JPS59212755A - Device for measuring oxygen utilizing speed - Google Patents

Device for measuring oxygen utilizing speed

Info

Publication number
JPS59212755A
JPS59212755A JP58086554A JP8655483A JPS59212755A JP S59212755 A JPS59212755 A JP S59212755A JP 58086554 A JP58086554 A JP 58086554A JP 8655483 A JP8655483 A JP 8655483A JP S59212755 A JPS59212755 A JP S59212755A
Authority
JP
Japan
Prior art keywords
oxygen
air
aeration
measuring device
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086554A
Other languages
Japanese (ja)
Inventor
Masao Kaneko
金子 政雄
Kyozo Kawachi
河内 恭三
Akio Matsumoto
松本 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58086554A priority Critical patent/JPS59212755A/en
Publication of JPS59212755A publication Critical patent/JPS59212755A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable exact calculation of an oxygen utilizing speed by providing a calculator for a correction value which calculates the correction value from the ratio between the signal from an oxygen measuring device and the preliminarily stored partial pressure of oxygen in air and an arithmetic processor. CONSTITUTION:Air is filled in a measuring device 21 and the partial pressure P of the oxygen in the air measured with an oxygen measuring device 33 by the signal from a dissolved oxygen electrode 3 exposed in the air is inputted to a calculator 35 for a correction value. The calculator 35 calculates a correction value G from the preliminarily stored partial pressure P0 of the oxygen in the air by the value G= the pressure P0/the measured value P and inputs the same to an arithmetic processor 36. The equation I is corrected by using the value G as shown by the equation II and the exact oxygen utilizing speed can be calculated in the processor 36. In the equations, C0 is the prescribed concn. of the dissolved oxygen attained by aeration, T is the measuring time after the stop of aeration and CT is the concn. of the dissolved oxygen in the sample water after the time T.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は活性汚泥処理において曝気槽内の混合液の酸素
利用速度を測定する酸素利用速度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an oxygen utilization rate measuring device for measuring the oxygen utilization rate of a mixed liquid in an aeration tank in activated sludge treatment.

[ララ明の技術的背景とその問題点〕 活性汚泥処理方法とは曝気槽の活性汚泥中に存在する微
生物が、下水中に含まれる有機汚濁物質を、水中に溶存
する酸素を利用して酸化することからなりたっている。
[Technical background of Rara Ming and its problems] What is the activated sludge treatment method? Microorganisms present in the activated sludge in the aeration tank oxidize organic pollutants contained in sewage using oxygen dissolved in the water. It consists of doing.

従つ”C1微生物か水中の溶存酸素を消費するため、常
に曝気により酸素を供給することが必要である。微生物
が必要とする酸素量とは上記の有機汚濁物質の酸化のた
めだけでなく、微生物自体が生命を維持するために必要
な酸素量との総置である。以上のことから、微生物の酸
素利用速度が活性汚泥処理の重要な指標となっている。
Therefore, since C1 microorganisms consume dissolved oxygen in water, it is necessary to constantly supply oxygen through aeration. This is combined with the amount of oxygen required by the microorganisms themselves to sustain life.For the above reasons, the rate of oxygen utilization by microorganisms is an important indicator for activated sludge treatment.

従来の酸素利用速度測定装置は第1図に示した構造をし
ており、曝気槽1内に浸漬された測定容器2の内部に、
試料水に接触するように溶存酸素電極3をとりつけてい
る。また、測定容器2の上部と下部にはそれぞれピンチ
パルプ等の開閉弁4゜5を設ける。測定容器2内には試
料水を攪拌するだめの回転子6と、曝気するだめの曝気
用空気供給口8を設ける。測定容器2外壁には回転子6
を駆動するスターラフを取りつける。開閉弁4,5と曝
気用空気供給口8は電磁弁等の空気供給弁9゜to、t
tを介してコンプレッサ、計装空気等の空気供給装置1
2に接続される。溶存酸素′電極3の出力は溶存酸素測
定器13に送られ、溶存酸素濃度として測定される。空
気供給弁9.10.11  およびスターラフは工程制
御器15に配線される。
A conventional oxygen utilization rate measuring device has the structure shown in FIG.
A dissolved oxygen electrode 3 is attached so as to be in contact with the sample water. Furthermore, on-off valves 4.5 made of pinch pulp or the like are provided at the upper and lower parts of the measuring container 2, respectively. Inside the measurement container 2, a rotor 6 for stirring the sample water and an aeration air supply port 8 for aeration are provided. A rotor 6 is installed on the outer wall of the measurement container 2.
Attach the star rough that drives the. The on-off valves 4 and 5 and the aeration air supply port 8 are air supply valves such as solenoid valves 9°to, t.
Air supply device 1 such as a compressor or instrument air via t
Connected to 2. The output of the dissolved oxygen' electrode 3 is sent to the dissolved oxygen measuring device 13 and measured as the dissolved oxygen concentration. Air supply valves 9.10.11 and stirruffs are wired to process controller 15.

演算処理器14は溶存酸素測定器4および工程制御器1
5に配線される。
The arithmetic processor 14 includes the dissolved oxygen measuring device 4 and the process controller 1.
Wired to 5.

上記構成において、工程制御器15により空気供給弁9
.【Oを制御して開閉弁4,5を開き、かつスターラフ
により回転子6を駆動し、測定容器2内の試料水を周囲
の試料水と置換する。次に開閉弁5を閉じ、曝気用空気
供給口8がら空気を供給して曝気する。この時、試料水
中の溶存酸素濃度を溶存酸素゛電極3および溶存酸素測
定器13により測定し溶存酸素濃度が所に値に達したこ
とを演算処理器14が判断すると、工程制御器15によ
り曝気を停止させる。次にスターラフを停止後、気泡を
含まない状態で開閉弁4を閉じ、試料水を測定容器2内
に密封する。この後、スターラフを再駆動させる。この
ように、スターラフにより試料水を攪拌しなから溶存酸
素濃度の減少を測定し、演算処理器14により酸素利用
速度を次式(1)に従・)て算出する。
In the above configuration, the air supply valve 9 is controlled by the process controller 15.
.. [O is controlled to open the on-off valves 4 and 5, and the rotor 6 is driven by the stirruff to replace the sample water in the measurement container 2 with the surrounding sample water. Next, the on-off valve 5 is closed, and air is supplied through the aeration air supply port 8 for aeration. At this time, the dissolved oxygen concentration in the sample water is measured by the dissolved oxygen electrode 3 and the dissolved oxygen measuring device 13, and when the arithmetic processor 14 determines that the dissolved oxygen concentration has reached a certain value, the process controller 15 to stop. Next, after stopping the stirruff, the on-off valve 4 is closed in a bubble-free state, and the sample water is sealed in the measurement container 2. After this, re-drive Starruff. In this way, the decrease in dissolved oxygen concentration is measured while the sample water is stirred by the stirruff, and the oxygen utilization rate is calculated by the arithmetic processor 14 according to the following equation (1).

C(l CT 酸素利用速度〔lもr(IIIP/e・時)〕=□・・
・(1)たたし、coは曝気により達した所定の溶存酸
素amであり、Tは曝気停止後の測定時間であり、C,
は1時間後の試料水の溶存酸素濃度である。
C(l CT Oxygen utilization rate [l is also r (IIIP/e・hour)] = □・・
・(1) where, co is the predetermined dissolved oxygen am reached by aeration, T is the measurement time after stopping the aeration, C,
is the dissolved oxygen concentration of the sample water after 1 hour.

しかしながら、従来の酸素利用速度測定装置では測定を
継続していると試料水中の汚物が測定容器2の内壁およ
び溶存酸素電極3表面に付着および堆積する。溶存酸素
電極3表面に付着、堆積した汚物は溶存酸紫電&3の特
性変化を生じ測定誤差を生む。測定容器2内壁への汚物
の付着、堆積は測定容器2への試料水の導入および測定
容器2からの試料水の排出を困難にしたり、開閉弁4お
よび開閉弁5が正常動作せず測定容器2内に試料水を密
封できず測定誤差を生じる。
However, in the conventional oxygen utilization rate measuring device, as the measurement continues, dirt in the sample water adheres and accumulates on the inner wall of the measurement container 2 and the surface of the dissolved oxygen electrode 3. The dirt that adheres to and accumulates on the surface of the dissolved oxygen electrode 3 changes the characteristics of the dissolved acid violet and causes measurement errors. Adhesion and accumulation of dirt on the inner wall of the measuring container 2 may make it difficult to introduce sample water into the measuring container 2 and discharge the sample water from the measuring container 2, or cause the on-off valves 4 and 5 to malfunction, causing the measuring container to close. The sample water cannot be sealed inside the chamber, resulting in measurement errors.

また、溶存酸素電極3は汚れの付着、堆積による測定誤
差だけでなく、内部液および検出電極の経時的な劣化に
よっても測定値の変動を生じる。
Further, the dissolved oxygen electrode 3 causes fluctuations in measured values not only due to measurement errors due to adhesion and accumulation of dirt, but also due to deterioration of the internal liquid and the detection electrode over time.

従って、従来の酸素利用速度測定装置では定期的に溶存
酸素電極3の測定値の点検を行なpとともに、汚れの付
着、堆積の状態から点検者が必要と判断した場合に測定
容器2内壁と溶存酸素電極3表面を洗浄していた。しか
し、点検および洗浄を実施するためには、測定容器2を
曝気槽1外へ取出し、溶存酸素電極3と開閉弁4,5を
取りはずす必要がある。点検および洗浄実施後には測定
容器2を曝気槽l内に再設置する作業も当然必要で、こ
れらの作業はわずられしいうえに長時間かかる。更に点
検には飽和溶存酸素溶液を声製する器具も必要である。
Therefore, in the conventional oxygen utilization rate measuring device, the measured value of the dissolved oxygen electrode 3 is periodically inspected, and if the inspector deems it necessary based on the state of dirt adhesion and accumulation, the inner wall of the measurement container 2 is inspected. The surface of the dissolved oxygen electrode 3 was being cleaned. However, in order to carry out inspection and cleaning, it is necessary to take the measurement container 2 out of the aeration tank 1 and remove the dissolved oxygen electrode 3 and the on-off valves 4 and 5. After inspection and cleaning, it is naturally necessary to reinstall the measurement container 2 into the aeration tank 1, and these operations are troublesome and take a long time. Additionally, inspection requires equipment to produce a saturated dissolved oxygen solution.

し発明の目的〕 本発明の目的は、測定すべき試料水を確実に測定容器内
に導入し、測定後は確実ζこ排出でき、しかも、測定容
器および溶存酸素電極を曝気槽に浸漬した状態で測定容
器内および溶存酸素電極表面の洗浄と溶存酸素電極の点
検および校正を行なうことができ、正確な酸素利用速度
の測定値が得られる酸素利用速度測定装置を提供するこ
とにある。
[Object of the Invention] An object of the present invention is to ensure that sample water to be measured is introduced into a measurement container, and to be reliably discharged after the measurement, while the measurement container and dissolved oxygen electrode are immersed in an aeration tank. An object of the present invention is to provide an oxygen utilization rate measuring device that can perform cleaning of the inside of a measurement container and the surface of a dissolved oxygen electrode, and inspection and calibration of the dissolved oxygen electrode, and can obtain an accurate oxygen utilization rate measurement value.

し発明の概要〕 本発明による酸素利用速度測定装置は、溶液中に浸漬し
下部に曝気用および洗浄用の空気供給口をもつ測定容器
と、この測定容器の上部と下部にとりつけた開閉弁と、
測定容器内の試料水と接するように設けた溶存酸素電極
と、この溶存酸素電極の信号から溶液中の溶存酸素また
は気体中の酸素分圧を測定する酸素測定器と、上部開閉
弁を閉じ下部開閉弁を開き測定容器内に空気を供給する
工程をもつ制御を行なう工程制御器と、測定容器内に空
気を供給した状態における酸素測定器からの信号とあら
かじめ記憶している既知の空気中酸素分圧との比から補
正値を算出する補正値演算器と、補正値演算器からの信
号により補正しながら酸素利用速度を算出する演算処理
器とを備えたものである。
[Summary of the Invention] The oxygen utilization rate measuring device according to the present invention comprises a measuring container immersed in a solution and having an air supply port for aeration and cleaning at the bottom, and on-off valves attached to the upper and lower parts of the measuring container. ,
A dissolved oxygen electrode is placed in contact with the sample water in the measurement container, an oxygen measuring device measures the dissolved oxygen in the solution or the oxygen partial pressure in the gas from the signal from this dissolved oxygen electrode, and the upper opening/closing valve is closed. A process controller that controls the process of opening an on-off valve and supplying air into the measurement container, and a signal from an oxygen measuring device with air being supplied into the measurement container and known atmospheric oxygen stored in advance. It is equipped with a correction value calculator that calculates a correction value from the ratio with the partial pressure, and a processor that calculates the oxygen utilization rate while correcting it based on the signal from the correction value calculator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例により説明する。第
2図において、測定容器21のF部に曝気用空気供給口
22と洗浄用空気供給口23を設ける。洗浄用空気供給
口23は電磁弁等の空気供給弁24と流量調節弁やキャ
ピラリ等の流量調整器25を介して空気供給装置26と
接続する。曝気用空気供給口22も空気供給弁27と流
量調整器28を経て空気供給装置26と接続する。空気
供給装置26は空気供給弁29.30と流量調整器31
、.32を介して開閉弁4.5とも接続する。酸素測定
器33は溶存酸素電極3と工程制御器34と補正値算出
器35と演算処理器36に配線されている。補正値算出
器35は酸素測定器33だけでなく演算処理器36と工
程制御器34に配線されており、演算処理器36と工程
制御器34の間も配線されている。
The present invention will be explained below with reference to an embodiment shown in the drawings. In FIG. 2, an aeration air supply port 22 and a cleaning air supply port 23 are provided in the F section of the measurement container 21. The cleaning air supply port 23 is connected to an air supply device 26 via an air supply valve 24 such as a solenoid valve and a flow rate regulator 25 such as a flow rate control valve or a capillary. The aeration air supply port 22 is also connected to the air supply device 26 via an air supply valve 27 and a flow rate regulator 28 . The air supply device 26 includes an air supply valve 29.30 and a flow rate regulator 31.
,.. It is also connected to the on-off valve 4.5 via 32. The oxygen measuring device 33 is wired to the dissolved oxygen electrode 3, the process controller 34, the correction value calculator 35, and the arithmetic processor 36. The correction value calculator 35 is wired not only to the oxygen measuring device 33 but also to the arithmetic processor 36 and the process controller 34, and is also wired between the arithmetic processor 36 and the process controller 34.

次に作用について説明する。動作は次に示す7エ程から
なり、これらのエゼはすべて工程制御器34により制御
される。第1工程では、測定容器2」上部の開閉弁4を
閉じ、下部の開閉弁5を開き、空気供給装置26により
流量調整器25で適正流量に調整された空気を空気供給
弁24を介して洗浄用空気供給口23から測定容器21
内へ供給し、測定容器2」内の試料水を曝気槽へ開閉弁
5から排出し空気で満たす。第2工程では、測定容器2
1の上部と下部の開閉弁4,5を開き、測定容器21内
の空気を開閉弁4から排出し、曝気槽lから測定容器2
内へ試料水を導入する。第3工程では、測定容器21の
上部の開閉弁4を開き、下部の開閉弁5を閉じ、流量調
整器28で適正流量に調整された空気を空気供給弁27
を介して曝気用空気供給口22から供給し、測定容器2
1内の溶液を曝気する。第4工程では、上部と下部の開
閉弁4,5を閉じスターラフを動作させ回転子6を回転
させる。第5工程では、上部の開閉弁4を開き、下部の
開閉弁5を閉じ洗浄用空気供給口23がら空気を測定容
器21内へ供給する。第6エ程では、開閉弁4を閉じ、
開閉弁5を開き、曝気用空気供給口22から測定容器2
1内へ空気を供給する。第7エ程では、開閉弁4.5を
開き、スターラフを動作させる工程である。
Next, the effect will be explained. The operation consists of the following seven steps, all of which are controlled by the process controller 34. In the first step, the on-off valve 4 at the top of the measurement container 2'' is closed, the on-off valve 5 at the bottom is opened, and the air supply device 26 supplies air, which has been adjusted to an appropriate flow rate with the flow regulator 25, through the air supply valve 24. From the cleaning air supply port 23 to the measuring container 21
The sample water in the measurement container 2 is discharged from the on-off valve 5 into the aeration tank and filled with air. In the second step, the measurement container 2
1, the air in the measuring container 21 is discharged from the opening/closing valve 4, and the air in the measuring container 21 is discharged from the aeration tank 1.
Introduce sample water into the chamber. In the third step, the on-off valve 4 at the top of the measurement container 21 is opened, the on-off valve 5 at the bottom is closed, and the air, which has been adjusted to an appropriate flow rate by the flow rate regulator 28, is supplied to the air supply valve 27.
The air is supplied from the aeration air supply port 22 through the measurement container 2.
Aerate the solution in 1. In the fourth step, the upper and lower on-off valves 4 and 5 are closed, and the star rough is operated to rotate the rotor 6. In the fifth step, the upper opening/closing valve 4 is opened and the lower opening/closing valve 5 is closed to supply air into the measurement container 21 through the cleaning air supply port 23 . In the sixth step, the on-off valve 4 is closed,
Open the on-off valve 5 and remove the measurement container 2 from the aeration air supply port 22.
Supply air into 1. In the seventh step, the on-off valve 4.5 is opened and the stirruff is operated.

以上の7エ程を工程制御器34により以下のように制御
することで、採水、測定、洗浄5校正。
The above seven steps are controlled by the process controller 34 as follows to perform water sampling, measurement, and cleaning five calibrations.

待機全1サイクルとして繰返し行なう。採水とは第1工
程と第2工程により行なわれる。すなわち、第1工程で
測定容器21内を空気で満たすことで試料水を完全に排
出し、次の第2工程で、測定容器2【内の空気を上部の
開閉弁4から自然に排出するとともに、開閉弁4,5か
ら試料水を測定容器21内に導入し、採水を行う。試料
水の置換をより確実に行なうには、第り工程と第2工程
による採水を数回繰返す。測定は採水終了後に第3工程
、第4工程を順次行なう。すなわち、まず第3工程では
、測定容器21内に採水された試料水を曝気用空気供給
口22から供給される空気により曝気する。溶存酸素電
極3および酸素測定器33で測定した試料水中の溶存酸
素濃度が所定の値に達した時に第3工程が終了する。次
の第4工程では測定容器21内の試料水を静置して中の
気泡を浮上排出後に密封し、回転子6により攪拌しなか
ら溶存酸素濃度を測定し、演胸処理器35により酸素利
用速度を算出する。
This is repeated as one standby cycle. Water sampling is performed through a first step and a second step. That is, in the first step, the sample water is completely discharged by filling the measuring container 21 with air, and in the next second step, the air inside the measuring container 2 is naturally discharged from the opening/closing valve 4 at the top. , sample water is introduced into the measurement container 21 through the on-off valves 4 and 5, and water is sampled. In order to more reliably replace the sample water, repeat the water sampling in the first step and second step several times. After the water sampling is completed, the third and fourth steps are carried out in sequence. That is, in the third step, the sample water sampled in the measurement container 21 is aerated with air supplied from the aeration air supply port 22. The third step ends when the dissolved oxygen concentration in the sample water measured by the dissolved oxygen electrode 3 and the oxygen measuring device 33 reaches a predetermined value. In the next fourth step, the sample water in the measurement container 21 is allowed to stand still, the air bubbles inside are floated and discharged, and then sealed, the dissolved oxygen concentration is measured while being stirred by the rotor 6, and the oxygen Calculate usage speed.

洗浄とは測定終了後に第り工程、第2工程、第5工程を
この順序で行なうことで実施される。すなわち、測定終
了後に測定容器21内に残留している試料水を第1工程
により洗浄用空気で排出する。この時、洗浄空気供給口
34を測定容器21の下部に設けたため測定容器21内
を試料水と空気の界面が常に波立った状態で降下するた
め、溶存酸素゛電極3表面と測定容器21内壁と開閉弁
5内壁に付着堆積した汚物が除去される。同時に試料水
中の気泡の運動や破壊によっても洗浄される。
Cleaning is carried out by performing a first step, a second step, and a fifth step in this order after the measurement is completed. That is, after the measurement is completed, the sample water remaining in the measurement container 21 is discharged with cleaning air in the first step. At this time, since the cleaning air supply port 34 is provided at the bottom of the measurement container 21, the interface between the sample water and the air always descends in an undulating state inside the measurement container 21, so that the dissolved oxygen is connected to the surface of the electrode 3 and the inner wall of the measurement container 21. The dirt deposited on the inner wall of the on-off valve 5 is removed. At the same time, it is also cleaned by the movement and destruction of air bubbles in the sample water.

とり第1工程では試料水を短時間に測定容器21から排
出することが大きな洗浄効果をもたらすため洗浄用の空
気量は曝気用空気量よりも多くする必吸がある。すなわ
ち、曝気用空気量は03〜3e/分で十分なのに対し、
洗浄用空気量は5〜20e/分稈庶が必要である。次の
第2工程で測定容器21内に試料水を導入し、続く第5
工程では洗浄用空気を試料水中に供給し上部の開閉弁4
の気泡洗浄を4Tなう。以上の洗浄をより確実lこ行な
うには数回繰返すとよい。
In the first step, the amount of air for cleaning must be larger than the amount of air for aeration because discharging the sample water from the measurement container 21 in a short time brings about a great cleaning effect. That is, while the amount of air for aeration is sufficient for 0.3 to 3 e/min,
The amount of air for cleaning is required to be 5 to 20 e/min. In the next second step, sample water is introduced into the measurement container 21, and then in the fifth step
In the process, cleaning air is supplied into the sample water and the on-off valve 4 at the top
Now clean the air bubbles for 4T. In order to perform the above cleaning more reliably, it is recommended to repeat it several times.

校正とは第6行程により行なわれる。すなわち、洗浄終
了後に測定容器2■内に残留する試料水を第6エ程によ
り曝気用空気で排出し、溶存酸素電極3を空気中に曝し
た状態で測定容器21内の空気中の酸素分圧を溶存酸素
電極3からの信号により酸素測定器33で測定する。こ
の時、酸素測定器33は工程制御器34からの信号によ
り、溶存酸素濃度ではなく気体中の酸素分圧別]定に切
換えられている。大気中の酸素分圧は大気圧および湿度
から容易に算出できる。本発明の酸素利用速度測定装置
の場合、測定容器21内の空気圧と湿度の変化は少なく
、酸素分圧はほぼ一定としてよい。
Calibration is performed in the sixth step. That is, after cleaning is completed, the sample water remaining in the measurement container 21 is discharged with aeration air in the sixth step, and the oxygen content in the air in the measurement container 21 is removed with the dissolved oxygen electrode 3 exposed to the air. The pressure is measured by an oxygen measuring device 33 based on a signal from the dissolved oxygen electrode 3. At this time, the oxygen measuring device 33 is switched to the oxygen partial pressure in the gas rather than the dissolved oxygen concentration based on a signal from the process controller 34. The partial pressure of oxygen in the atmosphere can be easily calculated from atmospheric pressure and humidity. In the case of the oxygen utilization rate measuring device of the present invention, the air pressure and humidity within the measurement container 21 change little, and the oxygen partial pressure may be kept approximately constant.

しかし、溶存酸素電極3表面に試料水が付着していると
測定値は安定せず、溶存酸素電極3表面が乾燥づるにつ
れて安定する。この安定するまでの時間は1〜5分程度
である。
However, if sample water adheres to the surface of the dissolved oxygen electrode 3, the measured value will not be stable, but will stabilize as the surface of the dissolved oxygen electrode 3 dries. The time required for this stabilization is about 1 to 5 minutes.

本発明渚らは上記の測定容器2内の空気中酸味分圧の測
定値(以後、空気測定値と呼ぶ)の経時変化と酸素利用
速度の経時変化との間には第3図に示す関係があること
を確認し、た。第3図の横軸は測定期間であり、縦軸は
経時的な指示変動である。実線aは空気測定値の指示変
動を示し、破線すは酸素利用速度の指示変動を示す。実
線aから空気測定値は測定開始からしばらくはほとんど
変動しないか、その後、溶存酸素電極3表向への汚れの
付着により徐々に指示低下を生じてくる。試料水の性状
にもよるが、1〜2ケ月間で指示低下が始1す、その後
1〜2ケ月間で、50チ以上の指示低下となることが多
い。この空気測定値の変動と破線すの酸素利用速度の指
示変動とは第3図1こ示したとおり#1とんど一致して
いる。酸素利用速度は試#1水中り溶存酸素濃度から算
出するだめ空気測定値の変動とは完全に一致はしないが
、酸素利用速度の必要精度は±5チ程度であり空気測定
値の変動を利用して十分実用的な補圧ができることを確
認した。
The relationship shown in FIG. 3 is shown in FIG. 3 between the change over time of the measured value of the partial pressure of acidity in the air (hereinafter referred to as the air measurement value) in the measurement container 2 and the change over time of the oxygen utilization rate. I made sure that there was. The horizontal axis in FIG. 3 is the measurement period, and the vertical axis is the instruction fluctuation over time. The solid line a shows the indicated variation in air measurements, and the dashed line a shows the indicated variation in the oxygen utilization rate. From the solid line a, the air measurement value hardly changes for a while from the start of the measurement, or after that, the indication gradually decreases due to the adhesion of dirt to the surface of the dissolved oxygen electrode 3. Although it depends on the properties of the sample water, the indication often begins to drop within 1 to 2 months, and then drops by 50 inches or more over the next 1 to 2 months. As shown in FIG. 3, the fluctuation in the measured air value and the indicated fluctuation in the oxygen utilization rate indicated by the broken line almost coincide with #1. The oxygen utilization rate is calculated from the dissolved oxygen concentration in test #1 water, so it does not completely match the fluctuation of the air measurement value, but the required accuracy of the oxygen utilization rate is about ±5 inches, and the fluctuation of the air measurement value is used. It was confirmed that sufficient practical pressure compensation could be achieved.

以上の判性を検討し、以下に示すようにして校正を行な
うことができるようにした。すなわち、第6エ程により
測定容器21内に空気を満たし、空気1+招こ曝された
浴看酸素電&3がらの信号により酸素測定器33で測定
した空気中の酸素分圧伊)を補正値豹出器36に入力す
る。補正値鏝出器36はあらかじめ記憶している空気中
の酸素分圧Cpo>から補正値Gを式(2)により算出
し、演刹処理器35に入力する。演算処理器35では式
(3)に示すとおり、式(1)を補正値Gを用いて補正
し、正確な酸素利用速度を算出することができる。
After considering the above-mentioned readability, we were able to perform the calibration as shown below. That is, the measurement container 21 is filled with air in the sixth step, and the partial pressure of oxygen in the air measured by the oxygen measuring device 33 is adjusted to a corrected value based on the signals from the air 1 + the exposed bath oxygen electric and 3 gases. Input to the extractor 36. The correction value calculator 36 calculates a correction value G from the pre-stored oxygen partial pressure Cpo> in the air using equation (2), and inputs it to the deductive processor 35. The arithmetic processor 35 corrects equation (1) using correction value G, as shown in equation (3), and can calculate an accurate oxygen utilization rate.

待機とは校正終了後に第7エ程を行なうことで実施され
、測定容器21内を試料水が回転子6の回転力で流れて
いる状態であり、測定での曝気時間や溶存酸素濃度の減
少時間が一定にならないために、1サイクルの所要時間
を常に一定にするための調整時間である。
Standby is carried out by performing the seventh step after the calibration is completed, and is a state in which the sample water is flowing in the measurement container 21 by the rotational force of the rotor 6, and the aeration time and dissolved oxygen concentration during measurement are reduced. Since time is not constant, this adjustment time is used to keep the time required for one cycle constant.

上記の実施例では採水、測定、洗浄2校正、待機で1サ
イクルとしたが、採水はJJI工程と第2工程からなり
洗浄の一部と一致していることから洗浄と採水を組み合
せた洸浄採水、測定9校正。
In the above example, one cycle consisted of water sampling, measurement, cleaning, two calibrations, and standby, but since water sampling consists of the JJI process and the second process, which corresponds to a part of cleaning, cleaning and water sampling were combined. Water sampling and measurement 9 calibrations.

待機でlサイクルとすることができる。この場合、洗浄
採水は第1工程、第2工程、第5工程、第【工程、第2
工程とすれば上記の実施例と同様の効果が得られる。
Waiting can take l cycles. In this case, cleaning water sampling is performed in the 1st step, 2nd step, 5th step, [step, 2nd step]
If it is a process, the same effect as the above embodiment can be obtained.

また、校正は測定後に行なう必要はなく、どこで実施し
ても第2図の実施例と同様の効果が得られる。さらに、
校正は第6エ程だけでなく、測定内容21内全空気で満
たすことで実施可能であり、第」工程によっても実施で
きる。従って、採水または洗浄と組みあわせて11校正
採水、洗浄校正。
Further, it is not necessary to carry out the calibration after measurement, and the same effect as the embodiment shown in FIG. 2 can be obtained no matter where the calibration is carried out. moreover,
Calibration can be carried out not only in the 6th step, but also by filling the measurement content 21 with all air, and can also be carried out in the 6th step. Therefore, in combination with water sampling or cleaning, 11 calibrations Water sampling and cleaning calibration.

洗浄校正採水のいずれかとすることができる。絞出採水
と洗浄校正は第2図の実施例の採水、洗浄と同一工程で
よく、洗浄校正採水は前記実施例の洗浄採水と同一工程
でよく、これらのどの時点の第1工程でも校正を行なう
ことができる。
It can be either a cleaning calibration water sampling. Squeezing water sampling and washing calibration may be carried out in the same process as water sampling and washing in the embodiment shown in FIG. Calibration can also be performed during the process.

待機は第7エ程に限られず、測定容器21内に空気を供
給しだ状態でもよい。あるいは必要なけれは僑略しても
本発明の効果に影響しない。
The standby state is not limited to the seventh step, and may be a state in which air is started to be supplied into the measurement container 21. Alternatively, it may be omitted if necessary without affecting the effects of the present invention.

第4図は本発明の他の実施例を示すもので、開閉弁4,
5にストレーナ41.42をそれぞれ接続し、曝気用空
気供鮒口と洗浄用空気供給口を共通とした曝気および洗
浄用空気供給口43を測定容器44の下部に設けている
。ストレーナ41.42は試料水中をこ混入する毛髪、
ビニール、木片等の粗大ゴミが測定容器21内に流入し
回転子6の回転を妨げることを防止している。このスト
レーナ41.42の汚れは第2図の実施例と同様の洗浄
を実施することにより測定容器44の内壁、溶存酸素電
極3の表面および開閉弁4,5が洗浄される際に同時か
つ効果的に洗浄される。曝気および洗浄用空気供給口4
3から測定容器44内へ供給する曝気用空気と洗浄用空
気は流量調整器25 、28によりそれぞれ適正流量と
され、工程制御器34で空気供給弁24.j7を制御し
選択的に供給させることにより第2図の実施例と同様の
効果が得られるとともに、汚れの防止に役立つ測定器器
や配管の簡素化ができる。また、これは第2図の実施例
にも適用できることは言うまでもない。
FIG. 4 shows another embodiment of the present invention, in which on-off valves 4,
5 are connected to strainers 41 and 42, respectively, and an aeration and cleaning air supply port 43 that has a common aeration air supply port and a cleaning air supply port is provided at the bottom of the measurement container 44. Strainers 41 and 42 contain hair that mixes into the sample water.
This prevents large debris such as vinyl and wood chips from flowing into the measuring container 21 and interfering with the rotation of the rotor 6. The stains on the strainers 41 and 42 can be removed simultaneously and effectively by cleaning the inner wall of the measurement container 44, the surface of the dissolved oxygen electrode 3, and the on-off valves 4 and 5 by carrying out the same cleaning as in the embodiment shown in FIG. Washed properly. Air supply port 4 for aeration and cleaning
The aeration air and cleaning air supplied into the measurement container 44 from the flow controllers 25 and 28 are adjusted to appropriate flow rates, respectively, and the process controller 34 controls the air supply valves 24 and 34 to adjust the flow rates to appropriate levels. By controlling and selectively supplying j7, the same effects as the embodiment shown in FIG. 2 can be obtained, and the measuring instruments and piping that are useful for preventing contamination can be simplified. It goes without saying that this can also be applied to the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明のとおり、本発明の酸素利用速度測定装置に
よ−れば、確実に試料水を測定容器へ導入する手段と、
確実に排出する手段とを備えるとともに、測定器?:J
と溶存酸素′也極を曝気槽に浸漬した状態で測定容器内
壁と開閉弁および溶存酸素′屯惨表面に付庸、堆積する
汚物の除去と、溶存酸素′I叔恰の点検1校正を行なう
ことにより、常に正確な酸素利用速度の測定を行なうこ
とができる。
As explained above, according to the oxygen utilization rate measuring device of the present invention, there is a means for reliably introducing sample water into the measurement container;
In addition to having a means to ensure discharge, is there a measuring device? :J
With the dissolved oxygen electrode and the dissolved oxygen electrode immersed in the aeration tank, remove the dirt that accumulates on the inner wall of the measuring container, the on-off valve, and the surface of the dissolved oxygen tube, and perform the inspection and calibration of the dissolved oxygen electrode. This makes it possible to always accurately measure the oxygen utilization rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素第11用速度測定装置の構成を示す
系統図、第2図は本発明の酸素利用速度測定装置の一実
施例を示す系統図、第3図は測定期間と空気測定値およ
び酸素利用速度測定値の指示変動との関係の一測定例を
示す説明図、第4図は本発明の他の実施例をボす系統図
である。 1・・曝気4’K      2121.44・・・測
定容器3・・・溶存酸素測定器   4,5・・・開閉
弁6・・・回転子     7・・・スターン8.22
.・l礒(気相空気供給口 9、to、24.27,29.30・・・空気供給弁1
2 、26・・・空気供給装置 13・・・溶存酸素測
定器14.35・・・演算処理器  15.34・・・
工程制御器23・・・洗浄用空気供給口 25.28,31.32・・・流量調整器33・・・酸
素測定器   36・・・補正値算出器41.42・・
・ストレーナ 43・・・曝気および洗浄用空気供給口(7317) 
 代理人 弁理士 則 近 憲 佑 (ほか1名)第1
図 第 2 図 第3図 第4図
Fig. 1 is a system diagram showing the configuration of a conventional oxygen utilization rate measuring device, Fig. 2 is a system diagram showing an embodiment of the oxygen utilization rate measuring device of the present invention, and Fig. 3 is a measurement period and air measurement. FIG. 4 is an explanatory diagram showing an example of measurement of the relationship between the oxygen utilization rate measurement value and the indicated variation of the oxygen utilization rate measurement value, and FIG. 4 is a system diagram showing another embodiment of the present invention. 1...Aeration 4'K 2121.44...Measuring container 3...Dissolved oxygen measuring device 4,5...Opening/closing valve 6...Rotor 7...Stern 8.22
..・l (vapor phase air supply port 9, to, 24.27, 29.30... air supply valve 1
2, 26... Air supply device 13... Dissolved oxygen measuring device 14.35... Arithmetic processor 15.34...
Process controller 23...Cleaning air supply ports 25.28, 31.32...Flow rate regulator 33...Oxygen measuring device 36...Correction value calculator 41.42...
・Strainer 43...Air supply port for aeration and cleaning (7317)
Agent Patent Attorney Kensuke Chika (and 1 other person) 1st
Figure 2 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)溶液中に浸漬され下部に曝気用および洗浄用の空
気供給口をもつ測定容器と、この測定容器の上部と下部
にとりつりだ開閉弁と、測定容器内の試料水と接するよ
うに設けた溶存酸素電極と、との溶存酸素電極の信号か
ら溶液中の溶存酸素または気体中の酸素分圧を測定する
酸素測定器と、上部開閉弁を閉じ下部開閉弁を開き測定
容器内に空気を供給する工程をもつ制御を行なう工程制
御  :器と、測定容器内に空気を供給した状態におけ
る酸素測定器からの信号とあらかじめ記憶している既知
の空気中酸素分圧との比から補正値を算出する補正値演
算器と、補正値演算器からの信号により補正しながら酸
素利用速度を算出する演算処理器とを備えたことを特徴
どする酸素利用速度測定装置。
(1) A measurement container that is immersed in a solution and has an air supply port for aeration and cleaning at the bottom, an on-off valve mounted on the top and bottom of this measurement container, and a measurement container that is installed so as to be in contact with the sample water in the measurement container. an oxygen meter that measures dissolved oxygen in a solution or partial pressure of oxygen in a gas from the signal from the dissolved oxygen electrode; Process control that performs control that includes a supply process: A correction value is calculated from the ratio of the signal from the oxygen measuring device with air being supplied to the measuring container and the known partial pressure of oxygen in the air stored in advance. An oxygen utilization rate measuring device comprising: a correction value calculator for calculating; and an arithmetic processor for calculating the oxygen utilization rate while correcting it based on a signal from the correction value calculator.
(2)曝気用空気供給口と洗浄用空気供給口とからの空
気供給量が異なるように設定したことを特徴とする特許
請求の範囲第1項記載の酸素利用速度測定装置。
(2) The oxygen utilization rate measuring device according to claim 1, wherein the air supply amount from the aeration air supply port and the cleaning air supply port are set to be different.
(3)測定容器の下部に曝気と洗浄の両者に共用する曝
気および洗浄用空気供給口を設けたことを特徴とする特
許請求の範囲第1項および第2項記載の酸素利用速度測
定装置。
(3) The oxygen utilization rate measuring device according to claims 1 and 2, characterized in that an aeration and cleaning air supply port used for both aeration and cleaning is provided in the lower part of the measurement container.
(4)測定容器の上下に設けた開閉弁として、外部にス
トレーナを持つものを用いたことを特徴とする特許請求
の範囲、第2項、第3項のいずれかに記載した酸素利用
速度測定装置。
(4) Oxygen utilization rate measurement according to any one of claims 2 and 3, characterized in that the on-off valves provided above and below the measurement container are provided with external strainers. Device.
JP58086554A 1983-05-19 1983-05-19 Device for measuring oxygen utilizing speed Pending JPS59212755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086554A JPS59212755A (en) 1983-05-19 1983-05-19 Device for measuring oxygen utilizing speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086554A JPS59212755A (en) 1983-05-19 1983-05-19 Device for measuring oxygen utilizing speed

Publications (1)

Publication Number Publication Date
JPS59212755A true JPS59212755A (en) 1984-12-01

Family

ID=13890219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086554A Pending JPS59212755A (en) 1983-05-19 1983-05-19 Device for measuring oxygen utilizing speed

Country Status (1)

Country Link
JP (1) JPS59212755A (en)

Similar Documents

Publication Publication Date Title
JPS59131146A (en) Method and device for monitoring concentration of gas in liquid
CN107727789A (en) A kind of apparatus for measuring concentration and its concentration factor automatic correcting method, Etaching device
JP2567382B2 (en) Biomass oxygen treatment device
JP3289522B2 (en) BOD measuring device
JPS59212755A (en) Device for measuring oxygen utilizing speed
JP2004093465A (en) Weight measurement type slurry densitometer and measuring method
JP2000221073A (en) In-tank liquid level detection device for substrate treating device
US7273561B1 (en) Method for determining the chemical dosage required to reduce sulfides in wastewater to acceptable levels
JPH0356420B2 (en)
CN111744366A (en) Device and method for testing oxygen transfer performance of MABR (moving active biofilm reactor) membrane
JPS6134618B2 (en)
JPS5963567A (en) Method and device for measuring velocity in using oxygen
CN112305036A (en) Method and measuring point in a measuring point for determining the chemical intake capacity of a process medium
JP3467905B2 (en) How to measure respiration rate
CN111470610B (en) Ozone water treatment technology evaluation system and method
WO2023112474A1 (en) Water quality measurement device
JP3567453B2 (en) Activity evaluation test equipment
JPS5890158A (en) Measuring device for oxygen utilization velocity
JPH09297132A (en) Microorganism respiration velocimeter
JPH02293658A (en) Automatically calibrating method for dissolved oxygen meter
CN117645369A (en) Method and device for real-time online in-situ determination of heterotrophic bacteria yield coefficient
JPH06317577A (en) Measuring apparatus of quantity of carbon
JPH11118680A (en) Sample dilution analyzer
JPH0736281Y2 (en) Respiratory rate measuring device
JPH04343068A (en) Measuring apparatus of quantity of carbon