JP2567382B2 - Biomass oxygen treatment device - Google Patents
Biomass oxygen treatment deviceInfo
- Publication number
- JP2567382B2 JP2567382B2 JP61295708A JP29570886A JP2567382B2 JP 2567382 B2 JP2567382 B2 JP 2567382B2 JP 61295708 A JP61295708 A JP 61295708A JP 29570886 A JP29570886 A JP 29570886A JP 2567382 B2 JP2567382 B2 JP 2567382B2
- Authority
- JP
- Japan
- Prior art keywords
- dissolved oxygen
- oxygen
- biomass
- oxygen concentration
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 77
- 229910052760 oxygen Inorganic materials 0.000 title claims description 77
- 239000001301 oxygen Substances 0.000 title claims description 77
- 239000002028 Biomass Substances 0.000 title claims description 29
- 239000007788 liquid Substances 0.000 claims description 30
- 238000012544 monitoring process Methods 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000006213 oxygenation reaction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 12
- 230000029058 respiratory gaseous exchange Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000036284 oxygen consumption Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000012476 oxidizable substance Substances 0.000 description 1
- 230000001706 oxygenating effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1806—Biological oxygen demand [BOD] or chemical oxygen demand [COD]
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Emergency Medicine (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Activated Sludge Processes (AREA)
Description
【発明の詳細な説明】 本発明は、バイオマス含有水性液体に、例えば我々の
英国特許第1,455,567号に述べた方法によつて、制御し
たやり方で酸素添加して、バイオマスの呼吸または代謝
に必要な酸素、特に水性液体中の酸化可能な物質の生化
学的酸化に必要な酸素を供給するプロセスを意味するバ
イオマス酸素処理に用いるための水性物質の処理装置と
方法に関する。活性バイオマスを含むプロセスの例に
は、化学物質または食品を製造するための液体の発酵ま
たは下水のような水性排出物の処理がある。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for oxygenating a biomass-containing aqueous liquid in a controlled manner, for example by the method described in our British Patent No. 1,455,567, which is required for the respiration or metabolism of the biomass. TECHNICAL FIELD The present invention relates to an apparatus and method for treating an aqueous substance for use in biomass oxygen treatment, which means a process for supplying oxygen, particularly oxygen required for biochemical oxidation of an oxidizable substance in an aqueous liquid. Examples of processes involving active biomass are fermentation of liquids to produce chemicals or food or treatment of aqueous effluents such as sewage.
水性液体中の溶存酸素含量を所定の最位置以上に維持
することは、この技術分野で典型的に行われる。溶存酸
素含量を連続的に監視するためには、水性液体の溶存酸
素含量の監視装置が典型的に用いられ、溶存酸素濃度が
所定の最低値まで低下すると、酸素供給手段が始動し
て、液体に酸素を添加して溶存酸素レベルを所定の最高
値にする。この最高値に達すると、溶存酸素監視手段が
弁その他の手段を始動させて、酸素添加を停止する。溶
存酸素はバイオマスによつて非常に迅速に消費されるの
で、溶存酸素濃度は低下し始める。このようなプラント
の操作者はバイオマスの無効化または死亡を阻止し得る
ことが望ましい。バイオマスが無効化するまたは死亡す
る場合には、液体の自然の換気によつて溶存酸素レベル
が所定の最低値以上に維持されるので、酸素供給手段か
らの酸素は要求されない。しかし死亡または無効バイオ
マスの存在を示すために、このような酸素要求の無いこ
とを利用するたけでは完全に充分だとはいわれない。こ
の理由は特定のプロセスを停止する必要が典型的にあ
り、生活可能なバイオマスを死亡バイオマスと置換する
までに数時間の生産損失があるからである。Maintaining the dissolved oxygen content in aqueous liquids above a predetermined maximum is typical in the art. In order to continuously monitor the dissolved oxygen content, a device for monitoring the dissolved oxygen content of an aqueous liquid is typically used, and when the dissolved oxygen concentration drops to a predetermined minimum value, the oxygen supply means is activated to start the liquid Oxygen is added to bring the dissolved oxygen level to a predetermined maximum value. When this maximum is reached, the dissolved oxygen monitoring means actuates a valve or other means to stop oxygen addition. Since dissolved oxygen is consumed very quickly by the biomass, the dissolved oxygen concentration begins to drop. It is desirable for operators of such plants to be able to prevent the inactivation or death of biomass. In case of biomass deactivation or death, no oxygen is required from the oxygen supply means because the natural ventilation of the liquid keeps the dissolved oxygen level above a certain minimum value. However, it is not entirely sufficient to take advantage of this lack of oxygen demand to indicate the presence of dead or dead biomass. The reason for this is that it is typically necessary to stop certain processes and there is a loss of production of several hours before replacing viable biomass with dead biomass.
上記問題を解決または改善し得る装置と方法を提供す
ることが、本発明の目的である。It is an object of the present invention to provide an apparatus and method that can solve or improve the above problems.
本発明によると、バイオマス含有水性液体の溶存酸素
濃度を監視して間欠的に酸素供給する手段:該液体に酸
素供給しない場合に溶存酸素濃度の減少速度を算出する
手段;及び減少速度が所定値に達しない場合にアラーム
シグナルを発する手段とを含む、バイオマス酸素処理に
用いる装置を提供する。According to the present invention, means for intermittently supplying oxygen by monitoring the dissolved oxygen concentration of the biomass-containing aqueous liquid: means for calculating the decrease rate of the dissolved oxygen concentration when oxygen is not supplied to the liquid; and the decrease rate is a predetermined value. And a means for emitting an alarm signal when the temperature is not reached.
本発明による装置は、バイオマス活性の低下を検出
し、この活性低下をプラント操作者に注意させることを
可能にする。これによつてプラント操作者は活性低下の
原因を究明することができ、この低下が容易に修正可能
な原因によつて生じたものである場合には、プロセスが
操作不能になる前に修正作用を行うことができる。The device according to the invention makes it possible to detect a decline in biomass activity and to alert the plant operator to this decline in activity. This allows the plant operator to determine the cause of the reduced activity, and if the degradation is caused by an easily modifiable cause, corrective action can be taken before the process becomes inoperable. It can be performed.
本発明はまた、バイオマス含有水性液体の溶存酸素濃
度監視段階、液体への間欠的酸素供給段階、溶存酸素濃
度減少速度の算出段階、及び減少速度が所定値に達しな
い場合のアラームシグナル発生段階を含むバイオマス酸
素処理の制御方をも提供する。The present invention also includes a dissolved oxygen concentration monitoring step of a biomass-containing aqueous liquid, an intermittent oxygen supply step to the liquid, a dissolved oxygen concentration decrease rate calculation step, and an alarm signal generation step when the decrease rate does not reach a predetermined value. It also provides a method of controlling the oxygen treatment of biomass containing.
本発明による装置は、該バイオマス酸素処理を実施す
る容器への水性液体流量を監視するための流量計のよう
な手段;流量を表示するシグナル発生手段;流量と前記
減少速度とから単位量または前記流入液体単位量あたり
の酸素消費速度を表すパラメータを算出する手段;及び
該パラメータ値を表示する手段をも含むことができる。
容器内の液体を充分に撹拌するならば、該パラメータ値
は流入液体の生化学的酸素要求量に近似する。この近似
の正確さは、プロセス中の酸素総消費量の中の流入液体
中の化学物質の生化学的酸化に用いられる割合と、バイ
オマスの細菌または他の微生物によつて呼吸もしくは代
謝される割合との比に依存する。この比が高ければ高い
ほど、近似は正確になる。下水または排出物処理では典
型的に、総酸素消費量の5容量%程度が微生物によつて
呼吸または代謝される。望ましい場合には、代謝される
酸素を「補正する」ために該表示算出値から一定量を減
ずる手段を備えることもできる。溶解しない酸素が液体
から放出されて大気中に漏出する場合には、この要素の
補正を行うこともできる。この技術分野での慣習的なや
り方は液体のサンプルを採取し、5日間所蔵の前後にサ
ンプルの一部を分析することによつて生化学的酸素要求
量を測定することである。本発明による装置は、生化学
的酸素要求量の瞬間的測定方法を提供する点で、この公
知の方法の改良を提供するものである。The apparatus according to the present invention comprises means such as a flow meter for monitoring the flow rate of the aqueous liquid to the vessel for carrying out the biomass oxygen treatment; a signal generating means for displaying the flow rate; Means for calculating a parameter representing the oxygen consumption rate per unit amount of inflowing liquid; and means for displaying the parameter value can also be included.
If the liquid in the vessel is well agitated, the parameter value approximates the biochemical oxygen demand of the incoming liquid. The accuracy of this approximation is the proportion of the total oxygen consumption during the process that is used for biochemical oxidation of chemicals in the incoming liquid and the proportion of the biomass that is breathed or metabolized by bacteria or other microorganisms. Depends on the ratio with. The higher this ratio, the more accurate the approximation. In sewage or effluent treatment, typically about 5% by volume of total oxygen consumption is breathed or metabolized by microorganisms. If desired, means may be provided to subtract a fixed amount from the displayed calculated value in order to "correct" the oxygen that is metabolized. This factor can also be corrected if undissolved oxygen is released from the liquid and leaks into the atmosphere. The conventional practice in the art is to measure biochemical oxygen demand by taking a sample of the liquid and analyzing a portion of the sample before and after holding for 5 days. The device according to the invention offers an improvement over this known method in that it provides a method for the instantaneous measurement of biochemical oxygen demand.
本発明、バイオマスを含む水性液体を保持するための
容器、そのバイオマスを含む水性液体の溶存酸素濃度を
その場でモニターするための手段、その液体に間欠的に
酸素添加する手段及びアラームシグナルを発生させる手
段を含むバイオマス処理を実施する装置において、その
装置は、さらに (i) 溶存酸素濃度が予定の最低値に達したというモ
ニター手段からのシグナル対応して酸素添加を開始し、
そしてその溶存酸素濃度が予定の最高値に達したという
モニター手段からのシグナルに対応して酸素添加を停止
する手段、 (ii) 前記液体に酸素添加を行わない時、溶存酸素濃
度の即時の減少速度を繰返し算出する手段、 (iii) そのモニター手段が位置する容器と同じ容器
内にその酸素添加手段が取り付けられ、そして (iv) 前記溶存酸素濃度の即時の減少速度が予定値以
下になる場合に、そのアラーム発生手段はアラームシグ
ナルを発生するように配置されている、 ことを特徴とする装置に関する。The present invention, a container for holding an aqueous liquid containing biomass, a means for monitoring the dissolved oxygen concentration of the aqueous liquid containing biomass in situ, a means for intermittently adding oxygen to the liquid, and generating an alarm signal. In the apparatus for carrying out the biomass treatment including the means for causing, the apparatus further (i) starts oxygen addition in response to a signal from the monitoring means that the dissolved oxygen concentration has reached the predetermined minimum value,
And means for stopping the oxygen addition in response to the signal from the monitoring means that the dissolved oxygen concentration has reached the predetermined maximum value, (ii) when oxygen is not added to the liquid, the dissolved oxygen concentration is immediately reduced. Means for repeatedly calculating the velocity, (iii) the oxygen addition means is mounted in the same vessel as the monitoring means, and (iv) the immediate decrease rate of the dissolved oxygen concentration is below a predetermined value. In addition, the alarm generating means is arranged to generate an alarm signal.
次に、添付図面を参照して、実施例に基づいて本発明
を説明する。The present invention will now be described based on examples with reference to the accompanying drawings.
図面の図1に関して、バイオマス酸素プラント2は生
化学的酸素要求量を有する水性物質の流入口4と処理済
みの排出物の流出口5とを有する。さらに、プラント2
の水性液体に連通する流入口と流出口とを有するリサイ
クル導管6が存在する。酸供給源(図示せず)に結合す
る管8は導管6で終わる。この管は内部にオン/オフ弁
10を有する。リサイクル導管6と酸素管8は、我々の英
国特許第1,455,567号に述べて特許を請求しているやり
方でプラント2の水溶液体に酸素を供給するように、配
置され操作される。With reference to Figure 1 of the drawings, a biomass oxygen plant 2 has an inlet 4 for aqueous material having a biochemical oxygen demand and an outlet 5 for treated effluent. Furthermore, plant 2
There is a recycle conduit 6 having an inlet and an outlet communicating with the aqueous liquid. A tube 8 connecting to an acid source (not shown) terminates in conduit 6. This pipe has an on / off valve inside
Having 10. Recycle conduit 6 and oxygen line 8 are arranged and operated to supply oxygen to the aqueous body of plant 2 in the manner claimed and described in our British Patent No. 1,455,567.
容器2の水性液体の表面下に、通常の種類の溶存酸素
センサー12が配置される。これは電気シグナルを発し
て、この電気シグナルを制御手段14に通すように取付け
られる。制御手段14は探知される溶存酸素に応じてシグ
ナルを発して、弁10を開閉して、リサイクル導管6を通
る液体の酸素添加を開始または終了させることができ
る。Below the surface of the aqueous liquid in the container 2, a dissolved oxygen sensor 12 of the usual type is arranged. It emits an electrical signal and is mounted to pass this electrical signal to the control means 14. The control means 14 can emit a signal in response to the detected dissolved oxygen to open and close the valve 10 to initiate or terminate the oxygenation of the liquid through the recycle conduit 6.
望ましい場合には、図1に示した装置の流入口4内に
流量計(図示せず)を備えて、プラント2への水性液体
流量を測定して、制御手段14にシグナルを発することも
できる。If desired, a flow meter (not shown) may be provided in the inlet 4 of the apparatus shown in FIG. 1 to measure the aqueous liquid flow rate to the plant 2 and signal the control means 14. .
本発明による装置に用いる制御手段14の1例を図面の
図2にさらに詳しく示す。この制御装置は多くの種々な
機能を有する。先ず第一に、センサー12によるシグナル
から溶存酸素濃度を算出し、上記のように弁10に制御シ
グナルを発するために電子回路20を有する。次に回路20
からの溶存酸素シグナルに応じて溶存酸素濃度の変化
を、毎秒または1秒の何分の1毎に、表示するシグナル
を発するようにプログラムされたマイクロプロセツサ22
を有する。An example of the control means 14 used in the device according to the invention is shown in more detail in FIG. 2 of the drawings. This controller has many different functions. First of all, it has an electronic circuit 20 for calculating the dissolved oxygen concentration from the signal from the sensor 12 and issuing a control signal to the valve 10 as described above. Next circuit 20
22. A microprocessor programmed to emit a signal that displays a change in dissolved oxygen concentration every second or every fraction of a second in response to the dissolved oxygen signal from
Have.
このシグナルはバイオマス中の細菌の活性を表示す
る。マイクロプロセッサ22から発せられるシグナルは電
子回路24によつて、デイジタル・インジケータ26での表
示に適した特定の単位(例えばmg/)に変換される。
また、制御装置は溶存酸素濃度と呼吸速度の両方を表示
することのできるチヤート・レコーダー28を典型的に備
えている。This signal is indicative of bacterial activity in the biomass. The signal emitted by the microprocessor 22 is converted by the electronic circuit 24 into a specific unit (eg mg /) suitable for display on the digital indicator 26.
The controller also typically includes a chart recorder 28 capable of displaying both dissolved oxygen concentration and respiration rate.
図2に示した制御装置はアラーム30(マイクロプロセ
ツサー22と関係)をも有する。アラーム30は、酸素供給
を行わない期間に溶存酸素減少速度が所定値以下になつ
た場合にアラームシグナルを発する。アラーム30はこの
ような装置に通常用いられる種類のものである。The controller shown in FIG. 2 also has an alarm 30 (related to microprocessor 22). The alarm 30 gives an alarm signal when the rate of decrease in dissolved oxygen becomes equal to or lower than a predetermined value during a period in which oxygen is not supplied. Alarm 30 is of the type commonly used in such devices.
図3には、図2に示した制御装置のチヤート・レコー
ダー28からの典型的なプリントアウトを示す。図3に示
す曲線Aは、図1のプラント中の水性液体の溶存酸素濃
度変化を示す。曲線Aの最低値は図1に示した管8から
の酸素供給を開始する時点を示し、最高値は管8からの
酸素供給を停止する時点を示す。従つて、最低値は最低
の溶存酸素濃度を表し、最高値は最高の溶存酸素濃度を
表す。酸素供給を停止した場合に溶存酸素濃度がかなり
急速に低下する(再び酸素添加するときほど迅速ではな
いが)ことがわかる。このことはバイオマス中の細菌の
活性度(すなわち呼吸)が健全であることを示唆してい
る。曲線の傾斜は如何なる時にも生化学的酸素消費速度
(時には、呼吸速度と呼ばれる)に比例する。曲線Bは
プラント2に酸素を供給しない期間の呼吸速度を示す。
呼吸速度が所定値以下に低下して、バイオマスが予定通
りに機能しないことを示すならば、アラーム30がマイク
ロプロセツサ22からのシグナルによつて始動する。FIG. 3 shows a typical printout from the chart recorder 28 of the controller shown in FIG. Curve A shown in FIG. 3 shows the dissolved oxygen concentration change of the aqueous liquid in the plant of FIG. The minimum value of the curve A shows the time when the oxygen supply from the pipe 8 shown in FIG. 1 is started, and the maximum value shows the time when the oxygen supply from the pipe 8 is stopped. Therefore, the lowest value represents the lowest dissolved oxygen concentration and the highest value represents the highest dissolved oxygen concentration. It can be seen that the dissolved oxygen concentration drops fairly rapidly when the oxygen supply is stopped (although not as rapidly as when oxygen is added again). This suggests that the bacterial activity (ie respiration) in the biomass is healthy. The slope of the curve is proportional to the biochemical oxygen uptake rate (sometimes called the respiration rate) at any time. Curve B shows the respiration rate during the period when oxygen is not supplied to the plant 2.
If the respiration rate drops below a predetermined value, indicating that the biomass is not functioning as planned, an alarm 30 is triggered by a signal from the microprocessor 22.
図1はバイオマス酸素処理を行うプラントの線図であ
る。 図2は図1に示した制御装置を説明するブロツクダイア
グラムである。 図3は図2に示した制御装置のチヤート・レコーダーか
らの典型的なプリントアウトを図示する。 2……バイオマス酸素プラント 4……水性物質流入口、5……水性物質流出口 6……リサイクル導管、8……酸素供給管 10……オン/オフ弁、12……溶存酸素センサー 14……制御装置FIG. 1 is a diagram of a plant that performs biomass oxygen treatment. FIG. 2 is a block diagram illustrating the control device shown in FIG. FIG. 3 illustrates a typical printout from the chart recorder of the controller shown in FIG. 2 …… Biomass oxygen plant 4 …… Aqueous substance inlet 5 …… Aqueous substance outlet 6 …… Recycling conduit, 8 …… Oxygen supply pipe 10 …… On / off valve, 12 …… Dissolved oxygen sensor 14 …… Control device
Claims (1)
の容器、そのバイオマスを含む水性液体の溶存酸素濃度
をその場でモニターするための手段、その液体に間欠的
に酸素添加する手段及びアラームシグナルを発生させる
手段を含むバイオマス処理を実施する装置において、そ
の装置は、さらに (i) 溶存酸素濃度が予定の最低値に達したというモ
ニター手段からのシグナル対応して酸素添加を開始し、
そしてその溶存酸素濃度が予定の最高値に達したという
モニター手段からのシグナルに対応して酸素添加を停止
する手段、 (ii) 前記液体に酸素添加を行わない時、溶存酸素濃
度の即時の減少速度を繰返し算出する手段、 (iii) そのモニター手段が位置する容器と同じ容器
内にその酸素添加手段が取り付けられ、そして (iv) 前記溶存酸素濃度の即時の減少速度が予定値以
下になる場合に、そのアラーム発生手段はアラームシグ
ナルを発生するように配置されている、 ことを特徴とする装置。1. A container for holding an aqueous liquid containing biomass, a means for monitoring in situ the dissolved oxygen concentration of the aqueous liquid containing biomass, a means for intermittently adding oxygen to the liquid, and an alarm signal. In a device for carrying out a biomass treatment including a means for generating, the device further (i) starts oxygenation in response to a signal from a monitoring means that the dissolved oxygen concentration has reached a predetermined minimum value,
And means for stopping the oxygen addition in response to the signal from the monitoring means that the dissolved oxygen concentration has reached the predetermined maximum value, (ii) when oxygen is not added to the liquid, the dissolved oxygen concentration is immediately reduced. Means for repeatedly calculating the velocity, (iii) the oxygen addition means is mounted in the same vessel as the monitoring means, and (iv) the immediate decrease rate of the dissolved oxygen concentration is below a predetermined value. The device for generating an alarm is arranged so as to generate an alarm signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8530548 | 1985-12-11 | ||
GB858530548A GB8530548D0 (en) | 1985-12-11 | 1985-12-11 | Treatment for aqueous material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62254897A JPS62254897A (en) | 1987-11-06 |
JP2567382B2 true JP2567382B2 (en) | 1996-12-25 |
Family
ID=10589612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61295708A Expired - Lifetime JP2567382B2 (en) | 1985-12-11 | 1986-12-11 | Biomass oxygen treatment device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2567382B2 (en) |
GB (2) | GB8530548D0 (en) |
ZA (1) | ZA868928B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3811540A1 (en) * | 1988-04-06 | 1989-10-19 | Gimat | METHOD FOR DETERMINING THE CHEMICAL OXYGEN NEED OF HOT WATER AND DEVICE FOR IMPLEMENTING THE METHOD |
ZA915130B (en) * | 1990-07-04 | 1993-01-27 | Commw Scient Ind Res Org | Continuous rbcod measurement |
US5702951A (en) * | 1990-07-04 | 1997-12-30 | Commonwealth Scientific And Industrial Research Organisation | Continuous RBCOD measurement |
US5552319A (en) * | 1993-07-20 | 1996-09-03 | Biochem Technology, Inc. | Apparatus and method for monitoring and controlling biological activity in wastewater and controlling the treatment thereof |
FR2769304B1 (en) * | 1997-10-02 | 1999-11-12 | Lyonnaise Eaux Eclairage | METHOD FOR CONTROLLING AERATION SYSTEMS IN BIOLOGICAL BASINS FOR WASTEWATER TREATMENT |
FR2769306B1 (en) * | 1997-10-02 | 1999-11-12 | Lyonnaise Eaux Eclairage | METHOD FOR EVALUATING AND CONTROLLING THE BIOMASS CONTAINED IN BIOLOGICAL WASTEWATER BASINS |
US6106718A (en) * | 1998-07-01 | 2000-08-22 | Biochem Technology, Inc. | Enhanced denitrification process by monitoring and controlling carbonaceous nutrient addition |
ES2196930B1 (en) * | 2000-03-28 | 2005-10-01 | Centro De Estudios E Investigaciones Tecnicas De Guipuzcoa (C.E.I.T.G.) | PROCEDURE FOR ESTIMATING THE RATE OF USE OF OXYGEN IN THE BIOLOGICAL REACTORS OF THE WASTEWATER TREATMENT STATIONS. |
EP1466869A1 (en) * | 2003-04-08 | 2004-10-13 | Gunnar Demoulin | Apparatus and process for wastewater purification |
JP2010124721A (en) * | 2008-11-26 | 2010-06-10 | Ihi Corp | Measurement device and method, and apparatus and method for operating culture tank system |
FI126240B (en) * | 2011-12-02 | 2016-08-31 | Kemira Oyj | Method and device for monitoring and controlling the state of a process |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53136191U (en) * | 1977-04-01 | 1978-10-27 | ||
DE2843074A1 (en) * | 1978-10-03 | 1980-04-10 | Boehringer Mannheim Gmbh | METHOD FOR REGULATING AND / OR CONTROLLING A BIOLOGICAL WASTEWATER PLANT |
US4260490A (en) * | 1979-11-09 | 1981-04-07 | Union Carbide Corporation | Biomonitor to safeguard water purification process from toxicants |
US4329232A (en) * | 1980-12-09 | 1982-05-11 | Union Carbide Corporation | Method for measuring biomass viability |
DE3126412A1 (en) * | 1981-07-04 | 1983-01-27 | Menzel Gmbh & Co, 7000 Stuttgart | METHOD FOR TREATING A LIQUID |
FR2539875B1 (en) * | 1983-01-24 | 1986-03-21 | Ugine Kuhlmann | METHOD AND APPARATUS FOR DETECTION OF TOXIC SUBSTANCES IN WASTE WATER SUPPLYING A BIOLOGICAL TREATMENT STATION |
-
1985
- 1985-12-11 GB GB858530548A patent/GB8530548D0/en active Pending
-
1986
- 1986-11-25 ZA ZA868928A patent/ZA868928B/en unknown
- 1986-12-05 GB GB8629150A patent/GB2184110B/en not_active Expired - Fee Related
- 1986-12-11 JP JP61295708A patent/JP2567382B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
GB8530548D0 (en) | 1986-01-22 |
ZA868928B (en) | 1987-10-28 |
GB2184110B (en) | 1990-08-15 |
GB8629150D0 (en) | 1987-01-14 |
JPS62254897A (en) | 1987-11-06 |
GB2184110A (en) | 1987-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2567382B2 (en) | Biomass oxygen treatment device | |
US3731522A (en) | Method and apparatus for determining oxygen consumption rate in sewage | |
US4898829A (en) | Apparatus for the detection of biodegradable and toxic substances in aqueous solutions | |
US6189368B1 (en) | Method and apparatus for detection of concentration of hydrogen peroxide vapor | |
JPS6449541A (en) | Xenon gas inhalation system | |
JPH05215745A (en) | Apparatus for monitoring fouling in industrial water, fouling monitor and continuous measuring method of fouling | |
US4314969A (en) | Submersible respirometer | |
US5106511A (en) | On-line biological inhibition/toxicity detector | |
US6063617A (en) | On-line respirometer using constant oxygen concentration in reaction vessel | |
JP3301428B2 (en) | Wastewater treatment test method | |
KR960016715B1 (en) | Fast biochemical bod measuring method and apparatus | |
CN112062266A (en) | Device and method for on-line monitoring and evaluation of sludge activity of municipal sewage treatment plant | |
US6416994B1 (en) | Methanation activity measuring instrument | |
DE8910097U1 (en) | Device for determining the biochemical oxygen consumption rate | |
US6146896A (en) | Method and apparatus for measuring the nitrification effectiveness of activated sludge | |
CN216525570U (en) | Equipment for rapidly determining effectiveness of external carbon source of sewage treatment plant | |
CN109231437A (en) | A kind of online quick monitoring warning device of saprobia toxicity | |
KR100464667B1 (en) | Automatic Intermittent Flow Respirometer | |
CN211620509U (en) | Activated sludge aerobic respiration rate on-line detection equipment in sewage treatment system | |
JP3837765B2 (en) | Nitric acid concentration measuring device | |
KR100784877B1 (en) | Biosensor-type abnormal water quality monitoring device | |
JP7474723B2 (en) | Water Quality Monitoring System | |
CN214611754U (en) | Device for on-line monitoring and evaluating sludge activity of municipal sewage treatment plant | |
CN217542881U (en) | Drinking water quality monitoring and early warning device | |
CN211004634U (en) | Automatic physicochemical medicament adding device for wastewater treatment |