JPH09297132A - Microorganism respiration velocimeter - Google Patents

Microorganism respiration velocimeter

Info

Publication number
JPH09297132A
JPH09297132A JP11362996A JP11362996A JPH09297132A JP H09297132 A JPH09297132 A JP H09297132A JP 11362996 A JP11362996 A JP 11362996A JP 11362996 A JP11362996 A JP 11362996A JP H09297132 A JPH09297132 A JP H09297132A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
oxygen sensor
closed tank
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11362996A
Other languages
Japanese (ja)
Inventor
Tetsuya Kawazoe
鉄也 川添
Takayuki Otsuki
孝之 大月
Takaaki Masui
孝明 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11362996A priority Critical patent/JPH09297132A/en
Publication of JPH09297132A publication Critical patent/JPH09297132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Activated Sludge Processes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microorganism respiration velocimeter that can calibrate the detection value of an oxygen sensor abreast of measurement of respiration velocity. SOLUTION: A specified quantity of a sample solution containing BOD substrate is charged in a first closed vessel 1, and circulating aeration is started. Air blown into the solution from a diffusion pipe 6 is blown into a second closed vessel 1 from an upper part of the first closed vessel 1 through a pipeline 8, and CO2 contained in the air is absorbed into a KOH solution. A detected oxygen concentration signal of an. Oxygen sensor 3 is inputted to a data processor 5 where the initial oxygen concentration value is computed and stored. After the lapse of specified time, an oxygen concentration signal of the oxygen sensor 3 is inputted again to the data processor 5 so as to compute the oxygen concentration value at this time. The oxygen consumption is obtained from the difference between this oxygen concentration value and the initial oxygen concentration value to compute the respiration velocity of microorganisms. The volumetric decrease quantity of a closed loop system obtained by a level sensor is made the true value, and the volumetric decrease quantity obtained by a detection signal of the oxygen sensor 3 is calibrated on the basis of this true value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はBOD資化細菌、硝
化細菌など酸素を利用する微生物の消費酸素量を酸素セ
ンサで検出して微生物の呼吸速度を測定する呼吸速度計
に係り、特に酸素センサの検出信号から演算される呼吸
速度を較正する機構を備えた微生物の呼吸速度計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a respiration rate meter for measuring the respiration rate of microorganisms by detecting the oxygen consumption of microorganisms utilizing oxygen such as BOD-assimilating bacteria and nitrifying bacteria with an oxygen sensor, and more particularly to an oxygen sensor. The present invention relates to a respiration rate meter for microorganisms equipped with a mechanism for calibrating the respiration rate calculated from the detection signal.

【0002】[0002]

【従来の技術】微生物の呼吸速度を測定するための従来
装置の一例について図1(b)を参照して説明する。
2. Description of the Related Art An example of a conventional device for measuring the respiration rate of microorganisms will be described with reference to FIG.

【0003】この測定装置は、第1の密閉槽(測定槽)
1、第2の密閉槽(CO2 吸収槽)2、酸素センサ3、
エアポンプ4、データ処理装置5等よりなる。第1の密
閉槽1には、散気管6と、試料の投入弁7とが設けられ
ている。第1の密閉槽1の上部の気体を第2の密閉槽2
のアルカリ溶液(例えばKOH溶液)に吹き込むように
配管8が設けられると共に、第2の密閉槽2の上部の気
体を散気管8に供給するように配管9が設けられてい
る。この配管9の途中に酸素センサ3及びエアポンプ4
が設けられている。図示はしないが、密閉槽1,2及び
配管8,9内の気体を新鮮な空気に置換しうるようにす
るために、配管8又は9に大気開放弁が設けられてい
る。
This measuring device has a first closed tank (measurement tank).
1, a second closed tank (CO 2 absorption tank) 2, an oxygen sensor 3,
It is composed of an air pump 4, a data processing device 5, and the like. The first closed tank 1 is provided with an air diffuser 6 and a sample injection valve 7. The gas in the upper part of the first closed tank 1 is transferred to the second closed tank 2
The pipe 8 is provided so as to be blown into the alkaline solution (for example, KOH solution), and the pipe 9 is provided so as to supply the gas in the upper part of the second closed tank 2 to the diffuser pipe 8. An oxygen sensor 3 and an air pump 4 are provided in the middle of the pipe 9.
Is provided. Although not shown, the pipes 8 or 9 are provided with an atmosphere release valve in order to replace the gas in the closed tanks 1 and 2 and the pipes 8 and 9 with fresh air.

【0004】試料中に含まれる微生物の呼吸速度を計測
するには、第1の密閉槽1中に活性汚泥を含む液を収容
しておき、第2の密閉槽2中にアルカリ溶液(この場合
KOH溶液)を収容しておく。
In order to measure the respiration rate of microorganisms contained in the sample, a liquid containing activated sludge is stored in the first closed tank 1 and the alkaline solution (in this case, KOH solution) is stored.

【0005】次いで、BOD基質を含む試料液の所定量
を第1の密閉槽1中に試料投入弁7経由で導入する。こ
の試料投入弁7を閉鎖してからエアポンプ4で第1の密
閉槽1の液相に空気を送気し、循環曝気を開始する。散
気管6から液中に吹き込まれた空気は、第1の密閉槽1
の上部から配管8を経て第2の密閉槽2中に吹き込ま
れ、空気中に含まれていたCO2 がKOH溶液に吸収さ
れる。KOH溶液上に浮上した空気は、配管9を経て再
び第1の密閉槽1内の液中に吹き込まれる。この配管9
を通るときに、酸素センサ3によって空気中のO2 濃度
がセンシングされる。エアポンプ4の始動時のノイズ減
衰後に酸素センサ3の検出酸素濃度信号をデータ処理装
置5に入力し、初期酸素濃度値を演算し、記憶させる。
所定時間が経過してから再び酸素センサ3の酸素濃度信
号をデータ処理装置に入力し、このときの酸素濃度値を
演算する。この酸素濃度値と初期酸素濃度値との差から
酸素消費量を求め、微生物の呼吸速度を演算する。
Next, a predetermined amount of the sample solution containing the BOD substrate is introduced into the first closed tank 1 via the sample injection valve 7. After closing the sample injection valve 7, air is sent to the liquid phase of the first closed tank 1 by the air pump 4, and circulation aeration is started. The air blown into the liquid from the air diffuser 6 is the first closed tank 1
CO 2 contained in the air is absorbed into the KOH solution by being blown into the second closed tank 2 through the pipe 8 from the upper part of the. The air floating above the KOH solution is blown again into the liquid in the first closed tank 1 through the pipe 9. This piping 9
When passing through, the oxygen sensor 3 senses the O 2 concentration in the air. After the noise at the time of starting the air pump 4 is attenuated, the oxygen concentration signal detected by the oxygen sensor 3 is input to the data processing device 5, and the initial oxygen concentration value is calculated and stored.
After a predetermined time has elapsed, the oxygen concentration signal of the oxygen sensor 3 is input again to the data processing device, and the oxygen concentration value at this time is calculated. The oxygen consumption is determined from the difference between the oxygen concentration value and the initial oxygen concentration value, and the respiration rate of the microorganism is calculated.

【0006】[0006]

【発明が解決しようとする課題】上記の如く閉ループを
循環する空気中の酸素濃度を酸素センサ3を用いて測定
し、この測定値から微生物の呼吸速度を求める呼吸速度
計においては、酸素センサ3の検出信号値を真値と対照
し真値となるように較正(キャリブレーション)する必
要がある。
As described above, the oxygen concentration in the air circulating in the closed loop is measured by using the oxygen sensor 3, and the respiration rate of the microorganism is determined from the measured value. It is necessary to compare the detection signal value of 1 with the true value and perform calibration so that the true value is obtained.

【0007】従来、この較正を行う場合、既知量のBO
D基質を第1の密閉槽に投入して酸素消費量を酸素セン
サ3で計測すると共に、既知量のBOD基質による酸素
の理論消費量を求め、この理論酸素消費量を真値として
酸素センサ検出酸素濃度を較正しているが、実際の呼吸
速度計測を中断することになり、較正の頻度が少なくな
り、測定頻度が低下しがちであった。
Conventionally, when performing this calibration, a known amount of BO
The D substrate is put into the first closed tank, the oxygen consumption is measured by the oxygen sensor 3, the theoretical consumption of oxygen by the known amount of BOD substrate is calculated, and the oxygen consumption is detected by the theoretical oxygen consumption as a true value. Although the oxygen concentration was calibrated, the actual respiration rate measurement was interrupted, the frequency of calibration decreased, and the measurement frequency tended to decrease.

【0008】本発明は、呼吸速度の計測と併行して酸素
センサ検出値を較正することができる微生物の呼吸速度
計を提供することを目的とする。
It is an object of the present invention to provide a microbial respirometer capable of calibrating an oxygen sensor detection value in parallel with respiration rate measurement.

【0009】[0009]

【課題を解決するための手段】本発明は、活性を有する
汚泥とBOD基質含有水とを収容する第1の密閉槽と、
アルカリ溶液を収容した第2の密閉槽と、該第1の密閉
槽内の上部の気体を該第2の密閉槽内のアルカリ溶液中
に吹き込むと共に、該第2の密閉槽の上部の気体を該第
1の密閉槽内の汚泥混合液中に吹き込むための循環装置
と、該第1の密閉槽内の上部、該第2の密閉槽内の上部
及び該循環装置とで構成される閉ループ内の酸素濃度を
検出する酸素センサと、該閉ループ内の気体の体積又は
圧力を検出するための検出手段と、該酸素センサからの
出力信号の経時変化から前記第1の密閉槽内の微生物の
呼吸速度を演算する呼吸速度演算手段と、該酸素センサ
の出力信号の経時変化から求められる第1の酸素濃度変
化量と、前記体積又は圧力の検出手段からの出力信号の
経時変化から求められる第2の酸素濃度変化量との比率
を演算する較正比率の演算手段とを備えてなり、該較正
比率の演算手段からの較正比率を該呼吸速度演算手段に
入力して呼吸速度を較正するようにしたことを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention comprises a first closed tank for containing active sludge and BOD substrate-containing water,
A second sealed tank containing an alkaline solution and the gas in the upper part of the first sealed tank are blown into the alkaline solution in the second sealed tank, and the gas in the upper part of the second sealed tank is discharged. A circulation device for blowing into the sludge mixed liquid in the first closed tank, an upper part in the first closed tank, an upper part in the second closed tank and the circulation device. An oxygen sensor for detecting the oxygen concentration in the closed loop, a detection means for detecting the volume or pressure of the gas in the closed loop, and the respiration of microorganisms in the first closed tank from the change with time of the output signal from the oxygen sensor. Respiratory rate calculating means for calculating a velocity, a first oxygen concentration change amount obtained from a change with time of an output signal of the oxygen sensor, and a second amount obtained from a change with time of an output signal from the volume or pressure detecting means. Calibration ratio to calculate the ratio with the oxygen concentration change amount of And a computing means, in which the calibration ratio from the calculating means of said calibration ratio is characterized in that so as to calibrate the enter breathing rate to the respiratory rate calculating means.

【0010】かかる本発明の微生物の呼吸速度計では、
酸素センサの酸素濃度検出値から求まる酸素消費量を、
閉ループ内の気体の体積又は圧力から求まる酸素消費量
によって較正するため、実際の呼吸速度測定と併行して
酸素センサ検出信号の較正を行える。
In the microbial respiratory rate meter of the present invention,
Oxygen consumption obtained from the oxygen concentration detection value of the oxygen sensor,
Since the calibration is performed by the oxygen consumption obtained from the volume or pressure of the gas in the closed loop, the oxygen sensor detection signal can be calibrated in parallel with the actual respiration rate measurement.

【0011】[0011]

【発明の実施の形態】図1(a)は実施の形態に係る微
生物の呼吸速度計の系統図であり、配管9のうち第2の
密閉槽2のすぐ近傍の部分に気体体積変化量測定器10
が配管11を介して接続されている。この測定器10
は、密閉容器12と、該容器12内に差し込まれた直管
13と、該直管13の下部に設けられた該直管13内の
水位を測定するレベルセンサ14とを備えている。この
直管13の上端は大気に開放し、下端は容器12内の水
に開放している。レベルセンサ14の検出信号はデータ
処理装置5に入力されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 (a) is a system diagram of a microorganism respiration rate meter according to an embodiment, in which a gas volume change amount is measured in a portion of a pipe 9 in the immediate vicinity of a second closed tank 2. Bowl 10
Are connected via a pipe 11. This measuring instrument 10
Includes a closed container 12, a straight pipe 13 inserted into the container 12, and a level sensor 14 provided at a lower portion of the straight pipe 13 for measuring the water level in the straight pipe 13. The upper end of the straight pipe 13 is open to the atmosphere, and the lower end is open to the water in the container 12. The detection signal of the level sensor 14 is input to the data processing device 5.

【0012】この微生物の呼吸速度計のその他の構成は
図1(b)と同一である。
The other structure of the respiration rate meter for this microorganism is the same as that shown in FIG. 1 (b).

【0013】このように構成された微生物の呼吸速度計
においては、前記図1(b)の場合と同様の手順により
微生物の呼吸速度を計測し、酸素センサ3の検出信号を
データ処理装置5に入力すると共に、さらに、レベルセ
ンサ14の検出信号をデータ処理装置5に入力する。
In the microorganism respiration rate meter thus constructed, the respiration rate of the microorganism is measured by the same procedure as in the case of FIG. 1B, and the detection signal of the oxygen sensor 3 is sent to the data processing device 5. In addition to the input, the detection signal of the level sensor 14 is also input to the data processing device 5.

【0014】データ処理装置5では、レベルセンサ14
によって求まる閉ループ系の体積減少量を真値とし、こ
れに基づいて酸素センサ3の検出信号によって求まる体
積減少量を較正する。
In the data processing device 5, the level sensor 14
The volume reduction amount of the closed loop system obtained by is set as a true value, and the volume reduction amount obtained by the detection signal of the oxygen sensor 3 is calibrated based on the true value.

【0015】気体体積変化量測定器10の検出値を用い
た酸素センサ3の較正は、定期的に行われる。
The oxygen sensor 3 is calibrated using the detected value of the gas volume change measuring device 10 periodically.

【0016】較正の具体的計算法は次の通りである。The specific calculation method of the calibration is as follows.

【0017】酸素センサ3の初期出力値(初期酸素濃度
を示す出力電圧)をE1 とし、測定終了時の出力電圧を
2 とする。酸素センサ3の出力電圧は、酸素濃度に直
線的に比例するものであり、従って微生物の呼吸によっ
て消費された酸素量は、この出力電圧E1 ,E2 の差に
対し一定の係数kを掛けた値となる。
The initial output value of the oxygen sensor 3 (the output voltage indicating the initial oxygen concentration) is E 1, and the output voltage at the end of the measurement is E 2 . The output voltage of the oxygen sensor 3 is linearly proportional to the oxygen concentration, and therefore the amount of oxygen consumed by the respiration of microorganisms is multiplied by a constant coefficient k with respect to the difference between the output voltages E 1 and E 2. It will be a value.

【0018】従って、この酸素センサ3の出力電圧から
演算される酸素濃度変化ΔCS (%)は、係数kを用い
て ΔCS =k(E1 −E2 ) と表わされる。
Therefore, the oxygen concentration change ΔC S (%) calculated from the output voltage of the oxygen sensor 3 is expressed as ΔC S = k (E 1 −E 2 ) using the coefficient k.

【0019】一方、測定器10のレベルセンサ14の初
期検出水位と測定終了時の検出水位との差をΔH(c
m)とし、容器12の水平断面積をS(cm2 )とし、
閉ループ内の初期の気体体積をQとすると、該レベルセ
ンサ14の出力信号から演算される酸素濃度変化CL
次のように表わされる。
On the other hand, the difference between the initial detected water level of the level sensor 14 of the measuring instrument 10 and the detected water level at the end of measurement is ΔH (c
m), and the horizontal cross-sectional area of the container 12 is S (cm 2 ),
When the initial gas volume in the loop is is Q, the oxygen concentration change C L which is calculated from the output signal of the level sensor 14 is expressed as follows.

【0020】ΔCL =[(ΔH・S)/(Q−ΔH・S
/2)]×100 なお、この式の意味は、 [(減少気体体積)/(閉ループ内の気体体積平均
値)]×100 である。この式の分母には、測定開始時の体積Qと測定
終了時の体積Q−ΔH・Sとの平均[Q+(Q−ΔH・
S)]×1/2=Q−ΔH・S/2を用いている。
ΔC L = [(ΔH · S) / (Q−ΔH · S)
/ 2)] × 100 The meaning of this formula is [(reduced gas volume) / (average value of gas volume in closed loop)] × 100. In the denominator of this equation, the average of the volume Q at the start of measurement and the volume Q−ΔH · S at the end of measurement [Q + (Q−ΔH · S
S)] × 1/2 = Q−ΔH · S / 2 is used.

【0021】なお、厳密には測定中の気相容積変化か
ら、酸素センサによる酸素濃度をそれぞれ対応する容積
から求める必要があるが、ここでは簡略法として気相容
積の中間値を用いて計算することとした。この方法であ
れば酸素センサの測定値にオフセットがあっても結果に
影響を与えない。また、液相中の溶存酸素濃度の変化は
気相中の酸素濃度に比べてごく僅かなので無視する。
Strictly speaking, it is necessary to obtain the oxygen concentration by the oxygen sensor from the corresponding volume from the change in the vapor phase volume during the measurement, but here, as a simple method, the intermediate value of the vapor phase volume is used for the calculation. I decided. With this method, even if there is an offset in the measured value of the oxygen sensor, it does not affect the result. Further, the change in the dissolved oxygen concentration in the liquid phase is negligible because it is very small as compared with the oxygen concentration in the gas phase.

【0022】このΔCL を真値としてΔCS を較正する
のであるが、そのためにはそれまでの係数kをk×(Δ
L /ΔCS )という新しい係数に置き換えれば良い。
This ΔC L is used as a true value to calibrate ΔC S. For that purpose, the coefficient k up to that time is k × (Δ
What is necessary is just to replace it with a new coefficient of C L / ΔC S ).

【0023】このように、定期的に係数kを較正し、精
度の高い酸素消費量を求め、呼吸速度を高精度に測定す
ることが可能となる。なお、本発明では、測定対象試料
の各時点における呼吸速度を連続的に測定しているとき
に逐次較正を行うのが好ましい。
As described above, it becomes possible to calibrate the coefficient k periodically, obtain a highly accurate oxygen consumption amount, and measure the respiratory rate with high accuracy. In the present invention, it is preferable that the calibration is performed successively while the respiration rate of each measurement sample at each time point is continuously measured.

【0024】上記実施の形態では閉ループ系の気体体積
変化を測定して酸素センサを較正しているが、閉ループ
系の気体圧力変化を測定して酸素センサを較正しても良
い。
Although the oxygen sensor is calibrated by measuring the gas volume change in the closed loop system in the above embodiment, the oxygen sensor may be calibrated by measuring the gas pressure change in the closed loop system.

【0025】[0025]

【発明の効果】以上の通り、本発明によると、測定毎に
酸素センサの検出値の較正を行うことができ、常に精度
を保持できる。また、データ処理装置の演算ソフトに較
正の計算と係数の修正処理を組み込めば、自動的に較正
を行うことができるので、較正に特別の手間はかからな
い。従って、本発明によれば、BOD資化細菌、硝化細
菌など酸素を利用する微生物の呼吸速度を高精度に測定
することができる。
As described above, according to the present invention, the detection value of the oxygen sensor can be calibrated for each measurement, and the accuracy can always be maintained. Further, if calibration calculation and coefficient correction processing are incorporated in the calculation software of the data processing device, the calibration can be performed automatically, so that no special effort is required for the calibration. Therefore, according to the present invention, the respiration rate of oxygen-using microorganisms such as BOD-assimilating bacteria and nitrifying bacteria can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)図は実施の形態に係る微生物の呼吸速度
計の系統図である。(b)図は従来例に係る微生物の呼
吸速度計の系統図である。
FIG. 1A is a system diagram of a respiration rate meter for microorganisms according to an embodiment. FIG. 1B is a system diagram of a respiration rate meter for microorganisms according to a conventional example.

【符号の説明】[Explanation of symbols]

1 第1の密閉槽(測定槽) 2 第2の密閉槽(CO2 吸収槽) 3 酸素センサ 4 エアポンプ 5 データ処理装置 6 散気管 7 試料投入弁 10 気体体積変化量測定器 12 容器 13 直管 14 レベルセンサ1 First closed tank (measurement tank) 2 Second closed tank (CO 2 absorption tank) 3 Oxygen sensor 4 Air pump 5 Data processing device 6 Diffuser tube 7 Sample injection valve 10 Gas volume change measuring instrument 12 Container 13 Straight tube 14 Level sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性を有する活性汚泥とBOD基質含有
水とを収容する第1の密閉槽と、 アルカリ溶液を収容した第2の密閉槽と、 該第1の密閉槽内の上部の気体を該第2の密閉槽内のア
ルカリ溶液中に吹き込むと共に、該第2の密閉槽の上部
の気体を該第1の密閉槽内の汚泥混合液中に吹き込むた
めの循環装置と、 該第1の密閉槽内の上部、該第2の密閉槽内の上部及び
該循環装置とで構成される閉ループ内の酸素濃度を検出
する酸素センサと、 該閉ループ内の気体の体積又は圧力を検出するための検
出手段と、 該酸素センサからの出力信号の経時変化から前記第1の
密閉槽内の微生物の呼吸速度を演算する呼吸速度演算手
段と、 該酸素センサの出力信号の経時変化から求められる第1
の酸素濃度変化量と、前記体積又は圧力の検出手段から
の出力信号の経時変化から求められる第2の酸素濃度変
化量との比率を演算する較正比率の演算手段とを備えて
なり、該較正比率の演算手段からの較正比率を該呼吸速
度演算手段に入力して呼吸速度を較正するようにしたこ
とを特徴とする微生物の呼吸速度計。
1. A first closed tank for containing activated sludge having activity and BOD substrate-containing water, a second closed tank for containing an alkaline solution, and an upper gas in the first closed tank. A circulation device for blowing the alkaline solution in the second closed tank into the sludge mixed solution in the first closed tank while blowing the gas in the upper part of the second closed tank; An oxygen sensor for detecting an oxygen concentration in a closed loop composed of an upper part in the closed tank, an upper part in the second closed tank and the circulation device, and an oxygen sensor for detecting the volume or pressure of gas in the closed loop. A detecting means; a respiratory rate calculating means for calculating a respiratory rate of microorganisms in the first sealed tank from a change with time of an output signal from the oxygen sensor; and a first obtained from a change with time of an output signal of the oxygen sensor.
Of the oxygen concentration change amount and a second oxygen concentration change amount obtained from the time-dependent change of the output signal from the volume or pressure detecting unit, and a calibration ratio calculating unit for calculating the ratio. A respiration rate meter for microorganisms, characterized in that a recalibration rate is input to the respiration rate calculation means to calibrate the respiration rate.
JP11362996A 1996-05-08 1996-05-08 Microorganism respiration velocimeter Pending JPH09297132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11362996A JPH09297132A (en) 1996-05-08 1996-05-08 Microorganism respiration velocimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11362996A JPH09297132A (en) 1996-05-08 1996-05-08 Microorganism respiration velocimeter

Publications (1)

Publication Number Publication Date
JPH09297132A true JPH09297132A (en) 1997-11-18

Family

ID=14617080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11362996A Pending JPH09297132A (en) 1996-05-08 1996-05-08 Microorganism respiration velocimeter

Country Status (1)

Country Link
JP (1) JPH09297132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086059A (en) * 2005-08-25 2007-04-05 Central Res Inst Of Electric Power Ind Instrument for measuring underwater aquatic organism production respiration
JP2008275605A (en) * 2007-04-04 2008-11-13 Central Res Inst Of Electric Power Ind Underwater aquatic organism production respiration measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086059A (en) * 2005-08-25 2007-04-05 Central Res Inst Of Electric Power Ind Instrument for measuring underwater aquatic organism production respiration
JP2008275605A (en) * 2007-04-04 2008-11-13 Central Res Inst Of Electric Power Ind Underwater aquatic organism production respiration measuring apparatus

Similar Documents

Publication Publication Date Title
US4947339A (en) Method and apparatus for measuring respiration, oxidation and similar interacting between a sample and a selected component of a fluid medium
US7810376B2 (en) Mitigation of gas memory effects in gas analysis
CN103983753B (en) Can self-inspection correct active sludge aerobic respiration measurement device and using method
JPH09297132A (en) Microorganism respiration velocimeter
US5668330A (en) Aqueous sample testing apparatus
CN117805212A (en) Ozone sensor calibration device and calibration method thereof
JPH07103965A (en) Method and device for quickly measuring biochemical oxygen demand (bod)
JP3687233B2 (en) Toxicity evaluation method for activated sludge
JPS62254897A (en) Biomass oxygen treatment apparatus
JP4329921B2 (en) Inspection gas mixing apparatus and mixing method
CN206497095U (en) Simple type catalase activity analyzer
JP3467905B2 (en) How to measure respiration rate
CN220650641U (en) Biochemical pool oxygen consumption detection device
CA2182410A1 (en) Aqueous sample testing apparatus
JP2010175321A (en) Gas detector
JPH0224342B2 (en)
JPH0356420B2 (en)
JP2782713B2 (en) Weight titrator and titration method using the same
JPH0323119Y2 (en)
SU1065774A1 (en) Liquid toxicity checking device
JP3364376B2 (en) Ozone leak dual detector
CN117686554A (en) BOD detection method for judging dilution factor and monitor for implementing method
JPS6234297Y2 (en)
KR100193784B1 (en) Oxygen Transfer Coefficient Measurement in Pure Oxygen Activated Sludge Process
JP2002107345A (en) Oxygen content meter of filling filler or the like