JPH0235329A - Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution - Google Patents

Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution

Info

Publication number
JPH0235329A
JPH0235329A JP5364488A JP5364488A JPH0235329A JP H0235329 A JPH0235329 A JP H0235329A JP 5364488 A JP5364488 A JP 5364488A JP 5364488 A JP5364488 A JP 5364488A JP H0235329 A JPH0235329 A JP H0235329A
Authority
JP
Japan
Prior art keywords
gas phase
component
air
liquid
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5364488A
Other languages
Japanese (ja)
Inventor
Michio Ohira
美智男 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP5364488A priority Critical patent/JPH0235329A/en
Publication of JPH0235329A publication Critical patent/JPH0235329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To measure the concentration of ozone in a specimen liquid by measuring the quantity of component being purged into a vapor phase with a detecting tube beforehand by the passing of air, picking up the specified amount of the specimen liquid accurately, and measuring the specimen liquid. CONSTITUTION:A specified amount of a specimen liquid A is picked up and injected through an injecting port 7 of a vapor phase purging device 1. An air diffusing pump 2 is driven quickly. Air incorporating oxygen is made to be fine bubbles through an air diffusing device 4. The bubbles are diffused into the specimen liquid A with pressure. In this way, the component of the specimen liquid A incorporated in the liquid phase A completely substitutes for the component in a vapor phase B. The substituted air is made to pass through a gas detecting tube 5 which is provided in the vapor phase B at the upper part of a vapor phase substitution device 1. Thus the total amount of the component in the vapor phase B is accurately measured by utilizing the integrated effect of the detecting tube 5. In this way, the concentration of the component incorporated in the specimen A is measured. Since the specified amount of the specimen liquid A is accurately measured, picked up and measured again, the concentration of ozone in the specimen liquid A can be accurately measured when the amount of component substituted in the vapor phase B is measured with the detecting tube 5 beforehand by the passing of air.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は試料液の液相中に含有する成分を気相中に置換
して、その成分濃度を測定する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an apparatus for replacing a component contained in a liquid phase of a sample liquid into a gas phase and measuring the concentration of the component.

〔従来技術とその問題点〕[Prior art and its problems]

従来から試料液中の成分濃度を測定する方法としては、
吸光4度法による測定法、隔膜電極による測定法、試薬
による比色測定法等があるが、吸光4度法による測定法
では水質依存性があり試料液中のSS、鉄、マンガンに
よって測定セルの汚れによる妨害が発生し、隔膜電極に
よる測定法では試料液中の他の酸化性成分によって妨害
を受け、その上隔膜の汚れによる妨害も発生し、被測定
液の水質によってその都度校正と再分析が必要と成って
おり、又、試薬による比色測定法では試料液中の他の含
有成分により妨害を受けていた。
Conventionally, methods for measuring component concentrations in sample solutions include:
There are measurement methods such as the absorption 4 degree method, the measurement method using a diaphragm electrode, and the colorimetric measurement method using reagents, etc. However, the measurement method using the absorption 4 degree method is water quality dependent, and the measurement cell is affected by the SS, iron, and manganese in the sample solution. In measurement methods using diaphragm electrodes, interference occurs due to other oxidizing components in the sample solution, and on top of that, interference occurs due to dirt on the diaphragm, and calibration and re-calibration are required each time depending on the water quality of the liquid to be measured. In addition, the colorimetric measurement method using reagents was interfered with by other components contained in the sample solution.

つまり、前述の従来技術による試料液中の成分濃度の測
定方法は試料液を採取し、薬品、光の吸収等を用いた方
法で直接試料液中の成分濃度を測定するものであったた
め、試料液中に含有される多くの妨害成分により正確な
測定ができない問題点があった。
In other words, the method for measuring the concentration of components in a sample solution using the prior art described above was to collect a sample solution and directly measure the concentration of components in the sample solution using a method using chemicals, light absorption, etc. There was a problem in that accurate measurements were not possible due to many interfering components contained in the liquid.

又、気相に置換して試料液中の成分濃度を測定する測定
器が市販されているが、高価であり、測宇土の散気空気
流量、試料液流量、試料液水温、散気部の特性等の測定
結果を左右する因子を正確に設定しなければならす、安
定性においても保守性においても問題があった。
In addition, there are measuring instruments on the market that measure the concentration of components in the sample liquid by replacing the gas phase with the gas phase, but they are expensive and are difficult to measure, such as the aeration air flow rate, sample liquid flow rate, sample liquid water temperature, and temperature of the aeration section. Factors that influence measurement results such as characteristics must be accurately set, and there are problems in both stability and maintainability.

その為に、従来の方法を用いて測定する場合は、測定す
る試料液の水質によっては、大きな誤差が生し、測定で
きる条件が狭い範囲に限定されたり、測定自体が不可能
である等の諸問題点があった。
Therefore, when measuring using conventional methods, large errors may occur depending on the water quality of the sample liquid being measured, and the conditions under which measurements can be made may be limited to a narrow range, or the measurement itself may be impossible. There were various problems.

〔発明の目的〕[Purpose of the invention]

本発明は前述の諸問題点に鑑みて、永年の研蹟の結果、
前記問題点を解消したもので、ガス濃度を測定する検知
管法と試料液中の成分を気相に置換して測定する方法と
の双方の技術を合せた方法であり、測定する試料液の制
限を廃し、その被測定試料液の範囲を大幅に広げること
を可能とした測定装置を提供する目的である。
In view of the above-mentioned problems, the present invention is the result of many years of research.
This method solves the above problems and combines the techniques of the detector tube method for measuring gas concentration and the method for measuring by replacing the components in the sample liquid with the gas phase. The object of the present invention is to provide a measuring device that eliminates restrictions and allows the range of sample liquids to be measured to be significantly expanded.

〔発明の構成〕[Structure of the invention]

本発明の構成は、密封容体である気相置換装置の底面へ
散気用空気ポンプへ接続された空気圧送管を貫通させ、
該気相置換装置内の空気圧送管へは空気散気装置を設け
、試料液を気相置換装置へ一定量注入させ、空気散気装
置から有酸素空気を圧送散気させることによって、試料
液の液相中に含有する成分を気相中に置換し、その成分
濃度を気相中に設けたガス検知管にて測定する構成であ
る。
The configuration of the present invention is such that a pneumatic feed pipe connected to a diffuser air pump is passed through the bottom of a gas phase displacement device which is a sealed container,
An air diffuser is installed in the air pressure pipe in the gas phase displacement device, and a certain amount of the sample liquid is injected into the gas phase displacement device, and aerobic air is pumped and diffused from the air diffuser to diffuse the sample liquid. The component contained in the liquid phase is replaced into the gas phase, and the concentration of the component is measured with a gas detection tube provided in the gas phase.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明を実施例の図面に基づいて説明する。 The following five embodiments of the present invention will be explained based on drawings of embodiments.

図面は本発明の一実施例で説明概要図である。The drawings are schematic diagrams illustrating one embodiment of the present invention.

本発明は、密封容体である気相置換装置1の底面へ散気
用空気ポンプ2へ接続された空気圧送管3を貫設させ、
該気相置換装置1内の前記空気圧送管3の先端へは空気
散気装置4を設け、試料液Aを前記気相置換装置1の注
入ロアへ一定量注入させ、前記空気散気装置4から試料
液A内へ有酸素空気を圧送散気させることによって、試
料液A中に含有する成分を気相B中に置換し、試料液A
の成分濃度を前記気相置換装置1の上方の気相B中に設
けたガス用検知管5にて測定するものであ;3 る。
In the present invention, a pneumatic feed pipe 3 connected to a diffuser air pump 2 is installed through the bottom of a gas phase displacement device 1 which is a sealed container,
An air diffuser 4 is provided at the tip of the pneumatic feed pipe 3 in the gas phase displacement device 1, and a fixed amount of the sample liquid A is injected into the injection lower of the gas phase displacement device 1. By pumping and diffusing aerobic air from sample liquid A into sample liquid A, components contained in sample liquid A are replaced into gas phase B, and sample liquid A
The component concentration is measured with a gas detection tube 5 provided in the gas phase B above the gas phase replacement device 1.

即ち、本発明の基本的原理は、成分の水中における溶解
度の小さいことを利用したもので、成分の気相と液相か
ら気相への置換性が非常に大きいことを利用して、有酸
素空気を圧送し試料液Aの液相中の成分を気相中に置換
してガスのセンサーである検知管5を用いて測定するも
のである。
That is, the basic principle of the present invention is to take advantage of the low solubility of the components in water, and to take advantage of the extremely large displaceability of the components from the gas phase and liquid phase to the gas phase. Air is pumped to replace the components in the liquid phase of the sample liquid A into the gas phase, and measurement is performed using the detection tube 5, which is a gas sensor.

本発明にかかる気相置換による液相中の成分濃度の測定
装置を実施例の図面によって説明すると、気相置換装置
1は密封容体であって、底部へは空気散気球等で形成し
た空気散気装置4を設け、該空気散気装置4の底面に空
気圧送管3の先端を貫通させて外部へ配設し、該空気圧
送管3へ外部電源から電力を得て駆動する散気用空気ポ
ンプ2と試料液Aの逆流を防止する逆止弁6を介設する
と共に、前記気相置換装置1の適宜な位置の側壁へは一
定量の試料液Aを注入するための注入ロアを開閉弁を介
して設け、上方の気相B中へは成分量を測定するための
検知管5を具備し、気相置換装置]の底面へは測定後の
試料液Aを排水するための試料液排水口8とする開閉弁
を設けたものである。
The device for measuring the concentration of components in a liquid phase by gas phase replacement according to the present invention will be explained with reference to the drawings of the embodiment. An air diffuser 4 is provided, and the tip of a pneumatic feed pipe 3 is passed through the bottom of the air diffuser 4 and disposed outside, and diffused air is driven to the pneumatic feed pipe 3 by receiving electric power from an external power supply. A check valve 6 is provided to prevent backflow of the sample liquid A from the pump 2, and an injection lower for injecting a certain amount of the sample liquid A into the side wall at an appropriate position of the gas phase displacement device 1 is opened and closed. A detection tube 5 is provided through a valve to measure the amount of components into the upper gas phase B, and a sample liquid for draining the sample liquid A after measurement is provided to the bottom of the gas phase displacement device. A drain port 8 is provided with an on-off valve.

本発明の方法での測定は、先ず、シリンジ等で正確に一
定量の試料液Aを採り気相置換装置1の注入ロアから注
入して、素早く、散気用空気ポンプ2を駆動させて有酸
素空気を空気散気装置4で微細な気泡とさせて試料液A
内へ圧送散気させることによって、試料液への液相A中
に含有する成分を気相B中に完全に置換するもので、置
換された空気を気相置換装置1の上方の気相B中に設け
たガス用検知管5を通過させて気相B中の成分の全量を
検知管5の積分効果を利用して正確に計ることで試料液
Aが含有する成分濃度を測定するものであり、予め、正
確に一定量の試料液Aを計り採って測定するため、気相
B中に置換された成分量を空気を通過させて、予め、検
知管5で測定すれば試料液A中のオゾン濃度が正確に測
定できるものである。
To perform measurement using the method of the present invention, first, accurately take a certain amount of sample liquid A with a syringe or the like, inject it from the injection lower of the gas phase displacement device 1, and quickly drive the aeration air pump 2. Oxygen air is made into fine bubbles by the air diffuser 4 and sample liquid A is prepared.
This system completely replaces the components contained in the liquid phase A of the sample liquid into the gas phase B by force-feeding and diffusing the air into the gas phase B above the gas phase displacement device 1. The concentration of the components contained in the sample liquid A is measured by passing through the gas detection tube 5 installed in the sample liquid A and accurately measuring the total amount of the components in the gas phase B using the integral effect of the detection tube 5. Yes, in order to accurately measure and measure a certain amount of sample solution A in advance, if the amount of the component substituted in gas phase B is measured with detection tube 5 in advance by passing air through it, the amount of component in sample solution A can be measured in advance. ozone concentration can be measured accurately.

前述の本発明の測定方法で成分をオゾンとした場合、試
料液A中へ共存する酸化性成分、例えば、塩素、臭素等
は気相への置換速度差により妨害が発生しなくなる等、
これら妨害成分の影響が極減するために水質依存性が無
く正確に測定できるものであり、半導体の洗浄後の残留
オゾンの測定、食品の殺菌後の残留オゾンの測定、上下
水の脱臭、脱色、殺菌後の残留オゾンの測定、プール、
水族館等の水処理後の残留オゾンの測定等に用いること
ができ、更に、従来測定が困難であった海水、又は、水
質の悪い上水の前オゾン、中オゾンの測定等も可能とし
、広い範囲での用途に適応できるものである。
When ozone is used as the component in the measurement method of the present invention described above, oxidizing components such as chlorine and bromine coexisting in the sample solution A do not cause interference due to the difference in the rate of substitution into the gas phase.
Because the influence of these interfering components is extremely reduced, it is not dependent on water quality and can be measured accurately.It is useful for measuring residual ozone after cleaning semiconductors, measuring residual ozone after sterilizing food, deodorizing and decolorizing water and sewage water. , measurement of residual ozone after sterilization, swimming pools,
It can be used to measure residual ozone after water treatment in aquariums, etc., and can also be used to measure pre- and intermediate ozone in seawater or tap water with poor water quality, which was previously difficult to measure. It can be adapted to a range of uses.

〔発明の効果〕〔Effect of the invention〕

本発明は前述の構成によって、試料液の水質、試料液の
水温、散気空気流量、散気部の特性によって左右されず
に、試料液中の成分を散気して完全に気相中へ置換する
ことで、気相の状態で成分量を測定し、検知管で空気に
置換され含有している成分のみを積算するために、試料
液中に含有される妨害成分の妨害を受けること無く正確
に測定でき、且つ、ニス1〜的にも安価に作成できる、
画期的で有意義な発明である。
With the above-described configuration, the present invention aerates the components in the sample liquid completely into the gas phase without being influenced by the water quality of the sample liquid, the water temperature of the sample liquid, the aeration air flow rate, or the characteristics of the aeration section. By replacing the liquid, the amount of components is measured in the gas phase, and only the components contained in the gas phase are integrated by replacing the air with the detection tube, without being interfered with by interfering components contained in the sample liquid. It can be measured accurately and can be produced at low cost as varnish.
This is a groundbreaking and meaningful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明概要図である。 八−試料液及び液相、B−気相 1−気相置換装置、2−散気用空気ポンプ、3空気圧送
管、4−空気散気装置、5−ガス用検知管、6−逆止弁
、7−注入口、8−試料液排水口。
FIG. 1 is an explanatory schematic diagram of an embodiment of the present invention. 8-Sample liquid and liquid phase, B-vapor phase 1-vapor phase replacement device, 2-air pump for aeration, 3 pneumatic feed pipe, 4-air diffuser, 5-gas detection tube, 6-return check Valve, 7-inlet, 8-sample liquid drain.

Claims (1)

【特許請求の範囲】[Claims] 密封容体である気相置換装置の底面へ散気用空気ポンプ
へ接続された空気圧送管を貫設させ、該気相置換装置内
の前記空気圧送管の先端へは空気散気装置を設け、試料
液を前記気相置換装置へ一定量注入させ、前記空気散気
装置から試料液内へ有酸素空気を圧送散気させることに
よって、試料液の液相中に含有する成分を気相中に完全
に置換し、試料液の含有成分濃度を前記気相置換装置の
上方の気相中に設けたガス用検知管の積分効果を利用し
て測定することを特徴とする気相置換による液相中の成
分濃度の測定装置。
A pneumatic feed pipe connected to a diffuser air pump is installed through the bottom of the gas phase displacement device which is a sealed container, and an air diffuser is provided at the tip of the pneumatic feed tube inside the gas phase displacement device, By injecting a certain amount of the sample liquid into the gas phase displacement device and forcing and diffusing aerobic air from the air diffuser into the sample liquid, the components contained in the liquid phase of the sample liquid are transferred to the gas phase. Liquid phase by gas phase replacement, characterized in that the component concentration of the sample liquid is completely replaced and the concentration of the components contained in the sample liquid is measured using the integral effect of a gas detection tube provided in the gas phase above the gas phase replacement device. A device for measuring the concentration of components inside.
JP5364488A 1988-03-09 1988-03-09 Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution Pending JPH0235329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5364488A JPH0235329A (en) 1988-03-09 1988-03-09 Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5364488A JPH0235329A (en) 1988-03-09 1988-03-09 Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution

Publications (1)

Publication Number Publication Date
JPH0235329A true JPH0235329A (en) 1990-02-05

Family

ID=12948602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5364488A Pending JPH0235329A (en) 1988-03-09 1988-03-09 Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution

Country Status (1)

Country Link
JP (1) JPH0235329A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011428U (en) * 1973-05-25 1975-02-05
JPS51146895A (en) * 1975-06-12 1976-12-16 Mitsui Petrochem Ind Ltd Detecting device for reducible gas dissolving in water
JPS5596450A (en) * 1979-01-18 1980-07-22 Mitsubishi Chem Ind Ltd Method and device for measuring quantity of inorganic carbon in aqueous solution
JPS5596453A (en) * 1979-01-18 1980-07-22 Mitsubishi Chem Ind Ltd Method and device for measuring quantity of chlorine in aqueous solution
JPS5624548A (en) * 1979-08-07 1981-03-09 Nichicon Capacitor Ltd Dissolved gas detection mechanism
JPS58205835A (en) * 1982-05-26 1983-11-30 Toshiba Corp Dissolved ozone measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011428U (en) * 1973-05-25 1975-02-05
JPS51146895A (en) * 1975-06-12 1976-12-16 Mitsui Petrochem Ind Ltd Detecting device for reducible gas dissolving in water
JPS5596450A (en) * 1979-01-18 1980-07-22 Mitsubishi Chem Ind Ltd Method and device for measuring quantity of inorganic carbon in aqueous solution
JPS5596453A (en) * 1979-01-18 1980-07-22 Mitsubishi Chem Ind Ltd Method and device for measuring quantity of chlorine in aqueous solution
JPS5624548A (en) * 1979-08-07 1981-03-09 Nichicon Capacitor Ltd Dissolved gas detection mechanism
JPS58205835A (en) * 1982-05-26 1983-11-30 Toshiba Corp Dissolved ozone measuring apparatus

Similar Documents

Publication Publication Date Title
US3942792A (en) Process and apparatus for measuring dissolved gas
US4775634A (en) Method and apparatus for measuring dissolved organic carbon in a water sample
EP0554398B1 (en) System and method for monitoring the concentration of volatile material dissolved in a liquid
US20070254374A1 (en) Water quality analyzer
US2987912A (en) Method and apparatus for measurement of gas dissolved in a liquid
US20080314450A1 (en) Flow Control
KR101900688B1 (en) TOC/TN measuring apparatus comprising rotating-elevating type sample injection apperatus improving stability of sample injection
CN102369054A (en) Fluid mixing device, medical fluid testing device, and endoscope processing device
US5693894A (en) Fluid controlled isokinetic fluid sampler
US5801052A (en) Aqueous sample testing apparatus
US5668330A (en) Aqueous sample testing apparatus
CN117805212A (en) Ozone sensor calibration device and calibration method thereof
JPH0235329A (en) Apparatus for measuring concentration of component in liquid phase as a result of vapor phase substitution
JPH10170501A (en) Apparatus and method for measurement of water quality
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
JPH09210913A (en) Toxicity sensor for measuring toxicity in aqueous sample and device for inspection of toxicity of aqueous solution including toxicity sensor
US3498889A (en) Oxygen sensing cell and method of using same
JPH0356420B2 (en)
JP2533460Y2 (en) Substrate cleaning device
CN111470610B (en) Ozone water treatment technology evaluation system and method
JP2001021491A (en) Device for measuring concentration of dissolved ozone in gaseous phase by ultraviolet ray absorbing method
JPH07306195A (en) Method and apparatus for measuring concentration of oxidant component in sea water
JP2546781B2 (en) Method for measuring concentration of organic matter in solution and method for treating solution using the method
RU2047856C1 (en) Method for measuring gas concentration
JPH0622209Y2 (en) Respiratory rate measuring device