と開閉弁6が設けてあり、それぞれ
ストレーナ7とストレーナ8が接続されている。9はス
タークで、測定容器2の外壁に取付けられ、測定容器2
内に設けた回転子IOを回転駆動する。、11は曝気用
空気供給口11で、下部連通口の側壁に開口する。この
曝気用空気供給口11および開閉弁5,6には電磁弁等
の開閉弁1.2,13.14  を介してコンプレッサ
、用装用空気等の空気供給3Q;面15が接続される。
A conventional oxygen utilization rate measuring device had the structure shown in FIG. That is, 2 H: if! The measurement container 2 is a fixed container, which is submerged in an aeration tank 1, and a dissolved oxygen electrode 3 is attached to the inside of this measurement container 2 at a position in contact with the sample water. This dissolved r + Q base? The output of Tt electrode 3 is dissolved oxygen 1Hll
Sent to 5ii vessel 4, where it dissolves ¥9. It is measured as the degree of appearance. An on-off valve 5 and an on-off valve 6 made of pinch pulp or the like are provided at the upper and lower parts of the measurement container 2, respectively, and a strainer 7 and a strainer 8 are connected thereto, respectively. 9 is a stark, which is attached to the outer wall of the measuring container 2;
The rotor IO provided therein is driven to rotate. , 11 is an aeration air supply port 11, which opens in the side wall of the lower communication port. The aeration air supply port 11 and the on-off valves 5 and 6 are connected to a compressor and an air supply 3Q such as air for use through on-off valves 1.2 and 13.14 such as electromagnetic valves.

また開閉弁12゜13.14およびスターク9は工程制
御装置16に配線されて訃り、これにより予め設定され
た順序で動作指令を受ける。さらに溶存酸素測定器4と
配線されている演算処理器17も工程制御装置16と配
線されている。
The opening/closing valves 12, 13, and 9 are wired to the process control device 16, thereby receiving operation commands in a preset order. Furthermore, the arithmetic processor 17 that is wired to the dissolved oxygen measuring device 4 is also wired to the process control device 16 .

上記構成において、測定に当っては、先ず開閉弁1.3
,14r−工稈制御装R16で開制御し、スターク9を
駆動して回転子IOを回転させ、測定容器2内の試イ2
1水を曝気槽1内の周囲の試料水と置換する。次に開閉
弁6f:閉じ、l’:4気用空気供給口11から試料水
中に空気を供給して曝気する。この時、試料水中の溶存
酸ネ濃度を溶存酸素型1極3および溶存酸素測定器4に
より測定する。その結果、所定の溶存酸素濃度に達した
ことを演算処理器17が判断すると工程制御装置16に
より曝気を停止させる。次にスターン9衾停止し、開閉
弁5ヶ閉じ、気泡を含まない状態で試料水を測定容器z
内に密封した後に、スターク9を再始動(7回転子10
ケ回転させ試料水を撹拌しなから溶存酸素測定器4によ
り溶存酸素P度の減少を測定する。この溶存酸素濃度の
減少から演算処理器17により酸素利用速度を算出する
In the above configuration, in the measurement, first, the on-off valve 1.3
, 14r - Opening is controlled by the culm control device R16, the Stark 9 is driven to rotate the rotor IO, and the test tube 2 in the measurement container 2 is opened.
1 water is replaced with the surrounding sample water in the aeration tank 1. Next, the on-off valve 6f: closes, and l': air is supplied into the sample water from the 4-air air supply port 11 for aeration. At this time, the dissolved oxygen concentration in the sample water is measured using the dissolved oxygen type 1 pole 3 and the dissolved oxygen measuring device 4. As a result, when the arithmetic processor 17 determines that a predetermined dissolved oxygen concentration has been reached, the process control device 16 stops the aeration. Next, stop the turn 9, close the 5 on-off valves, and pour the sample water into the measuring container without containing any air bubbles.
After sealing the inside, restart Stark 9 (7 rotors 10
While stirring the sample water by rotating it, the decrease in dissolved oxygen P level is measured using the dissolved oxygen measuring device 4. The arithmetic processor 17 calculates the oxygen utilization rate from this decrease in dissolved oxygen concentration.

この酸素利用速度測定装置では測定を長期間継続すると
試料水中の汚物が測定容器2内に付着、堆積してくる。
In this oxygen utilization rate measuring device, if the measurement is continued for a long period of time, dirt in the sample water will adhere and accumulate in the measurement container 2.

特に溶存酸素電極3表面と測定容器2の内壁に付着、堆
濯した汚物は測定誤差企生じる。また、溶存酸素電極3
は内部液および内部の検出電極の経時的な劣化によって
も測定値が変動する。従って、定期的に指示値の点検が
必要となる。点検は?IIII jF容器2をII’7
気槽1外へ引出し、溶存酸素室@3を測定容器2から泡
りはずした後、飽和溶存酸素溶液中に浸漬して行なう、
この点検および測定容器2の引上げと据付は作梨はわず
られしいうえに作業時間もかなりの長時間金製する。
In particular, dirt adhering to and depositing on the surface of the dissolved oxygen electrode 3 and the inner wall of the measurement container 2 may cause measurement errors. In addition, dissolved oxygen electrode 3
The measured value also fluctuates due to deterioration of the internal liquid and internal detection electrode over time. Therefore, it is necessary to periodically check the indicated values. What about inspection? III jF container 2 II'7
After pulling out the air tank 1 and removing bubbles from the dissolved oxygen chamber @ 3 from the measurement container 2, immerse it in a saturated dissolved oxygen solution.
This inspection, lifting and installation of the measuring container 2 is laborious and requires a considerable amount of time.

また、測定容器2内壁に付着、堆積した汚物による測定
誤差の点検は適正な方法がなく、実施されていなかった
。しかし、実際には測定容器2内壁に付着、堆積した汚
物は溶存酸素を消費し、見かけの酸素利用速度を大きく
している。
Furthermore, there is no proper method for checking measurement errors due to dirt adhering to and accumulating on the inner wall of the measuring container 2, and this has not been carried out. However, in reality, the dirt that adheres to and accumulates on the inner wall of the measurement container 2 consumes dissolved oxygen, increasing the apparent rate of oxygen utilization.

以上のとおり、これまでの酸素利用速度測定装置では定
期的に極めて煩雑な点検が必要なうえに、これを実施し
ても測定容器2内壁の汚れによる測定誤差は避けられな
かった。
As described above, conventional oxygen utilization rate measuring devices require extremely complicated inspections on a regular basis, and even if they are carried out, measurement errors due to dirt on the inner wall of the measurement container 2 cannot be avoided.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、溶存酸素電極の特性変化に対応する校
正値および測定容器内壁に付着、堆積した汚物による溶
存酸素の消費に対応する補正値を求めて正確な酸素利用
速度の測定を可能とし、かつこれら校正値や補正値を曝
気槽内に浸漬したま寸で求めることができる酸素利用遮
1fl’測′ji“方法および装置に:提供することに
ある。
An object of the present invention is to obtain a calibration value that corresponds to changes in the characteristics of a dissolved oxygen electrode and a correction value that corresponds to the consumption of dissolved oxygen due to dirt that adheres to and accumulates on the inner wall of a measurement container, thereby making it possible to accurately measure the oxygen utilization rate. The object of the present invention is to provide a method and apparatus for measuring oxygen utilization and interception, and capable of determining these calibration values and correction values while immersed in an aeration tank.

〔発明の、(既−要〕[of the invention (already required)]

本発明は、”): ’>1 ’ll円内連通可11ピに
測定容器内に空気1:送って1lll定容器内の汚Z1
.:を排除した後、校iE液を測定容器内に充漕させ、
この測定容器内の校正液供給口したからこの校正液が飽
和溶存酸素濃度に達する゛までII″、、Δ気し、この
曝気された校正液の温度を測定してこの測定値から温度
によって決するf+:q fll溶存酸素一度を求め、
かつ同じ校正液中に設けられた溶存配素電極に、l:す
II′llI定される飽和溶存酸素濃度全求め、これら
両p)1和溶存酸素濃1川の差により溶存酸素電極の汚
れおよび経時特性変化に対応した校正値として求めたり
、前記校正液が飽和溶存酸素濃度に達する凍て曝気した
後この曝気を停止し、撹拌は継続した状態で溶存酸素濃
度を測定し、その単位時間当りの減小速度を求め、その
大きさを測定容器内壁に付着した汚物による酸素消費に
対応した補正値として求めることにより正確な酸素利用
速度の測定を可能とすると共に、これら校正値や補正値
を曝気槽内に浸漬したfま求め得るように構成したもの
である。
In the present invention, air 1:1 is sent into the measurement container to allow communication within the 11 circle, and the contamination Z1 in the 11 constant container is
.. : After removing, fill the measurement container with the calibration iE solution,
From the calibration solution supply port in this measuring container, the temperature of this aerated calibration solution is measured and the temperature is determined from this measurement value. f+:q fll dissolve oxygen once,
Also, the total saturated dissolved oxygen concentration determined by l:II'llI is determined for the dissolved oxygen electrode provided in the same calibration solution, and the difference in the dissolved oxygen concentration between these two p) 1. After the calibration solution reaches a saturated dissolved oxygen concentration, the aeration is stopped and the dissolved oxygen concentration is measured while stirring is continued. By determining the rate of decrease in oxygen permeability and determining its magnitude as a correction value corresponding to the oxygen consumption due to dirt adhering to the inner wall of the measurement container, it is possible to accurately measure the oxygen utilization rate, and also to calculate these calibration values and correction values. The structure is such that it is possible to determine the temperature of the water immersed in the aeration tank.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明全図面に示す一実施例によ゛り詳細に説明
する。
Hereinafter, the present invention will be explained in detail with reference to one embodiment shown in the drawings.

第2図は本発明による酸素利用j宋度測定装置の一実施
例を示す構成図である。図において、22は校正液供給
口で、測定容器21の内の下部に開口する。この校正液
供給口22は電磁弁等の開閉弁23を介して校正液供給
口@24と接続する。
FIG. 2 is a block diagram showing an embodiment of the oxygen utilization degree measuring device according to the present invention. In the figure, reference numeral 22 denotes a calibration solution supply port, which opens at the bottom of the measurement container 21. This calibration liquid supply port 22 is connected to a calibration liquid supply port @24 via an on-off valve 23 such as a solenoid valve.

校正液供給装置24は、純水、水道水等の、飽和溶存酸
素溶液となりうる液体を加圧して供給するもので、工程
制御装ff25により制御される8また、上部のストレ
ーナ26は配管27を介して上部開閉弁5に接続される
。上記配管271−を一端が開閉弁5の上部に接続され
、瞭気槽1の水面に向かって延びた後に曲折し、曝気槽
1水面方向とは反対に向かって延びた他端がストレーナ
26と接続されている。28は温度センサで、測定容器
21の側壁に設けである。この温度センサ28は温度測
定器29に配線され、温度tnll定器29は演算処理
器30に配線されている。
The calibration liquid supply device 24 supplies a pressurized liquid that can become a saturated dissolved oxygen solution, such as pure water or tap water, and is controlled by a process control device ff25. It is connected to the upper opening/closing valve 5 via. One end of the pipe 271- is connected to the upper part of the on-off valve 5, extends toward the water surface of the aeration tank 1, and then bends, and the other end, which extends in the opposite direction to the water surface of the aeration tank 1, is connected to the strainer 26. It is connected. A temperature sensor 28 is provided on the side wall of the measurement container 21. This temperature sensor 28 is wired to a temperature measuring device 29, and the temperature tnll constant device 29 is wired to an arithmetic processor 30.

次に本発明の作用についで説明する。測定時は第1図に
より説明した従来の酸素利用速度測定装丁Nと同一の操
作を行なう。次に溶存酸素電極3の経時的な特性変化を
点検する場合には、まず測定容器21内に溜っていた試
料水(汚水)全曝気槽l内に向って排除する。このため
には開閉弁6を開へ、開閉弁5を閉じ、曝気用空気供給
口11から測定容器21内に空気を満たす、続いて、開
閉弁6を閉じた後、開閉弁5ヶ開き、曝気用空気供給口
llがら空気を供給し配管27内に空気を満たす。再び
、開閉弁5t−閉じ、開閉弁6を開き曝気用空気供給口
11がら空気を供給することで、測定容器21内と配管
27内に空気を満たす。この動作により測定容器21内
の試料水はほぼ完全に排除される。次に開閉弁6を閉じ
た後に開閉弁5を開いた状態で、校正液供給口22から
純水、水道水等の校正液金、測定容器21円から溢れる
まで供給する。このことで測定容器21内を校正液で確
実に満たすことができる。次にスターン9を駆動し回転
子10で校正液を撹拌しながら曝気用空気供給m1ll
がら空気全供給し、校正液を曝気する。、11謬気は測
定容器21内の校正液が飽和溶存酸素濃度に封建するま
で行なう。一般には0.5〜2t/分の曝気空気渡欧で
1〜10分間曝気ずれは飽和溶存酸素り度に達する。こ
の飽和溶存酸素濃度の校正液を溶存酸素[極3および溶
存酸素測定器4で測定する。一方、温度センサ28およ
び温度測定器29により校正液の水温を測定する。飽和
溶存i′l#素濃度は水温により変化するが、その値は
既知である。従って、測定した校正液の水温から既知の
飽和溶存酸素濃度がわかる。この既知の飽和溶存酸素濃
度と溶存酸素測定器4による実際の測定値との差が、溶
存rp、素電極3の汚れおよび電極個有の経時的特性変
化である。
Next, the operation of the present invention will be explained. At the time of measurement, the same operation as in the conventional oxygen utilization rate measuring device N explained with reference to FIG. 1 is performed. Next, when checking the change in characteristics of the dissolved oxygen electrode 3 over time, first all sample water (sewage) accumulated in the measurement container 21 is discharged into the aeration tank 1. To do this, open the on-off valve 6, close the on-off valve 5, fill the measurement container 21 with air from the aeration air supply port 11, then close the on-off valve 6, open the five on-off valves, Air is supplied from the aeration air supply port ll to fill the pipe 27 with air. The on-off valve 5t is closed again, the on-off valve 6 is opened, and air is supplied through the aeration air supply port 11, thereby filling the measuring container 21 and the piping 27 with air. By this operation, the sample water in the measurement container 21 is almost completely removed. Next, after closing the on-off valve 6, with the on-off valve 5 open, a calibration liquid such as pure water or tap water is supplied from the calibration liquid supply port 22 until it overflows from the measurement container 21 yen. This allows the measurement container 21 to be reliably filled with the calibration liquid. Next, drive the stern 9 and supply air for aeration while stirring the calibration solution with the rotor 10.
Aerate the calibration solution by supplying a full supply of air. , 11 errors are carried out until the calibration solution in the measurement container 21 reaches the saturated dissolved oxygen concentration. Generally, the aeration deviation reaches the saturated dissolved oxygen level for 1 to 10 minutes at an aeration air flow rate of 0.5 to 2 t/min. This saturated dissolved oxygen concentration calibration solution is measured using dissolved oxygen [electrode 3 and dissolved oxygen measuring device 4]. On the other hand, the temperature sensor 28 and temperature measuring device 29 measure the water temperature of the calibration liquid. The saturated dissolved i′l# element concentration changes depending on the water temperature, but its value is known. Therefore, the known saturated dissolved oxygen concentration can be determined from the measured water temperature of the calibration solution. The difference between this known saturated dissolved oxygen concentration and the actual value measured by the dissolved oxygen measuring device 4 is the dissolved RP, the dirt on the elementary electrode 3, and the change in characteristics specific to the electrode over time.

このようにして、測定容器21と溶存酸素電極3を曝気
槽1に浸漬した状態で、曝気槽1外における操作で溶存
酸素N極3の特性変化を点検てきる。特性変化を確認し
た場合には溶存酸素測定器4を校正する。この校正しt
溶存酸素測定器4と温度測定器29からの信号により演
算処理器30で自動的に行なうこともできろ。
In this way, with the measurement container 21 and the dissolved oxygen electrode 3 immersed in the aeration tank 1, changes in the characteristics of the dissolved oxygen N electrode 3 can be inspected by operations outside the aeration tank 1. If a change in characteristics is confirmed, the dissolved oxygen measuring device 4 is calibrated. This proofreading
It may also be possible to perform this automatically by the arithmetic processor 30 using signals from the dissolved oxygen measuring device 4 and the temperature measuring device 29.

」二記溶存酸素電極3の点検を実施後、曝気を停+l−
,L、スター29による撹拌は継続1.た状態で校正液
の溶存酸素濃度を測定する。ここで、測定容器21内壁
に汚物が付着、堆積した場合としない場合で)よ、溶存
酸素減少の経時的変化に第3図に示すような差が生じる
。第3図に示し几実@aは測定容器21内壁に汚物の付
着、堆積がない場合の測定結果であり一1溶存酸素濃度
の減少速度rこれに対し、測定容器21内壁に汚物が付
着、堆積した場合には第3図実椋すに示したように溶存
酸素の減少速度が大きくあられれる。
”After inspecting the dissolved oxygen electrode 3, stop the aeration +l-
, L, stirring by star 29 continues 1. Measure the dissolved oxygen concentration in the calibration solution. Here, a difference as shown in FIG. 3 occurs in the change over time in the decrease in dissolved oxygen depending on whether or not dirt adheres to or accumulates on the inner wall of the measurement container 21. Figure 3 shows the measurement result when there is no adhesion or accumulation of dirt on the inner wall of the measurement container 21.11 Reduction rate of dissolved oxygen concentration If it accumulates, the rate of decrease in dissolved oxygen will be large, as shown in Figure 3.

従って、酸素利用速度測定における溶存酸素濃度減少が
試料水中の微生物による酸素消費だけでなく、測定容器
21内壁に付着、堆積した汚物によるe、素消費、すな
わち、実線aと実線すの差との合計となるため、酸素利
用速度が犬きくなる。
Therefore, the decrease in dissolved oxygen concentration in oxygen utilization rate measurement is not only due to oxygen consumption by microorganisms in the sample water, but also due to e and elementary consumption due to dirt attached and deposited on the inner wall of the measurement container 21, that is, the difference between solid line a and solid line Since it is a total, the oxygen utilization rate becomes faster.

以上のことから、溶存酸素1!極3の点検後、スター2
9は継続して駆動させ、曝気を停止し、校正液の溶存酸
素減少を溶存酸素減少3および溶存酸素測定器4により
測定する。これにより′測定容器21内に付着堆積した
汚物による溶存酸素の消費を点検でき、汚物による消費
が確認された場合には酸素利用速度測定値を補正する。
From the above, dissolved oxygen 1! Star 2 after pole 3 inspection
9 continues to drive, stops aeration, and measures the decrease in dissolved oxygen in the calibration solution using the dissolved oxygen decrease 3 and the dissolved oxygen measuring device 4. As a result, it is possible to check the consumption of dissolved oxygen by the filth deposited in the measurement container 21, and if consumption by filth is confirmed, the measured value of the oxygen utilization rate is corrected.

この補正社測定値を人手により計算しても実施できるが
、わずられしいため演算処理器30により自動補正する
と効率的である。
Although this correction measurement value can be calculated manually, it is troublesome, so it is more efficient to automatically correct it using the arithmetic processor 30.

前記説明は溶存酸素電極3の特性変イヒと測定容器21
内壁の汚れによる酸素消費の点検および校正についての
みであるが、それぞれの校正量の積算値を演算処理器3
0に演算記憶させ、この値があらかじめ設定しであるそ
れぞれの許容値に刺違した場合に、測定容器21内壁と
溶存酸素電極3の洗浄等が必要となったことを表示させ
ることもできる。
The above explanation describes the changes in the characteristics of the dissolved oxygen electrode 3 and the measurement container 21.
This is only for inspection and calibration of oxygen consumption due to dirt on the inner wall, but the integrated value of each calibration amount is calculated by the arithmetic processor 3.
It is also possible to calculate and store the value as 0, and to display that the inner wall of the measurement container 21 and the dissolved oxygen electrode 3 need to be cleaned when this value reaches a preset tolerance value.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなとおり、本発明の酸素利用速度測
定方法および装置によれば、溶存酸素電極の特性変化に
対応する校正値および測定容器内壁の汚れによる溶を東
素消費に対応する補正値が求められるので、正確な酸素
利用に、度の測定が可能になると共に、前記校正量およ
び補正値を測定時と同様に測定容器および溶存*素電極
を曝気槽に浸漬した状態で容易に実施することができる
As is clear from the above explanation, according to the oxygen utilization rate measuring method and device of the present invention, a calibration value corresponding to the characteristic change of the dissolved oxygen electrode and a correction value corresponding to the dissolution due to the dirt on the inner wall of the measurement container and the TOSO consumption are obtained. Therefore, it is possible to measure the degree of oxygen for accurate oxygen utilization, and the above-mentioned calibration amount and correction value can be easily carried out with the measurement container and dissolved* elementary electrode immersed in the aeration tank in the same way as during measurement. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を示す構成図、第2図は本発明による
酸素利用速度測定方法に用いる装置の一実施例を示す構
成図、第3図は経過時間と溶存酸素#度との関係の一測
定例を示す説明図である。 1・・・曝気槽    3・・・溶存酸素電極4・・・
溶存酸素測定器 5.6・・・開閉弁   9.10  ・・・撹拌装置
11・・・11%気用空気供給口 12.13,14.23・・・開閉弁 15・・・空気供給装?  21・・・測定容器22・
・・校正液供給口 24・・・校正液供給装置27・・
・配管     2B・・・温度センサ29・・・温度
測定器 (7317)  化lT11人 弁理士 則 近 5だ
 佑 (はが1名)第1図 第2図 、’1’i  3  図
Fig. 1 is a block diagram showing a conventional device, Fig. 2 is a block diagram showing an embodiment of the device used in the oxygen utilization rate measuring method according to the present invention, and Fig. 3 is a diagram showing the relationship between elapsed time and dissolved oxygen degree. FIG. 2 is an explanatory diagram showing one measurement example. 1... Aeration tank 3... Dissolved oxygen electrode 4...
Dissolved oxygen measuring device 5.6... Opening/closing valve 9.10... Stirring device 11... 11% air supply port 12.13, 14.23... Opening/closing valve 15... Air supply device ? 21...Measurement container 22.
...Calibration liquid supply port 24...Calibration liquid supply device 27...
・Piping 2B...Temperature sensor 29...Temperature measuring device (7317) 11 patent attorneys Yuki Chika 5 (1 person) Figure 1 Figure 2, '1'i 3 Figure

Claims (1)

【特許請求の範囲】 な (1)1四気檜内に連通可能に測定容器内に空気を送っ
て測定容器内の汚水を排除I7た後、校正液を測定容器
内に充満させ、この測定容器内の校正液を撹拌しながら
この校正液が飽和溶存酸素濃度に達するまでp″′A気
し、この曝気された校正液の温度を測定してこの測定値
から温度によって決凍る飽和溶存酸素濃度を求め、かつ
同じ校正液中に設けられた溶存酸素電極により測定され
る飽和溶存酸素p度を求め、これら両飽和溶存酸素濃度
の差に送って測定容器内の汚水を排除した後、校正液を
測定容器内に充沸させ、この測定容器内の校正液を撹拌
しなからこの校正液が飽和溶存i素濃度に達するまで曝
気した後この曝気を停止し、攪拌は継続した状態で溶存
酸ネ濃度を測定し、その単位時間当りの減小速度を求め
、その大きさを測定容器内壁に付着した汚物による酸素
消費に対応1.た補正値として求めることを特徴とする
酸素利用速度測定方法。 (3)内部にll’%気用空気供給口をもち上部と下部
に曝気槽内との連通用の開閉弁を設けた測定容器と、こ
の測定容器に取りつけられた溶存酸素電極およびこの溶
存酸素電極からの信号により溶存酸素濃度を測定する溶
存酸素電極器と、前記測定容器内の液体を撹拌する装置
と、測定容器の内部に設けた校正液供給口およびこの校
正液供給口に校正液を供給するだめの校正液供給装置と
、一端は測定容器上部の開閉弁に接続さC他端は際気槽
水面方向と反対方向に開口する配管と、校正液の水温を
測定する温度センサおよび温度測足器とを設けたことを
特徴とする酸素利用速度測定装置。
[Scope of Claims] (1) 1. After removing the waste water in the measurement container by sending air into the measurement container so that it can communicate with the inside of the cypress, the measurement container is filled with a calibration solution. While stirring the calibration solution in the container, aerate the calibration solution with p''A until it reaches the saturated dissolved oxygen concentration, measure the temperature of this aerated calibration solution, and calculate the saturated dissolved oxygen that freezes depending on the temperature from this measured value. Calculate the concentration, and calculate the saturated dissolved oxygen p degree measured by a dissolved oxygen electrode installed in the same calibration solution, send it to the difference between these two saturated dissolved oxygen concentrations, and after removing the waste water in the measurement container, perform the calibration. Boil the solution in the measurement container, and aerate the calibration solution in the measurement container without stirring until it reaches the saturated concentration of dissolved i, then stop the aeration, and continue stirring to remove the dissolved i. Oxygen utilization rate measurement characterized by measuring the acid concentration, determining its rate of decrease per unit time, and determining its magnitude as a correction value corresponding to oxygen consumption due to filth attached to the inner wall of the measurement container. Method. (3) A measurement container with an internal air supply port and an on-off valve for communicating with the inside of the aeration tank at the top and bottom, a dissolved oxygen electrode attached to this measurement container, and a dissolved oxygen electrode attached to this measurement container. A dissolved oxygen electrode device that measures dissolved oxygen concentration using a signal from a dissolved oxygen electrode, a device that stirs the liquid in the measurement container, a calibration solution supply port provided inside the measurement container, and a calibration solution installed in this calibration solution supply port. A calibration liquid supply device for supplying liquid, one end connected to the on-off valve at the top of the measurement container, a pipe opening in the opposite direction to the water surface of the air tank at the other end, and a temperature sensor for measuring the water temperature of the calibration liquid. and a temperature measuring device.
JP17401082A 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen Granted JPS5963567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17401082A JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17401082A JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Publications (2)

Publication Number Publication Date
JPS5963567A true JPS5963567A (en) 1984-04-11
JPH0464026B2 JPH0464026B2 (en) 1992-10-13

Family

ID=15971060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17401082A Granted JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Country Status (1)

Country Link
JP (1) JPS5963567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280431A (en) * 1992-03-27 1995-02-01 Thames Water Utilities Apparatus and method for monitoring condition of a biomass
CN113916849A (en) * 2021-09-10 2022-01-11 山东省科学院海洋仪器仪表研究所 Calibration method and calibration device for optical dissolved oxygen sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797432A (en) * 1980-12-09 1982-06-17 Daido Steel Co Ltd Oxygen meter and its using method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797432A (en) * 1980-12-09 1982-06-17 Daido Steel Co Ltd Oxygen meter and its using method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2280431A (en) * 1992-03-27 1995-02-01 Thames Water Utilities Apparatus and method for monitoring condition of a biomass
GB2280431B (en) * 1992-03-27 1995-06-07 Thames Water Utilities Apparatus and method for monitoring condition of a biomass
US5807699A (en) * 1992-03-27 1998-09-15 Thames Water Utilities Limited Apparatus and method for monitoring condition of a biomass
CN113916849A (en) * 2021-09-10 2022-01-11 山东省科学院海洋仪器仪表研究所 Calibration method and calibration device for optical dissolved oxygen sensor
WO2023035386A1 (en) * 2021-09-10 2023-03-16 山东省科学院海洋仪器仪表研究所 Method and apparatus for calibrating optical dissolved oxygen sensor

Also Published As

Publication number Publication date
JPH0464026B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
US6763714B2 (en) Method and apparatus for controlling the level of liquids
WO2020207347A1 (en) Solution preparation device, and solution replacement system and method
JPS5963567A (en) Method and device for measuring velocity in using oxygen
JP3493051B2 (en) Batch type wastewater treatment equipment and activated sludge concentration measurement equipment
JP4107970B2 (en) Leak inspection method for water purification cartridge
JP2001133451A (en) Measuring device of alkalinity in water
JPH0377460B2 (en)
CN102103121A (en) Online automatic detection device for sulphitation intensity of sugar refinery
CN201917553U (en) Online automatic detection device for sulphitation strength in sugarhouse
JP2001050927A (en) Cleaning apparatus for residual chlorine analyzer of discharge water in sewer
JP3115525B2 (en) Batch type dilution device
JPH0622209Y2 (en) Respiratory rate measuring device
JP3567453B2 (en) Activity evaluation test equipment
JPS59212755A (en) Device for measuring oxygen utilizing speed
JPS5890158A (en) Measuring device for oxygen utilization velocity
JP2782713B2 (en) Weight titrator and titration method using the same
JP3059564B2 (en) Alcohol concentration detector
JP2646344B2 (en) Concentration adjustment method and equipment for ready-mixed plant sludge water
JPS5888646A (en) Measuring apparatus for utilizing velocity of oxygen
JP2000121627A (en) Bod measuring device and control method therefor
JPH07198446A (en) Instrument for measuring liquid level in tank
CN108398522A (en) industrial water quality stabilizing characteristic tester
JPH11300383A (en) Activated sludge concentration measuring device
JPH0736281Y2 (en) Respiratory rate measuring device
CN118558150A (en) Dialysis apparatus membrane aperture testing device and method