JPH0356420B2 - - Google Patents

Info

Publication number
JPH0356420B2
JPH0356420B2 JP57087870A JP8787082A JPH0356420B2 JP H0356420 B2 JPH0356420 B2 JP H0356420B2 JP 57087870 A JP57087870 A JP 57087870A JP 8787082 A JP8787082 A JP 8787082A JP H0356420 B2 JPH0356420 B2 JP H0356420B2
Authority
JP
Japan
Prior art keywords
gas
ozone
flow rate
sample water
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57087870A
Other languages
Japanese (ja)
Other versions
JPS58205835A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8787082A priority Critical patent/JPS58205835A/en
Publication of JPS58205835A publication Critical patent/JPS58205835A/en
Publication of JPH0356420B2 publication Critical patent/JPH0356420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Description

【発明の詳細な説明】 〔技術分野の説明〕 本発明は浄水場、下水処理場、し尿処理場等で
行なわれるオゾン処理における処理水中の溶存オ
ゾンの測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Description of the Technical Field] The present invention relates to an apparatus for measuring dissolved ozone in treated water during ozone treatment carried out in water purification plants, sewage treatment plants, human waste treatment plants, etc.

〔従来技術の説明〕[Description of prior art]

浄水場、下水処理場、し尿処理場ではオゾンの
強力な酸化力を利用して脱臭、脱色等にオゾン処
理が多く用いられてきている。この場合オゾン処
理水中に溶存オゾンが残留すると水中生物に対し
毒性を示す。また、大気中に拡散されると、この
オゾンにより人体が害を受けたりする。例えば処
理水中の溶存オゾンによるにじますの96時間
LC50値(96時間で少なくとも50%のにじますが
死亡する濃度)は1×10-3mg/といわれてい
る。また、大気中にオゾンガスが4〜10×10-5
mg/存在するとオゾン臭が感じられ、長時間の
曝露で人体に害を与える。本発明者は実験から処
理水中の溶存オゾン濃度が1×10-3mg/より高
い場合にオゾン臭を感知できることを確認してい
る。従つて、オゾン処理水の溶存オゾン濃度を監
視し、1×10-3mg/以下に維持する必要があ
る。
Ozone treatment has been widely used in water purification plants, sewage treatment plants, and human waste treatment plants for deodorization, decolorization, etc. by utilizing the strong oxidizing power of ozone. In this case, if dissolved ozone remains in the ozonated water, it becomes toxic to aquatic organisms. Furthermore, when diffused into the atmosphere, this ozone can harm the human body. For example, 96 hours of clouding caused by dissolved ozone in treated water.
The LC 50 value (concentration at which at least 50% of people die after 96 hours) is said to be 1 x 10 -3 mg/. In addition, ozone gas in the atmosphere is 4 to 10×10 -5
If present in mg/mg, ozone odor will be felt and long-term exposure will be harmful to the human body. The present inventor has confirmed through experiments that ozone odor can be detected when the concentration of dissolved ozone in treated water is higher than 1 x 10 -3 mg/. Therefore, it is necessary to monitor the dissolved ozone concentration in ozonated water and maintain it at 1×10 −3 mg/or less.

従来の溶存オゾンの測定装置としては、気体透
過性の薄い隔膜を透過するオゾンガスをポーラロ
グラフ法により測定する隔膜式電極法、試料水中
のオゾンによる紫外線吸光を測定する方法、回転
電極と対極を用いたポーラログラフ法による測定
方法などがある。しかし、これらの測定方法では
5〜10×10-2mg/以上の溶存オゾンしか測定で
きなかつた。以上の説明から、オゾン処理水の安
全性を維持するには従来の溶存オゾンの測定装置
は実用的ではなかつた。
Conventional methods for measuring dissolved ozone include the diaphragm electrode method, which uses a polarographic method to measure ozone gas that passes through a thin gas-permeable diaphragm, the method that measures ultraviolet light absorption by ozone in sample water, and the method that uses a rotating electrode and a counter electrode. Measurement methods include the polarographic method. However, these measuring methods could only measure dissolved ozone of 5 to 10 x 10 -2 mg/or more. From the above explanation, conventional dissolved ozone measuring devices are not practical for maintaining the safety of ozonated water.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低濃度の溶存オゾンを連続的
に検出できる溶存オゾンの測定装置を提供するこ
とにある。
An object of the present invention is to provide a dissolved ozone measuring device that can continuously detect low concentrations of dissolved ozone.

〔発明の概要〕[Summary of the invention]

本発明による溶存オゾン測定装置は測定槽と、
この測定槽内の所定高さの部分に連結しこの測定
槽内にオゾンが溶存している試料水を供給する供
給装置と、前記測定槽の上記供給装置との連結部
より低い位置に連結しかつこの供給装置との連結
部より高い位置まで立上つた後外部に開口する排
水用の配管と、前記測定槽内下部に設けられた散
気器と、この散気器にオゾンを含まない曝気用の
気体を供給する気体供給装置と、オゾンガスの濃
度を測定するオゾンガス測定器と、前記測定槽上
部に連通しこの測定槽内の試料水面上方の気体を
所定量オゾンガス測定器に供給し残りは外部に放
出するオゾンガス導出装置とを備え、前記試料水
の流量を曝気用気体の流量より多く、かつこれら
の流量比が一定となるように設定した状態で、前
記測定槽内の試料水面上方の気体のオゾン濃度を
測定することにより、これと所定の関係を成す試
料水中の溶存オゾン濃度を測定するものである。
The dissolved ozone measuring device according to the present invention includes a measuring tank;
A supply device is connected to a part of the measurement tank at a predetermined height and supplies sample water in which ozone is dissolved in the measurement tank, and a supply device is connected to a part of the measurement tank at a position lower than the connection point between the supply device and the measurement tank. Also, a drainage pipe that rises to a higher level than the connecting part with the supply device and then opens to the outside, an aerator installed at the lower part of the measurement tank, and an aeration that does not contain ozone. an ozone gas measuring device for measuring the concentration of ozone gas; and an ozone gas measuring device for measuring the concentration of ozone gas, which communicates with the upper part of the measuring tank to supply a predetermined amount of the gas above the sample water surface in this measuring tank to the ozone gas measuring device, and the remaining gas to the ozone gas measuring device. an ozone gas derivation device that discharges to the outside, and the flow rate of the sample water is set to be higher than the flow rate of the aeration gas, and the ratio of these flow rates is constant. By measuring the ozone concentration in the gas, the dissolved ozone concentration in the sample water, which has a predetermined relationship with the ozone concentration, is measured.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第1図により
説明する。第1図において、1は試料水を滞留さ
せる測定槽で、その側壁の所定の高さ部分には試
料水供給装置20を構成する配管2を取付け、こ
こから試料水を測定槽1内へ供給する。この配管
2には試料水を供給するための配管3、流量設定
弁4、流量計5を順次連結する。
An embodiment of the present invention will be described below with reference to FIG. In Fig. 1, reference numeral 1 denotes a measurement tank in which sample water is retained, and a pipe 2 constituting a sample water supply device 20 is attached to a predetermined height part of the side wall of the tank 1, from which sample water is supplied into the measurement tank 1. do. A pipe 3 for supplying sample water, a flow rate setting valve 4, and a flow meter 5 are successively connected to this pipe 2.

6は試料水排出用の配管で、測定槽1の前記供
給用の配管2より下方(底部近く)に連結する。
この配管6は上方に立上げてあり、上記配管2の
測定槽1への取付け位置よりも上方にて大気に開
放する。このため、測定槽1内の試料水面は一定
レベルに保たれる。21はオゾンガスを含まない
曝気用の気体供給装置で、その配管7は測定槽1
内下部に設けられた散気器8と接続される。ま
た、配管7には曝気用気体を供給するために配管
9、ポンプ10、流量設定弁11、流量計12を
順次連結する。22はオゾンガス導出装置で測定
槽1の上部に連結する配管15を有し、測定槽1
内の試料水の上方にある曝気後の気体(以下、試
料ガスと呼ぶ)13を外部に導出させる。この配
管15には、先端が大気開放となつている配管1
6を連結すると共にその中間部にはポンプ17、
流量設定弁18、流量計19、オゾンガス測定器
14を順次連結し、前記測定槽1内の試料ガス1
3をオゾンガス測定器14に供給する。
Reference numeral 6 denotes a pipe for discharging sample water, which is connected to the measuring tank 1 below the supply pipe 2 (near the bottom).
This piping 6 is raised upward and is exposed to the atmosphere above the position where the piping 2 is attached to the measurement tank 1. Therefore, the sample water surface in the measurement tank 1 is maintained at a constant level. 21 is an aeration gas supply device that does not contain ozone gas, and its piping 7 is connected to the measuring tank 1.
It is connected to an air diffuser 8 provided at the inner lower part. Further, a pipe 9, a pump 10, a flow rate setting valve 11, and a flow meter 12 are connected in order to the pipe 7 to supply aeration gas. 22 is an ozone gas derivation device, which has a pipe 15 connected to the upper part of the measurement tank 1;
The aerated gas (hereinafter referred to as sample gas) 13 above the sample water inside is led out to the outside. This piping 15 includes a piping 1 whose tip is open to the atmosphere.
6 are connected to each other, and a pump 17 is connected to the middle part thereof.
The flow rate setting valve 18, the flow meter 19, and the ozone gas measuring device 14 are connected in sequence, and the sample gas 1 in the measurement tank 1 is
3 is supplied to the ozone gas measuring device 14.

本発明の作用を以下に説明する。まず試料水を
測定槽1内に供給する。この場合、流量計5の指
示をみながら流量設定弁4で流量設定し配管2か
ら測定槽1へ連続的に供給する。この試料水は配
管6にも流れ、大気開口する立上げ高さに対応す
る測定槽1内の一定レベルに試料水面を保つべく
排水する。この状態で流量計12の指示と流量設
定弁11で流量設定された、オゾンガスを含まな
い曝気用気体を散気器8から試料水中に連続的に
供給して曝気する。この曝気により試料水中に溶
存するオゾンが曝気用気体中に移動し拡散する。
このオゾンの移動は試料水中のオゾン分圧が曝気
用気体中のオゾン分圧より大きい場合に生じる。
従つて、散気器8から試料水中に出た直後の曝気
用気体へのオゾンの移動速度は大きく、曝気用気
体が試料水中を上昇するほど、曝気用気体中のオ
ゾン分圧が増加し、試料水から曝気用気体中への
オゾンの移動速度は小さくなる。従つて散気器8
と試料水面との距離が長いと試料水面付近ではオ
ゾンが移動しない状態、すなわち気液平衡に近い
状態となる。気液平衡状態では試料水中の溶存オ
ゾン濃度と試料ガス13中のオゾンガス濃度の関
係を分配係数を用いて式(1)のようにあらわすこと
ができる。
The operation of the present invention will be explained below. First, sample water is supplied into the measurement tank 1. In this case, the flow rate is set using the flow rate setting valve 4 while observing the instruction from the flow meter 5, and the flow rate is continuously supplied from the piping 2 to the measuring tank 1. This sample water also flows into the pipe 6 and is drained to maintain the sample water surface at a constant level in the measurement tank 1 corresponding to the height of the opening to the atmosphere. In this state, an aeration gas not containing ozone gas, whose flow rate is set by the flow meter 12 and the flow rate setting valve 11, is continuously supplied from the diffuser 8 into the sample water for aeration. Due to this aeration, ozone dissolved in the sample water moves into the aeration gas and is diffused.
This movement of ozone occurs when the partial pressure of ozone in the sample water is greater than the partial pressure of ozone in the aeration gas.
Therefore, the speed of movement of ozone to the aeration gas immediately after it exits from the aerator 8 into the sample water is high, and the higher the aeration gas rises in the sample water, the more the ozone partial pressure in the aeration gas increases. The rate of movement of ozone from the sample water into the aeration gas decreases. Therefore, the diffuser 8
If the distance between the sample water surface and the sample water surface is long, ozone does not move near the sample water surface, that is, a state close to vapor-liquid equilibrium occurs. In a gas-liquid equilibrium state, the relationship between the dissolved ozone concentration in the sample water and the ozone gas concentration in the sample gas 13 can be expressed as shown in equation (1) using a partition coefficient.

分配係数=試料水中の溶存オゾン濃度
〔mg/〕/試料ガス13中のオゾンガス濃度〔mg/
〕(1) ただし、分配係数は温度により変化し、例えば
20℃では0.29である。前述のオゾン処理水からオ
ゾン臭を感知できる最低濃度10-3mg/の溶存オ
ゾンを含む試料水の場合、試料ガス13中には
3.4×10-3mg/のオゾンガスが存在することに
なる。
Partition coefficient = Dissolved ozone concentration in sample water [mg/]/Ozone gas concentration in sample gas 13 [mg/]
] (1) However, the partition coefficient changes depending on the temperature, for example
At 20℃ it is 0.29. In the case of the sample water containing dissolved ozone at the minimum concentration of 10 -3 mg/ that allows the ozone odor to be detected from the ozonated water mentioned above, sample gas 13 contains
There will be 3.4×10 -3 mg/ozone gas.

この試料ガス13を配管15により測定槽1か
ら導出し、ポンプ17により加圧してオゾンガス
測定器14に供給する。オゾンガス測定器14と
しては紫外線吸光度法や化学発光法など各種の測
定方式の測定器が即に市販されており、2.0×
10-5mg/のオゾンガスを安定に測定できてい
る。従つて前記の連続的曝気において気液平衡に
近い状態を達成することで、溶存オゾン1×10-3
mg/の試料水から生じるオゾンガス濃度3.4×
10-3mg/の試料ガス13を容易にかつ堺精度で
連続的に測定することが可能である。
This sample gas 13 is led out from the measurement tank 1 through a pipe 15, pressurized by a pump 17, and supplied to an ozone gas measuring device 14. As the ozone gas measuring device 14, measuring devices using various measurement methods such as ultraviolet absorbance method and chemiluminescence method are readily available on the market.
10 -5 mg/ozone gas can be measured stably. Therefore, by achieving a state close to vapor-liquid equilibrium in the continuous aeration described above, dissolved ozone can be reduced to 1×10 -3
Ozone gas concentration 3.4× from mg/sample water
It is possible to easily and continuously measure 10 -3 mg/sample gas 13 with Sakai accuracy.

なお、オゾンガス測定器14には測定上適正な
流量の試料ガス13を供給する必要があるが、こ
のためには流量計19の指示をみながら流量設定
弁18により流量を適正な値に設定すればよい。
また、散気器8から試料水へ供給する曝気用気体
流量は、オゾンガス測定器14へ供給する試料ガ
ス13の流量より多くしており、オゾンガス測定
器14に供給した残りの試料ガスは配管16から
排気する。これは曝気用気体流量およびオゾンガ
ス測定器14へ供給する試料ガス13流量が変動
した場合に測定槽1内の試料水面が変動すること
を防ぐためである。
Note that it is necessary to supply the sample gas 13 at an appropriate flow rate for measurement to the ozone gas measuring device 14, but for this purpose, the flow rate must be set to an appropriate value using the flow rate setting valve 18 while checking the instructions on the flow meter 19. Bye.
Further, the flow rate of the aeration gas supplied from the diffuser 8 to the sample water is set higher than the flow rate of the sample gas 13 supplied to the ozone gas measuring device 14, and the remaining sample gas supplied to the ozone gas measuring device 14 is passed through the pipe 16. Exhaust from. This is to prevent the sample water level in the measurement tank 1 from changing when the aeration gas flow rate and the sample gas 13 flow rate supplied to the ozone gas measuring device 14 change.

上記の測定は曝気用気体の流量と試料水の流量
の両者に影響される。この理由は以下に示すとお
りである。曝気用気体の流量が多くなると、単位
時間に試料水中に存在する曝気用気体の容量が多
くなり試料水から曝気用気体中に移動するオゾン
の量も増加する。このため、測定槽1内の同一位
置での溶存オゾン濃度は曝気用気体の流量が多く
なるにつれて低下する。従つて、試料水面付近で
気液平衡に近い状態が達成できなくなり、試料ガ
ス13中のオゾンガス濃度が低下する。
The above measurements are affected by both the flow rate of the aeration gas and the flow rate of the sample water. The reason for this is as shown below. When the flow rate of the aeration gas increases, the volume of the aeration gas present in the sample water per unit time increases, and the amount of ozone that moves from the sample water into the aeration gas also increases. Therefore, the dissolved ozone concentration at the same position in the measurement tank 1 decreases as the flow rate of the aeration gas increases. Therefore, a state close to vapor-liquid equilibrium cannot be achieved near the sample water surface, and the ozone gas concentration in the sample gas 13 decreases.

本発明者は試料水と曝気用気体の流量の変化に
対する試料ガス13中のオゾンガス濃度の変化の
間に第2図に示す関係を見出した。第2図から曝
気用気体流量より試料水流量を多くするほど試料
ガス13中のオゾンガス濃度が増加し、曝気用気
体と試料水の流量または流量比が一定であれば試
料ガス13中のオゾンガス濃度も一定である。従
つて、本発明の溶存オゾン測定装置は流量設定弁
4,11と流量計5,12により試料水流量を曝
気用気体流量より多くし、試料ガス13中のオゾ
ンガス濃度を高くしオゾンガス測定器14による
測定の信頼性を高めるとともに試料水と曝気用気
体の両者の流量また流量比が一定となるように設
定し安定な測定値を維持している。
The present inventor found the relationship shown in FIG. 2 between the change in the ozone gas concentration in the sample gas 13 with respect to the change in the flow rate of the sample water and the aeration gas. From Figure 2, the ozone gas concentration in the sample gas 13 increases as the sample water flow rate is greater than the aeration gas flow rate, and if the flow rate or flow rate ratio of the aeration gas and sample water is constant, the ozone gas concentration in the sample gas 13 increases. is also constant. Therefore, the dissolved ozone measuring device of the present invention uses the flow rate setting valves 4 and 11 and the flow meters 5 and 12 to make the sample water flow rate higher than the aeration gas flow rate, increasing the ozone gas concentration in the sample gas 13, and increasing the ozone gas concentration in the ozone gas measuring device 14. In addition to increasing the reliability of measurements, the flow rate and flow rate ratio of both sample water and aeration gas are set to be constant to maintain stable measured values.

また、第2図から試料水と曝気用気体の流量比
率が4以上ではこの比率が多少変化しても試料ガ
ス13中のオゾンガス濃度の変化は少なくなる。
従つて、試料水流量を曝気用気体流量の4倍以上
とすることで本発明の溶存オゾン測定装置による
測定はより安定となる。
Further, as shown in FIG. 2, when the flow rate ratio of the sample water and the aeration gas is 4 or more, even if this ratio changes somewhat, the change in the ozone gas concentration in the sample gas 13 is small.
Therefore, by setting the sample water flow rate to four times or more the aeration gas flow rate, the measurement by the dissolved ozone measuring device of the present invention becomes more stable.

オゾンガス測定器14にはそれ自体に試料ガス
13の採取機能を内蔵しているものがある。この
場合にはポンプ17、流量設定弁18、流量計1
9は必要なくなる。
Some ozone gas measuring instruments 14 have a built-in function for sampling the sample gas 13. In this case, the pump 17, flow rate setting valve 18, flow meter 1
9 is no longer needed.

前記の実施例では試料水と曝気用気体の流量設
定を流量設定弁4,11で行なうため、試料水の
供給圧力およびポンプ10による曝気用気体の供
給圧力が変化しない短時間の測定では問題ない
が、長時間の測定では試料水と曝気用気体の供給
圧力が変化するたびに流量設定弁4,11を操作
しなければならなくなる。このため、長時間測定
する場合には定圧力弁またはヘツドタンクにより
常に一定圧力に調節された試料水を流量設定弁4
に供給するとともに、ポンプ10と流量設定弁1
1の間に定圧力弁を設け一定圧力に調節された曝
気用気体を流量設定弁11に供給する。このよう
にすることで、自動的に試料水と曝気用気体の流
量を常に一定に保ち流量設定弁4,11を操作す
ることなく長時間安定な測定が維持できる。
In the above embodiment, the flow rates of the sample water and the aeration gas are set using the flow rate setting valves 4 and 11, so there is no problem in short-term measurements where the supply pressure of the sample water and the supply pressure of the aeration gas by the pump 10 do not change. However, in long-term measurements, it is necessary to operate the flow rate setting valves 4 and 11 every time the supply pressures of sample water and aeration gas change. For this reason, when measuring for a long time, the sample water is always kept at a constant pressure using a constant pressure valve or a head tank, and the sample water is supplied to the flow rate setting valve 4.
as well as pump 10 and flow rate setting valve 1.
A constant pressure valve is provided between the valves 1 and 1 to supply aeration gas adjusted to a constant pressure to the flow rate setting valve 11. By doing so, it is possible to automatically keep the flow rates of the sample water and the aeration gas constant at all times and maintain stable measurement for a long time without operating the flow rate setting valves 4 and 11.

この場合、定圧力弁またはヘツドタンクから測
定槽1への配管、流量、設定弁、流量計、散気器
に汚れが付着すると、試料水および曝気用気体を
一定流量に保つことができなくなる。従つて、汚
れの付着が多い場合には流量設定弁4,11と流
量計5,12のかわりに、別に設けた図示しない
流量計の出力により、図示しない流量調節弁の開
度を自動調節する。このようにすれば汚れが付着
した場合も試料水および曝気用気体を自動的に一
定流量に保ち、長時間安定な測定を維持すること
ができる。
In this case, if dirt adheres to the constant pressure valve or the piping from the head tank to the measurement tank 1, the flow rate, the setting valve, the flow meter, and the aerator, it becomes impossible to maintain the sample water and the aeration gas at a constant flow rate. Therefore, when there is a lot of dirt, the opening degree of the flow control valve (not shown) is automatically adjusted by the output of a separately provided flow meter (not shown) instead of the flow rate setting valves 4, 11 and flow meters 5, 12. . In this way, even if dirt is attached, the sample water and aeration gas can be automatically maintained at a constant flow rate, and stable measurements can be maintained for a long time.

また、流量設定弁4,11と流量計5,12の
かわりに、試料水または曝気用気体のどちらか一
方の流量を基準として両者の流量比が一定となる
ように他方の流量調節弁の開度を自動的に調節す
る流量計および流量調節弁を使用してもよい。こ
のようにすると、試料水と曝気用気体の流量の設
定を変更する場合、各々の流量を設定しなければ
ならなかつたものが、一方の流量を設定するだけ
でよくなる。また、基準としている流量が変化し
た場合にも試料水と曝気用気体の流量比が一定と
なるように調節されるため常に安定な測定を維持
することができる。
In addition, instead of the flow rate setting valves 4 and 11 and the flow meters 5 and 12, the other flow rate control valve is opened so that the flow rate ratio of the two is constant based on the flow rate of either the sample water or the aeration gas. Flow meters and flow control valves that automatically adjust the flow rate may be used. In this way, when changing the settings of the flow rates of the sample water and the aeration gas, instead of having to set the flow rates of each, it is now sufficient to set the flow rate of one of them. Further, even if the reference flow rate changes, the flow rate ratio of the sample water and the aeration gas is adjusted to be constant, so stable measurements can always be maintained.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明の溶存オゾン測定装置に
よれば、連続的に測定槽を流れる試料水をオゾン
が含まれない曝気用気体で連続的に曝気し、この
曝気後の試料ガス中のオゾンガス濃度をオゾン測
定器で測定することにより1×10-3mg/という
低濃度の溶存オゾンを連続的に安定かつ高精度に
測定することができる。
As described above, according to the dissolved ozone measurement device of the present invention, the sample water that continuously flows through the measurement tank is continuously aerated with an aeration gas that does not contain ozone, and the ozone gas concentration in the sample gas after this aeration is By measuring with an ozone measuring device, dissolved ozone at a low concentration of 1×10 -3 mg/ can be measured continuously and stably and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による溶存オゾン測定装置の一
実施例を示す構成図、第2図は試料水と曝気用気
体の流量の変化に対する試料ガス中のオゾンガス
濃度の変化の測定例を示す説明図である。 1……測定槽、6……排水用の配管、8……散
気器、14……オゾンガス測定器、13……試料
ガス、20……試料水供給装置、21……気体供
給装置、22……オゾンガス導出装置。
Fig. 1 is a configuration diagram showing an embodiment of the dissolved ozone measuring device according to the present invention, and Fig. 2 is an explanatory diagram showing an example of measurement of changes in ozone gas concentration in sample gas with respect to changes in the flow rates of sample water and aeration gas. It is. DESCRIPTION OF SYMBOLS 1...Measurement tank, 6...Drainage piping, 8...Diffuser, 14...Ozone gas measuring device, 13...Sample gas, 20...Sample water supply device, 21...Gas supply device, 22 ...Ozone gas derivation device.

Claims (1)

【特許請求の範囲】 1 測定槽と、この測定槽内の所定高さの部分に
連結し、この測定槽内にオゾンが溶存している試
料水を供給する供給装置と、前記測定槽の上記供
給装置との連結部より低い位置に連結しかつこの
供給装置との連結部より高い位置まで立上つた後
外部に開口する排水用の配管と、前記測定槽内下
部に設けられた散気器と、この散気器にオゾンを
含まない曝気用の気体を供給する気体供給装置
と、オゾンガスの濃度を測定するオゾンガス測定
器と、前記測定槽上部に連通しこの測定槽内の試
料水面上方の気体を所定量オゾンガス測定器に供
給し残りは外部に放出するオゾンガス導出装置と
を備え、前記試料水の流量を曝気用気体の流量よ
り多く、かつこれらの流量比が一定となるように
設定した溶存オゾン測定装置。 2 試料水流量を曝気用気体流量の4倍以上に設
定したことを特徴とする特許請求の範囲第1項記
載の溶存オゾン測定装置。
[Scope of Claims] 1. A measuring tank, a supply device connected to a part of the measuring tank at a predetermined height, and supplying sample water in which ozone is dissolved into the measuring tank, and A drainage pipe connected to a position lower than the connection part with the supply device and opened to the outside after rising to a position higher than the connection part with the supply device, and an aeration diffuser provided at the lower part of the measurement tank. , a gas supply device that supplies an aeration gas that does not contain ozone to this aeration diffuser, an ozone gas measuring device that measures the concentration of ozone gas, and a gas supply device that is connected to the upper part of the measurement tank and that is located above the sample water surface in this measurement tank. It is equipped with an ozone gas derivation device that supplies a predetermined amount of gas to the ozone gas measuring device and releases the rest to the outside, and the flow rate of the sample water is set to be higher than the flow rate of the aeration gas and the ratio of these flow rates is constant. Dissolved ozone measuring device. 2. The dissolved ozone measuring device according to claim 1, wherein the sample water flow rate is set to four times or more the aeration gas flow rate.
JP8787082A 1982-05-26 1982-05-26 Dissolved ozone measuring apparatus Granted JPS58205835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8787082A JPS58205835A (en) 1982-05-26 1982-05-26 Dissolved ozone measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8787082A JPS58205835A (en) 1982-05-26 1982-05-26 Dissolved ozone measuring apparatus

Publications (2)

Publication Number Publication Date
JPS58205835A JPS58205835A (en) 1983-11-30
JPH0356420B2 true JPH0356420B2 (en) 1991-08-28

Family

ID=13926899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8787082A Granted JPS58205835A (en) 1982-05-26 1982-05-26 Dissolved ozone measuring apparatus

Country Status (1)

Country Link
JP (1) JPS58205835A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235329A (en) * 1988-03-09 1990-02-05 Ebara Jitsugyo Kk Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution
JPH02240538A (en) * 1989-03-14 1990-09-25 Fuji Electric Co Ltd Analysis apparatus for ozone in solution
JP2738970B2 (en) * 1990-03-15 1998-04-08 富士電機株式会社 Chlorine dioxide meter
JPH04204242A (en) * 1990-11-30 1992-07-24 Osaka Prefecture Analytical device for ozone in solution
DE102013114601A1 (en) * 2013-12-20 2015-06-25 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method and measuring cell for detecting the oxygen demand of a liquid sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149039A (en) * 1979-05-09 1980-11-20 Toshiba Corp Measuring method for unreacted ozone concentration in exhaust gas of ozone treating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149039A (en) * 1979-05-09 1980-11-20 Toshiba Corp Measuring method for unreacted ozone concentration in exhaust gas of ozone treating apparatus

Also Published As

Publication number Publication date
JPS58205835A (en) 1983-11-30

Similar Documents

Publication Publication Date Title
US3942792A (en) Process and apparatus for measuring dissolved gas
US5420432A (en) Organic pollutant monitor
JPS587546A (en) Measuring device for subaqueous ozone
JPH0356420B2 (en)
US4220858A (en) Apparatus for detecting change in water quality
CA1081099A (en) Method and apparatus for analysis of water
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
CN109212579B (en) Method for measuring effective decay constant and radium concentration in water by open-loop two-stage method
DE59205026D1 (en) DEVICE FOR MEASURING THE VOLUME OF A LIQUID FLOW
GB2256043A (en) Organic pollutant monitor
US5821400A (en) Saturometer
JP2013215680A (en) Wastewater treatment method and wastewater treatment apparatus
GB1463798A (en) Measurement of the oxygen uptake of sewage
JPS5713319A (en) Measuring instrument for liquid level
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
JP3467905B2 (en) How to measure respiration rate
JPH0323865B2 (en)
ES2110441T3 (en) CONTINUOUS CHECK OF RBCOD.
US2289611A (en) Control device and system
JPS5690251A (en) Dissolved oxygen meter
JPH0224342B2 (en)
JPS54127154A (en) Automatic control system for activated sludge process
Carver Jr Oxygen transfer from falling water droplets
JPH0712720A (en) Underwater densitometer
SU1065774A1 (en) Liquid toxicity checking device