JP2007086059A - Instrument for measuring underwater aquatic organism production respiration - Google Patents

Instrument for measuring underwater aquatic organism production respiration Download PDF

Info

Publication number
JP2007086059A
JP2007086059A JP2006221645A JP2006221645A JP2007086059A JP 2007086059 A JP2007086059 A JP 2007086059A JP 2006221645 A JP2006221645 A JP 2006221645A JP 2006221645 A JP2006221645 A JP 2006221645A JP 2007086059 A JP2007086059 A JP 2007086059A
Authority
JP
Japan
Prior art keywords
sealed
water
measurement space
measurement
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006221645A
Other languages
Japanese (ja)
Other versions
JP4944539B2 (en
Inventor
Minoru Tatsuta
穣 立田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006221645A priority Critical patent/JP4944539B2/en
Publication of JP2007086059A publication Critical patent/JP2007086059A/en
Application granted granted Critical
Publication of JP4944539B2 publication Critical patent/JP4944539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a change in a dissolved oxygen amount caused by production, consumption or decomposition of oxygen by an aquatic organism of a measuring object, under a condition where a volume blocked from an outside is maintained constant, and an environmental condition affecting it. <P>SOLUTION: This instrument is provided with a measuring container having a sealed measuring space formed of a transparent member and having water tightness, a dissolved oxygen sensor for detecting a dissolved oxygen amount in water filled in the sealed measuring space, inside the sealed measuring space, a stirrer for stirring the water filled in the sealed measuring space, a flow-in port for injecting and blocking water from an outside of the sealed measuring space into the sealed measuring space, a discharge port for discharging and blocking the water from an inside of the sealed measuring space to the outside of the sealed measuring space, and a data processing part for controlling and recording the dissolved oxygen caused by the production, the consumption or the decomposition of oxygen by the aquatic organism of the measuring object in the water filled in the sealed measuring space. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水中水生生物生産呼吸測定装置に関する。更に詳述すると、本発明は、水中に設置され、水中の生物による酸素の生産と消費あるいは分解速度の測定を継続的に行う水中水生生物生産呼吸測定装置に関する。   The present invention relates to an underwater aquatic product respiration measurement apparatus. More specifically, the present invention relates to an underwater aquatic organism production respiration measuring apparatus that is installed in water and continuously measures the production and consumption of oxygen or the degradation rate of organisms in the water.

従来の水生生物が引き起こす水中の溶存酸素量の変化を測定する装置としては、例えば海底の酸素消費量測定装置がある(特許文献1)。   As an apparatus for measuring a change in the dissolved oxygen amount in water caused by a conventional aquatic organism, for example, there is an oxygen consumption measuring apparatus on the seabed (Patent Document 1).

この酸素消費量測定装置は、海の沿岸部、特に浅場域の干潟又は藻場等に設置して海底からの酸素の供給量や吸収量を測定することを目的としている。酸素消費量測定装置100の構成は、図9に示すように、枠組みされたフレーム101の内部に固定された円筒102と、この円筒102の上端を閉鎖する蓋103とを備え、更に、海底に設置したときに測定域を限定するために円筒102とほぼ同じ直径であって底部が開放された潜入隔壁104を円筒102の下端に備えている。そして、円筒102、蓋103、潜入隔壁104及び海底により測定空間を形成し、この測定空間内の海水に対して光量子センサ105、溶存酸素センサ106、塩分センサ107及び水温センサ108がそれぞれの測定を行う。更に、円筒102側面の上側位置に海水吸入口109と、海水吸入口109の反対位置に排出ポンプ(図示省略)とが設けられており、排出ポンプを動作させて測定空間内の海水を排出すると共に海水吸入口109から新たに海水を吸入し、円筒102内を海水で充満させるようにしている。   This oxygen consumption measuring device is intended to be installed in the coastal area of the sea, particularly in tidal flats or seaweed beds in shallow areas, and to measure the supply and absorption of oxygen from the seabed. As shown in FIG. 9, the oxygen consumption measuring device 100 includes a cylinder 102 fixed inside a framed frame 101 and a lid 103 that closes the upper end of the cylinder 102. In order to limit the measurement area when installed, the lower end of the cylinder 102 is provided with an infiltration partition 104 having the same diameter as that of the cylinder 102 and having an open bottom. Then, a measurement space is formed by the cylinder 102, the lid 103, the infiltration partition 104 and the seabed, and the photon sensor 105, the dissolved oxygen sensor 106, the salinity sensor 107, and the water temperature sensor 108 measure each of the seawater in the measurement space. Do. Furthermore, a seawater inlet 109 is provided at the upper side of the side surface of the cylinder 102, and a discharge pump (not shown) is provided at a position opposite to the seawater inlet 109, and the discharge pump is operated to discharge the seawater in the measurement space. At the same time, the seawater is newly sucked from the seawater inlet 109, and the inside of the cylinder 102 is filled with seawater.

特開平10−260178号JP-A-10-260178

しかしながら、特許文献1の測定装置では、測定装置の底部が開放され測定空間が密閉されていない状態で測定対象海底に接しているため、水中に浮遊する又は遊泳するあるいは固着する測定対象生物のみによる酸素の生産と消費あるいは分解が引き起こす酸素の生産と消費速度の測定を行うことができないという問題がある。   However, in the measurement apparatus of Patent Document 1, since the bottom of the measurement apparatus is open and the measurement space is not sealed, the measurement apparatus is in contact with the measurement target seabed, so that only the measurement target organism that floats, swims, or adheres to water. There is a problem that the production and consumption rate of oxygen caused by the production and consumption or decomposition of oxygen cannot be measured.

更に、測定装置の底部が開放されていて測定空間が密閉されていないため、海流等の外圧による海水の流入と流出によって測定空間内の試料の不必要な入れ替えが起きてしまう。そのため、外部から遮断された状態での測定が必要とされる場合でもそのような測定を行うことが困難であるという問題がある。また、海域状況により、又は波、流れ等の影響による自洗堀によって、測定装置が傾いたり沈降したりするため、測定空間を外部から遮断した状態で、且つその容積を一定に保った状態で測定することが困難であるという問題がある。   Furthermore, since the bottom of the measurement device is open and the measurement space is not sealed, the sample in the measurement space is unnecessarily replaced by the inflow and outflow of seawater due to an external pressure such as an ocean current. Therefore, there is a problem that it is difficult to perform such measurement even when measurement in a state of being blocked from the outside is required. Also, because the measuring device tilts or sinks due to sea conditions or due to self-washing due to the influence of waves, currents, etc., the measurement space is shut off from the outside and the volume is kept constant. There is a problem that it is difficult to measure.

また、測定空間内の海水の交換について、排出は排出ポンプによって行うが、注水は海水吸入口からの自然流入となっているため、測定空間内の海水の交換効率が悪いという問題がある。   Further, the seawater in the measurement space is exchanged by a discharge pump, but the water injection is a natural inflow from the seawater inlet, and therefore there is a problem that the exchange efficiency of the seawater in the measurement space is poor.

更に、水中に設置して蓄電式電源を利用することから、装置の稼働時間が限られるという問題がある。   Furthermore, since the storage type power supply is used by installing in water, there is a problem that the operation time of the apparatus is limited.

そこで、本発明は、外部から遮断され且つ容積が一定に維持された状態において、測定対象とする水生生物による酸素の生産と消費あるいは分解により引き起こされる溶存酸素量の変化とこれに影響を与える環境条件の測定を可能とする水中水生生物生産呼吸測定装置を提供することを目的とする。   Accordingly, the present invention provides a change in the amount of dissolved oxygen caused by the production and consumption or decomposition of oxygen by the aquatic organisms to be measured and the environment that affects this in a state where the volume is kept constant and is blocked from the outside. An object of the present invention is to provide an apparatus for measuring respiration of aquatic aquatic organisms capable of measuring conditions.

また、本発明は、測定空間内の水と外部の水を定期的に交換し、且つ交換時以外は外部から遮断され容積が一定に維持された状態での測定を可能とする水中水生生物生産呼吸測定装置を提供することを目的とする。   In addition, the present invention provides aquatic aquatic organism production that enables measurement in a state where the water in the measurement space is regularly exchanged with the outside water, and the volume is kept constant except when exchanged. An object of the present invention is to provide a respiration measuring device.

更に、本発明は、水中に設置した本体を動作させるための電源である蓄電池の蓄電量の減少を抑えることにより、測定期間を長くすることができる水中水生生物生産呼吸測定装置を提供することを目的とする。   Furthermore, the present invention provides an aquatic aquatic production respiration measurement device capable of extending the measurement period by suppressing a decrease in the amount of power stored in a storage battery that is a power source for operating a main body installed in water. Objective.

かかる目的を達成するため、請求項1記載の水中水生生物生産呼吸測定装置は、透明部材によって形成されると共に水密性を備える密閉測定空間を有する測定容器と、密閉測定空間内に、密閉測定空間内に充満した水の溶存酸素量を検出する溶存酸素センサと、密閉測定空間内に充満した水を攪拌する攪拌機と、密閉測定空間外の水の密閉測定空間内への注水並びに遮断を行う流入口と、密閉測定空間内の水の密閉測定空間外への排水並びに遮断を行う排出口とを備えるようにしている。この場合には、水密性を備える密閉測定空間を有する測定容器並びにこの密閉測定空間内外の水の排水・注水装置、更に溶存酸素の測定装置等を備えることにより、外部と遮断した状態で密閉測定空間内に充満した水の溶存酸素量を測定することができる。特に、測定装置の底部も閉塞することにより、測定装置が接した海底面が引き起こす酸素の生成あるいは消費の影響を受けずに溶存酸素量の測定を行うことができると共に、海域状況又は波、流れ等の影響による自洗堀によって測定装置が傾いたり沈降したりすることがなく、測定空間を外部から遮断した状態で、且つその容積を一定に保った状態で測定することができる。   In order to achieve such an object, an underwater aquatic organism respiration measurement apparatus according to claim 1 is provided with a measurement container having a sealed measurement space formed of a transparent member and having water tightness, and a sealed measurement space in the sealed measurement space. A dissolved oxygen sensor that detects the amount of dissolved oxygen in the water filled inside, a stirrer that stirs the water filled in the sealed measurement space, and a flow that pours water into and out of the sealed measurement space. An inlet and an outlet for draining and shutting off water in the sealed measurement space to the outside of the sealed measurement space are provided. In this case, the measurement is performed in a state of being shut off from the outside by providing a measurement container having a sealed measurement space with water tightness, a drainage / water injection device for water inside and outside this sealed measurement space, and a device for measuring dissolved oxygen. The amount of dissolved oxygen in the water filled in the space can be measured. In particular, by closing the bottom of the measuring device, it is possible to measure the amount of dissolved oxygen without being affected by the generation or consumption of oxygen caused by the seabed in contact with the measuring device. The measuring device does not tilt or sink due to self-cleaning due to the influence of the above, and the measurement can be performed in a state where the measurement space is blocked from the outside and the volume is kept constant.

また、請求項2記載の発明は、請求項1記載の水中水生生物生産呼吸測定装置において、密閉測定空間内に、塩分センサ、水温センサ、光量子センサ、クロロフィルセンサのうちのいずれか一つ若しくは二つ以上を備えるようにしている。この場合には、各種センサを備えることにより、溶存酸素量と併せて、測定対象の生物による酸素の生産と消費に影響を与える塩分、水温、光強度、クロロフィル濃度を測定することができる。   The invention described in claim 2 is the apparatus for measuring respiration of underwater aquatic organisms according to claim 1, wherein any one or two of a salinity sensor, a water temperature sensor, a photon sensor, and a chlorophyll sensor are provided in the sealed measurement space. Have more than one. In this case, by providing various sensors, the salinity, water temperature, light intensity, and chlorophyll concentration that affect the production and consumption of oxygen by the organism to be measured can be measured together with the amount of dissolved oxygen.

請求項3記載の水中水生生物生産呼吸測定装置は、透明部材によって形成されると共に水密性を備える密閉測定空間を有する測定容器と、密閉測定空間内に、密閉測定空間内に充満した水の溶存酸素量を検出する溶存酸素センサと、密閉測定空間内に充満した水を攪拌する攪拌機と、密閉測定空間外の水の密閉測定空間内への注水並びに遮断を行う流入口と、密閉測定空間内の水の密閉測定空間外への排水並びに遮断を行う排出口と、密閉測定空間内に充満した水における測定対象とする水生生物による酸素の生産と消費あるいは分解が引き起こす溶存酸素量の測定の制御並びに記録を行うデータ処理部とを備え、水中に設置されて水生生物を密閉測定空間内に入れ若しくは導入し、水生生物が引き起こす溶存酸素量の変化を測定するようにしている。この場合には、水密性を備える密閉測定空間を有する測定容器並びにこの密閉測定空間内外の水の排水・注水装置、更に溶存酸素の測定装置並びにデータ処理部等を備えることにより、外部と遮断した状態で密閉測定空間内に充満した水の溶存酸素量の変化を測定することができる。   The underwater aquatic organism respiration measurement device according to claim 3 is a measurement container having a sealed measurement space formed of a transparent member and having water tightness, and dissolution of water filled in the sealed measurement space in the sealed measurement space. Dissolved oxygen sensor that detects the amount of oxygen, stirrer that stirs the water filled in the sealed measurement space, an inlet for water injection and shutoff in the sealed measurement space outside the sealed measurement space, and in the sealed measurement space Control of measurement of the amount of dissolved oxygen caused by the production and consumption or decomposition of oxygen by the target aquatic organism in the water filled in the sealed measurement space And a data processing unit for recording, which is installed in water and puts or introduces aquatic organisms into a closed measurement space, and measures changes in the amount of dissolved oxygen caused by aquatic organisms To have. In this case, a measurement container having a sealed measurement space with water tightness, a drainage / water injection device for water inside and outside this sealed measurement space, a measuring device for dissolved oxygen, a data processing unit, etc. are used to shut off from the outside. It is possible to measure a change in the dissolved oxygen amount of water filled in the sealed measurement space in a state.

請求項4記載の発明は、請求項3記載の水中水生生物生産呼吸測定装置において、密閉測定空間内に、塩分センサ、水温センサ、光量子センサ、クロロフィルセンサのうちのいずれか一つ若しくは二つ以上を備え、溶存酸素量の変化に影響を及ぼす水中塩分、水温、光強度、クロロフィル濃度のうちのいずれか一つ若しくは二つ以上の変化を測定するようにしている。この場合には、各種センサを備えることにより、溶存酸素量の変化と併せて、測定対象の生物による酸素の生産と消費に影響を与える塩分、水温、光強度、クロロフィル濃度の変化を測定することができる。   According to a fourth aspect of the present invention, in the underwater aquatic organism respiration measuring apparatus according to the third aspect, any one or more of a salinity sensor, a water temperature sensor, a photon sensor, and a chlorophyll sensor are provided in the sealed measurement space. And measuring changes in one or more of salinity in water, water temperature, light intensity, and chlorophyll concentration that affect changes in the amount of dissolved oxygen. In this case, by measuring various changes in salinity, water temperature, light intensity, and chlorophyll concentration that affect the production and consumption of oxygen by the organism being measured, along with changes in the amount of dissolved oxygen, by providing various sensors. Can do.

請求項5記載の発明は、請求項1から4のいずれか一つに記載の水中水生生物生産呼吸測定装置において、密閉測定空間外の水を密閉測定空間内に注水するための流入ポンプを備えるようにしている。この場合には、流入ポンプを備えることにより、密閉測定空間内の水の交換を効率的に行うことができる。   The invention described in claim 5 is the underwater aquatic organism respiration measurement apparatus according to any one of claims 1 to 4, further comprising an inflow pump for injecting water outside the sealed measurement space into the sealed measurement space. I am doing so. In this case, the water in the sealed measurement space can be exchanged efficiently by providing the inflow pump.

請求項6記載の発明は、請求項1から5のいずれか一つに記載の水中水生生物生産呼吸測定装置において、測定容器の上部に、密閉測定空間外の水の密閉測定空間内への流入を防ぐと共に密閉測定空間内の気体の密閉測定空間外への排出を行い、且つ密閉測定空間内の水の噴出を防ぐ二方向逆止弁を設けたことを特徴とする。これによると、二方向逆止弁を設けることにより、密閉測定空間内のガス抜きを行うと共に密閉測定空間内の水の不要な噴出を防ぐことができる。   The invention according to claim 6 is the underwater aquatic organism production respiration measurement apparatus according to any one of claims 1 to 5, wherein water flows outside the sealed measurement space into the sealed measurement space above the measurement container. And a two-way check valve that discharges the gas in the sealed measurement space to the outside of the sealed measurement space and prevents the ejection of water in the sealed measurement space. According to this, by providing the two-way check valve, it is possible to vent the gas in the sealed measurement space and to prevent unnecessary ejection of water in the sealed measurement space.

請求項7記載の発明は、請求項1から6のいずれか一つに記載の水中水生生物生産呼吸測定装置において、測定容器が、本体と、本体の底部を閉塞する底板あるいは遮蔽膜と、本体の上部を閉塞する蓋とによって形成され、本体と底板あるいは遮蔽膜との間及び本体と蓋との間が水密性をもって閉塞されることを特徴とする。これによると、必要に応じて底板を取り外して海底に固着生息するサンゴあるいは海藻等の海底固着基部まで密封できる遮蔽膜に交換することにより、海の沿岸の浅場域である藻場、さんご礁等の海藻やサンゴなどの海底固着生物、又は陸水域の底面に生息すると共に遮蔽膜により固着基部まで密封できる湖底固着生物の、装置内あるいは固着状態での酸素の生成量や消費量を測定することができる。また、測定容器を本体と蓋及び底板あるいは遮蔽膜とから形成することにより、装置の分解と組み立てを容易に行うことができる。   The invention according to claim 7 is the apparatus for measuring respiration of underwater aquatic organisms according to any one of claims 1 to 6, wherein the measurement container comprises a main body, a bottom plate or shielding film for closing the bottom of the main body, and the main body. And the lid between the main body and the bottom plate or the shielding film and between the main body and the lid are closed with water tightness. According to this, by removing the bottom plate as necessary and replacing it with a shielding film that can seal to the bottom of the seabed, such as coral or seaweed that inhabits the seafloor, seaweed beds, coral reefs, etc. that are shallow areas on the coast of the sea It is possible to measure the amount of oxygen generated and consumed in the device or in the fixed state of seafloor fixed organisms such as seaweed and coral, or lake bottom fixed organisms that inhabit the bottom of inland waters and can be sealed to the fixed base by a shielding film. it can. Further, by forming the measurement container from the main body and the lid and the bottom plate or the shielding film, the apparatus can be easily disassembled and assembled.

請求項8記載の発明は、請求項7記載の水中水生生物生産呼吸測定装置において、本体を内部に固定するフレームを設け、フレームに本体又は底板あるいは遮蔽膜の最下部と同じ高さまで伸びる枠足を更に設けたことを特徴とする。これによると、フレームに枠足を設けることにより、装置の姿勢を安定的に保つことができる。   The invention according to claim 8 is the apparatus for measuring respiration of aquatic aquatic life according to claim 7, wherein the frame is provided with a frame for fixing the main body therein, and extends to the same height as the bottom of the main body, the bottom plate or the shielding film. Is further provided. According to this, the posture of the apparatus can be stably maintained by providing the frame foot on the frame.

請求項9記載の発明は、請求項1から8のいずれか一つに記載の水中水生生物生産呼吸測定装置において、補助電源として太陽電池を設けたことを特徴とする。これによると、太陽電池を設けることにより、装置を動作させるための電源である蓄電池の蓄電量の減少を遅くすることができる。   The invention described in claim 9 is characterized in that, in the apparatus for measuring respiration of underwater aquatic organisms according to any one of claims 1 to 8, a solar cell is provided as an auxiliary power source. According to this, by providing the solar cell, it is possible to delay the decrease in the amount of electricity stored in the storage battery, which is a power source for operating the device.

以上説明したように、請求項1記載の発明によれば、外部と遮断した状態で密閉測定空間内に充満した水の溶存酸素量を測定することができるので、例えば海底面あるいは陸水域の底面が引き起こす酸素の生産等の外部要素の影響を排除した上で、密閉測定空間内に充満した水の溶存酸素量の測定を行うことが可能となる。   As described above, according to the first aspect of the present invention, the dissolved oxygen amount of water filled in the sealed measurement space can be measured in a state of being shut off from the outside. It is possible to measure the dissolved oxygen content of the water filled in the sealed measurement space, while eliminating the influence of external factors such as oxygen production caused by.

請求項2記載の発明によれば、溶存酸素量と併せて、測定対象の浮遊性及び固着性あるいは遊泳性の水生生物による酸素の生産と消費あるいは分解速度に影響を与える塩分、水温、光強度、クロロフィル濃度を測定することができるので、測定対象の水生生物が引き起こす溶存酸素量の分析を行う上で有益な情報を同時に測定することが可能となる。   According to the invention described in claim 2, in addition to the amount of dissolved oxygen, the salinity, water temperature, and light intensity affecting the production and consumption of oxygen or the rate of decomposition by the floating and fixed or swimming aquatic organisms to be measured. Since the chlorophyll concentration can be measured, it is possible to simultaneously measure information useful for analyzing the amount of dissolved oxygen caused by the aquatic organism to be measured.

請求項3記載の発明によれば、外部と遮断した状態で密閉測定空間内に充満した水の溶存酸素量の変化を測定することができるので、例えば海底面あるいは陸水域の底面が引き起こす酸素の生産等の外部要素の影響を排除した上で、測定対象の浮遊性及び固着性あるいは遊泳性の水生生物による酸素の生産と消費あるいは分解速度をこれらが引き起こす溶存酸素量の変化により測定することが可能となる。   According to the invention described in claim 3, since it is possible to measure a change in the dissolved oxygen amount of the water filled in the sealed measurement space in a state where it is cut off from the outside, for example, the amount of oxygen caused by the bottom of the sea or the land After eliminating the influence of external factors such as production, the oxygen production and consumption or degradation rate by the floating, fixed or swimming aquatic organisms to be measured can be measured by changes in the amount of dissolved oxygen caused by them. It becomes possible.

請求項4記載の発明によれば、溶存酸素量の変化と併せて、測定対象の浮遊性及び固着性あるいは遊泳性の水生生物による酸素の生産と消費あるいは分解速度に影響を与える塩分、水温、光強度、クロロフィル濃度の変化を測定することができるので、測定対象生物が引き起こす溶存酸素量の変化の分析を行う上で有益な情報を同時に測定することが可能となる。   According to the invention of claim 4, in combination with the change in dissolved oxygen content, salinity, water temperature, which affects the production and consumption of oxygen or the rate of decomposition by the floating and fixed or swimming aquatic organisms to be measured, Since changes in light intensity and chlorophyll concentration can be measured, it is possible to simultaneously measure information useful for analyzing changes in the amount of dissolved oxygen caused by the organism to be measured.

請求項5記載の発明によれば、密閉測定空間内の水の交換を迅速に行うことができるので、測定作業を無駄なく行うことが可能となる。   According to the fifth aspect of the present invention, since the water in the sealed measurement space can be exchanged quickly, the measurement work can be performed without waste.

請求項6記載の発明によれば、密閉測定空間内のガス抜きを行うと共に密閉測定空間内の水の不要な噴出を防ぐことができるので、密閉測定空間の密閉性を保ちながら密閉測定空間内の状態をより良く保つことが可能となる。   According to the sixth aspect of the present invention, it is possible to vent the gas in the sealed measurement space and prevent unnecessary ejection of water in the sealed measurement space. It becomes possible to keep the state of the better.

請求項7記載の発明によれば、必要に応じて底板を遮蔽膜に交換することにより、海の沿岸の浅場域である藻場、さんご礁等の海藻やサンゴなどの海底固着生物、又は陸水域の底面に生息すると共に遮蔽膜により固着基部まで密封できる湖底固着生物の酸素の生成量や消費量を装置内あるいは固着状態で測定することができるので、多様な用途に対応することが可能となる。また、装置の分解と組み立てを容易に行うことができるので、分解して運搬して多様な場所での利用が可能となる。   According to the invention of claim 7, by substituting the bottom plate with a shielding film as necessary, seaweeds that are shallow areas on the coast of the sea, seaweeds such as coral reefs, seafloor fixed organisms such as corals, or inland water areas The amount of oxygen produced and consumed by lake-bottomed organisms that inhabit the bottom of the lake and can be sealed to the anchored base by a shielding membrane can be measured in the device or in a fixed state, making it possible to support various applications . Also, since the apparatus can be easily disassembled and assembled, it can be disassembled and transported for use in various places.

請求項8記載の発明によれば、装置の姿勢を安定的に保つことができるので、水流によって装置が横転することによる破損や密閉測定空間内の水の交換に支障が生じることを防ぐことが可能となる。   According to the invention described in claim 8, since the posture of the device can be stably maintained, it is possible to prevent damage caused by the device overturning due to water flow and troubles in exchange of water in the sealed measurement space. It becomes possible.

請求項9記載の発明によれば、装置を動作させるための電源である蓄電池の蓄電量の減少を遅くすることができるので、外部電源の供給や蓄電池の交換をしないで装置単独での長期間の測定を行うことが可能となる。   According to the ninth aspect of the present invention, the reduction in the amount of electricity stored in the storage battery, which is a power source for operating the apparatus, can be delayed, so that the apparatus alone can be used for a long time without supplying external power or replacing the storage battery. Can be measured.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1から図7に本発明の水中水生生物生産呼吸測定装置の実施形態の一例を示す。   FIG. 1 to FIG. 7 show an example of an embodiment of the apparatus for measuring respiration of aquatic aquatic organisms of the present invention.

図1及び図2に示すように、水中水生生物生産呼吸測定装置10は大まかに、フレーム12、測定部14及び電源・データ処理部16からなり、透明部材によって形成されると共に水密性を備える密閉測定空間30を有する測定容器19と、密閉測定空間30内に、密閉測定空間30内に充満した水の溶存酸素量を検出する溶存酸素センサ32と、密閉測定空間30内に充満した水を攪拌する攪拌機74と、密閉測定空間30外の水の密閉測定空間30内への注水並びに遮断を行う流入口58と、密閉測定空間30内の水の密閉測定空間30外への排水並びに遮断を行う排出口72とを備えている。   As shown in FIGS. 1 and 2, an underwater aquatic production respiration measuring device 10 is roughly composed of a frame 12, a measuring unit 14, and a power source / data processing unit 16, and is formed of a transparent member and sealed with water tightness. The measurement container 19 having the measurement space 30, the dissolved oxygen sensor 32 for detecting the dissolved oxygen amount of the water filled in the sealed measurement space 30, and the water filled in the sealed measurement space 30 are stirred in the sealed measurement space 30. A stirrer 74, an inlet 58 for injecting and blocking water outside the sealed measurement space 30 into the sealed measurement space 30, and draining and blocking water outside the sealed measurement space 30 in the sealed measurement space 30 And a discharge port 72.

フレーム12はステンレス等の非腐食性材料からなるパイプで組み立てられたもので、それぞれが直方体状の格子に組まれた第1のフレーム12aと第2のフレーム12bとをつなぎ合わせて形成されている。そして、直方体状の格子に組まれた第1のフレーム12aの内側に測定部14が固定され、同じく直方体状の格子に組まれた第2のフレーム12bの内側に電源・データ処理部16が固定される。第2のフレーム12bの下部には測定部14の底部に合致させて下方に伸びる枠足12cが設けられている。   The frame 12 is assembled from pipes made of a non-corrosive material such as stainless steel, and is formed by joining together a first frame 12a and a second frame 12b assembled in a rectangular parallelepiped lattice. . The measuring unit 14 is fixed inside the first frame 12a assembled in the rectangular parallelepiped lattice, and the power source / data processing unit 16 is fixed inside the second frame 12b assembled in the rectangular parallelepiped lattice. Is done. A frame leg 12c is provided below the second frame 12b so as to match the bottom of the measurement unit 14 and extend downward.

測定部14は、円筒形をなした本体20、本体20の底部を閉塞する底板22、及び本体20の上部を閉塞するドーム形をなした蓋24から構成される。これらの本体20、底板22及び蓋24は、それぞれ透明な部材により構成される。これらの材質としては、具体的には例えばアクリル樹脂等の合成樹脂を用いることが可能である。しかしながら、本体20、底板22及び蓋24の材質はこれに限られるものではなく、透水性がなく、測定装置10が設置される場所の水圧に耐えられるものであればいずれの材質を用いても良い。   The measurement unit 14 includes a cylindrical main body 20, a bottom plate 22 that closes the bottom of the main body 20, and a dome-shaped lid 24 that closes the top of the main body 20. The main body 20, the bottom plate 22, and the lid 24 are each made of a transparent member. As these materials, specifically, synthetic resins such as acrylic resins can be used. However, the material of the main body 20, the bottom plate 22 and the lid 24 is not limited to this, and any material can be used as long as it has no water permeability and can withstand the water pressure at the place where the measuring apparatus 10 is installed. good.

より詳細には、本体20の外側面に第1のフレーム12aと接する部分に盲穴20dが設けられており、第1のフレーム12aを貫通するピン31によって本体20がフレーム12に固定される。   More specifically, a blind hole 20d is provided in a portion that contacts the first frame 12a on the outer surface of the main body 20, and the main body 20 is fixed to the frame 12 by a pin 31 that passes through the first frame 12a.

また、本体20の上部フランジ20aと蓋24の下部フランジ24aとが重ね合わされて、これらがボルト25によって固定される。本体20の上部フランジ20aのボルト25位置よりも内周側には環状溝20bが形成されていると共に環状溝20b内にOリング26が嵌合されて蓋24の下部フランジ24aに接しており、本体20と蓋24との間には水密性が保持される。   Further, the upper flange 20 a of the main body 20 and the lower flange 24 a of the lid 24 are overlapped, and these are fixed by the bolts 25. An annular groove 20b is formed on the inner peripheral side of the bolt 25 position of the upper flange 20a of the main body 20, and an O-ring 26 is fitted in the annular groove 20b to contact the lower flange 24a of the lid 24. Watertightness is maintained between the main body 20 and the lid 24.

また、本体20の下部側部には周方向に離間して複数の凸部20fが形成されている。凸部20fは定板22を固定するために下向きの座面を有する。そして、底板22は、凸部20fと、凸部20fの下方で本体20の側面を貫通するピン27との間に挟まれて本体20の底部の内側に固定されている。   In addition, a plurality of convex portions 20 f are formed on the lower side portion of the main body 20 so as to be spaced apart from each other in the circumferential direction. The convex portion 20 f has a downward bearing surface for fixing the fixed plate 22. The bottom plate 22 is sandwiched between the convex portion 20f and a pin 27 penetrating the side surface of the main body 20 below the convex portion 20f and fixed to the inside of the bottom portion of the main body 20.

底板22の側面には環状溝22aが形成されていると共に環状溝22a内にOリング28が嵌合されて本体20の内側面に接しており、本体20と底板22との間は水密性が保持される。   An annular groove 22 a is formed on the side surface of the bottom plate 22, and an O-ring 28 is fitted in the annular groove 22 a so as to be in contact with the inner surface of the main body 20, so that watertightness is provided between the main body 20 and the bottom plate 22. Retained.

こうして、本体20と底板22と蓋24とによって一定の容積の密閉測定空間30を有する測定容器19が構成される。   Thus, the main body 20, the bottom plate 22, and the lid 24 constitute the measurement container 19 having the sealed measurement space 30 with a certain volume.

本体20は、その内部にセンサを有している。センサとしては、例えば水中水生生物生産呼吸量を求めるための溶存酸素量を検出する溶存酸素センサ32、塩分センサ34、水温センサ36、光量子センサ38、クロロフィルセンサ40(以下適宜、単にセンサ32等と表記する)を使用することができる。また、測定目的に合わせて必要なセンサを追加することもできる。   The main body 20 has a sensor therein. As the sensors, for example, a dissolved oxygen sensor 32 for detecting the amount of dissolved oxygen for determining the respiration rate of aquatic aquatic organisms, a salt sensor 34, a water temperature sensor 36, a photon sensor 38, a chlorophyll sensor 40 (hereinafter simply referred to as a sensor 32 or the like as appropriate). Can be used). In addition, necessary sensors can be added according to the measurement purpose.

これらのセンサ32等は、図3に示す支持構造41によって密閉測定空間30の水密性を害することなく本体20の内部に固定される。即ち、支持構造41は、センサ32等を保持するセンサホルダ42、44、46と、隣接するセンサホルダ42、44、46同士を連結し、又はセンサホルダ42、44、46と本体20の側面とを連結する連結アーム48とによって構成される。   These sensors 32 and the like are fixed to the inside of the main body 20 without harming the water tightness of the sealed measurement space 30 by the support structure 41 shown in FIG. That is, the support structure 41 connects the sensor holders 42, 44, 46 that hold the sensor 32 and the like and the adjacent sensor holders 42, 44, 46, or the sensor holders 42, 44, 46 and the side surface of the main body 20. And a connecting arm 48 for connecting the two.

このため、本体20の周壁には連結アーム48の一端を支持するための貫通孔20cが形成され、更に連結アーム48の端面には貫通孔20cに連通するネジ孔48aが形成されており、貫通孔20c及びネジ孔48aにネジ49がねじ込まれている。連結アーム48の端面のネジ孔48aの周りには環状溝48bが形成されていると共に環状溝48b内にOリング50が嵌合されて本体20の内側面に接している。   Therefore, a through hole 20c for supporting one end of the connecting arm 48 is formed in the peripheral wall of the main body 20, and a screw hole 48a communicating with the through hole 20c is formed on the end surface of the connecting arm 48. A screw 49 is screwed into the hole 20c and the screw hole 48a. An annular groove 48b is formed around the screw hole 48a on the end face of the connecting arm 48, and an O-ring 50 is fitted in the annular groove 48b to contact the inner surface of the main body 20.

こうして、水密性を保持しつつ各センサを本体20に支持させることができる。   Thus, each sensor can be supported by the main body 20 while maintaining water tightness.

各センサホルダ42、44及び46は、必ず、連結アーム48によって隣接するセンサホルダと本体20とに支持されるために取付強度を高めることができる。   Since the sensor holders 42, 44 and 46 are necessarily supported by the adjacent sensor holder and the main body 20 by the connecting arm 48, the mounting strength can be increased.

また、センサを増設する要求が生じたときには、同様に、センサホルダ42又はセンサホルダ46の水平方向の延長上にセンサホルダを増設し、増設したセンサホルダとセンサホルダ42又は46、及び増設したセンサホルダと本体20の側面との間を二つの連結アーム48によって連結することでセンサの増設に対応することができるようになる。   In addition, when a request for adding a sensor occurs, similarly, a sensor holder is added on the horizontal extension of the sensor holder 42 or the sensor holder 46, the added sensor holder and the sensor holder 42 or 46, and the added sensor. By connecting the holder and the side surface of the main body 20 by the two connecting arms 48, it becomes possible to cope with an increase in the number of sensors.

各センサからの信号はケーブル51によって本体20から電源・データ処理部16へ送られる。ケーブル51は本体20の側面に設けられたネジ孔20e(図2参照)に螺着されたケーブル保持具52によって水密性をもって本体20を出入りしている。   Signals from the sensors are sent from the main body 20 to the power source / data processing unit 16 via the cable 51. The cable 51 enters and exits the main body 20 with watertightness by a cable holder 52 screwed into a screw hole 20e (see FIG. 2) provided on the side surface of the main body 20.

ケーブル保持具52は、図4に示したように、パッキン53(Oリングでも良い)を有しており、このパッキン53が本体20の外側面に接している。   As shown in FIG. 4, the cable holder 52 has a packing 53 (or an O-ring), and the packing 53 is in contact with the outer surface of the main body 20.

また、図2に示したように、本体20の側面には、この側面を貫通する流入コネクタ56と排出コネクタ70とがそれぞれ周方向にほぼ180度離間して設けられる。   In addition, as shown in FIG. 2, the inflow connector 56 and the discharge connector 70 that penetrate the side surface are provided on the side surface of the main body 20 so as to be separated from each other by approximately 180 degrees in the circumferential direction.

流入コネクタ56の下流端及び排出コネクタ70の上流端がそれぞれ密閉測定空間30の流入口58及び排出口72となる。   The downstream end of the inflow connector 56 and the upstream end of the discharge connector 70 serve as the inlet 58 and the outlet 72 of the sealed measurement space 30, respectively.

流出コネクタ56は、図5及び図6に示したように、雄コネクタ56a、雌コネクタ56b及びエンドコネクタ56cとからなり、雄コネクタ56aとエンドコネクタ56cとの間に逆止弁60が取り付けられる。   As shown in FIGS. 5 and 6, the outflow connector 56 includes a male connector 56a, a female connector 56b, and an end connector 56c, and a check valve 60 is attached between the male connector 56a and the end connector 56c.

逆止弁60は、逆止弁取付板62とゴム等の弾性部材からなる弁体64とから構成され、弁体64のボス部64aが逆止弁取付板62の中心孔62aを貫通して保持されている。   The check valve 60 includes a check valve mounting plate 62 and a valve body 64 made of an elastic member such as rubber, and a boss portion 64a of the valve body 64 passes through a center hole 62a of the check valve mounting plate 62. Is retained.

逆止弁取付板62の周縁部は、流出コネクタ56の雄コネクタ56aとエンドコネクタ56cとの間に挟着され、弁体64の周縁部は通常その弾性により逆止弁取付板62に密着しているが、逆止弁取付板62から離反することにより弁が開放されるようになっている。   The peripheral edge of the check valve mounting plate 62 is sandwiched between the male connector 56 a and the end connector 56 c of the outflow connector 56, and the peripheral edge of the valve body 64 is usually in close contact with the check valve mounting plate 62 due to its elasticity. However, the valve is opened by separating from the check valve mounting plate 62.

また、雄コネクタ56aの端面に形成された環状溝にOリング66が嵌合されて逆止弁取付板62に接しており、これによって逆止弁取付板62と雄コネクタ56aとの周囲の水密性が保持されている。   Further, an O-ring 66 is fitted in an annular groove formed on the end face of the male connector 56a and is in contact with the check valve mounting plate 62, whereby the water tightness around the check valve mounting plate 62 and the male connector 56a is secured. Sex is preserved.

また、排出コネクタ70にはホース73が連結され、ホース73の先端に逆止弁60が設けられる。   A hose 73 is connected to the discharge connector 70, and a check valve 60 is provided at the tip of the hose 73.

フレーム12には外部から密閉測定空間30内へと冠水を流入させる流入ポンプ54が固定される。流入ポンプ54の排出口は流入コネクタ56に接続される。   An inflow pump 54 is fixed to the frame 12 to allow the submergence to flow into the sealed measurement space 30 from the outside. The discharge port of the inflow pump 54 is connected to the inflow connector 56.

また、本体20の側面には、プロペラが密閉測定空間30内に突出するように攪拌機74が取り付けられている。この攪拌機74においても本体20の水密性を保持するようにして取り付けられる。   A stirrer 74 is attached to the side surface of the main body 20 so that the propeller protrudes into the sealed measurement space 30. The stirrer 74 is also attached so as to maintain the watertightness of the main body 20.

更に、蓋24の頂部には二方向において逆止が可能となった二方向逆止弁80が設けられる。図7に示したように、この二方向逆止弁80は、上下二つのボール82、二つのボール82を連結する連結軸84からなる弁81、対向するボール82が着座可能となった上下の弁座86、及び上部の開口を有するキャップ88によって構成される。   Furthermore, a two-way check valve 80 that can check back in two directions is provided at the top of the lid 24. As shown in FIG. 7, the two-way check valve 80 is composed of two upper and lower balls 82, a valve 81 including a connecting shaft 84 for connecting the two balls 82, and an upper and lower check valve 80 on which the opposing balls 82 can be seated. It is constituted by a valve seat 86 and a cap 88 having an upper opening.

ボール82は、例えばアクリル樹脂からなり、水よりも若干重い比重となっている。この逆止弁80は、常時外部からの密閉測定空間30内への水の流入を阻止し、測定中などに発生するガスのガス抜きとして機能すると共に、流入ポンプ54から密閉測定空間30内に水が流入されているときに、流入口58からの流入流量と排出口72からの排出流量との整合がとれなくなった場合の噴出を防止するためのものである。   The ball 82 is made of acrylic resin, for example, and has a specific gravity slightly heavier than water. The check valve 80 always prevents the inflow of water into the sealed measurement space 30 from the outside, functions as a degassing of gas generated during measurement, and also enters the sealed measurement space 30 from the inflow pump 54. This is to prevent ejection when the inflow flow rate from the inflow port 58 and the discharge flow rate from the discharge port 72 cannot be matched when water is flowing in.

電源・データ処理部16には上面にソーラーパネル90が配置され、その内部には電源ユニット92、コントロール部及びデータロガー部94が配設される。   A solar panel 90 is disposed on the upper surface of the power / data processing unit 16, and a power unit 92, a control unit, and a data logger unit 94 are disposed therein.

電源ユニットは、蓄電池及びソーラーパネル90に接続された制御部からなる。   The power supply unit includes a control unit connected to the storage battery and the solar panel 90.

コントロール部において、センサ32等からの信号を受けると共に、攪拌機74及び流入ポンプ54の動作制御が行われる。   The control unit receives signals from the sensor 32 and the like, and controls the operations of the agitator 74 and the inflow pump 54.

また、データロガー部はメモリーカード等によって構成されて、コントロール部で処理されたセンサの測定データが記録される。   The data logger is composed of a memory card or the like, and sensor measurement data processed by the controller is recorded.

以上のように構成される水中水生生物生産呼吸測定装置10においては、定期的に流入ポンプ54が動作することにより密閉測定空間30内に流入口58から外部の水が注水される。   In the underwater aquatic organism production respiration measuring apparatus 10 configured as described above, external water is injected into the sealed measurement space 30 from the inflow port 58 by periodically operating the inflow pump 54.

そして、密閉測定空間30は上記のようにOリングによって水密性が保たれているので、逆止弁60を介して排出口72から密閉測定空間30内の水が排出される。したがって、密閉測定空間30内の水を入れ替えるに十分な量の水を流入ポンプ54で注水することにより完全に密閉測定空間30内の水を入れ替えることができる。   Since the sealed measurement space 30 is kept watertight by the O-ring as described above, the water in the sealed measurement space 30 is discharged from the discharge port 72 via the check valve 60. Therefore, the water in the sealed measurement space 30 can be completely replaced by pouring a sufficient amount of water with the inflow pump 54 to replace the water in the sealed measurement space 30.

このとき、排出流量に比べて注水流量が多く密閉測定空間30で注水流量と排出流量との整合がとれていない場合に、二方向逆止弁80において下方のボール82が下方の弁座86に当接して、噴出を防止することができるようになっている(図7(b))。尚、二方向逆止弁80は、通常は上方のボール82が上方の弁座86に当接して外部からの水の流入を阻止し、且つ密閉測定空間30内の気体及び密閉測定空間30内の水から発生したガスあるいは水位変化により干出した際に導入された空気を逃がすことができるようになっている(図7(a))。   At this time, when the water injection flow rate is large compared to the discharge flow rate and the water injection flow rate and the discharge flow rate are not matched in the sealed measurement space 30, the lower ball 82 is moved to the lower valve seat 86 in the two-way check valve 80. It can abut and prevent ejection (FIG. 7 (b)). In the two-way check valve 80, the upper ball 82 normally contacts the upper valve seat 86 to prevent the inflow of water from the outside, and the gas in the sealed measurement space 30 and the sealed measurement space 30 The gas introduced from the water or the air introduced when the water is dried due to a change in water level can be released (FIG. 7A).

こうして、決められた時間だけ流入ポンプ54が動作した後はコントローラ部からの動作信号により攪拌機74の回転が開始され、密閉測定空間30内の水は適宜攪拌される。攪拌機74の回転についてはコントローラ部によって密閉測定空間30内の流れを安定状態に保つために適宜制御されることが好ましい。   Thus, after the inflow pump 54 operates for a predetermined time, the rotation of the stirrer 74 is started by the operation signal from the controller unit, and the water in the sealed measurement space 30 is appropriately stirred. The rotation of the stirrer 74 is preferably controlled appropriately by the controller unit in order to keep the flow in the sealed measurement space 30 in a stable state.

そして、外部の水から隔離された密閉測定空間30に充満した水に対して測定が行われる。各センサからの測定信号が所定時間間隔又は連続的にコントロール部に取り込まれて処理されて測定データがデータロガー部に記録される。   And the measurement is performed on the water filled in the sealed measurement space 30 isolated from the external water. Measurement signals from each sensor are taken into the control unit at predetermined time intervals or continuously and processed, and measurement data is recorded in the data logger unit.

以上の動作を繰り返して継続して測定を行うことにより外部の水と完全に遮断された密閉測定空間30内での酸素量、水温、塩分、クロロフィルa量(浮遊性の光合成を行う水生生物量の目安)を継続的、連続的に把握することができる。それにより、生物による光合成及び呼吸速度、並びに光合成及び呼吸速度を律する環境条件の測定を行うことができるようになる。   Oxygen, water temperature, salinity, and chlorophyll a content in the enclosed measurement space 30 that is completely cut off from the external water by repeating the above operations and performing measurement (aquatic organisms performing floating photosynthesis) Can be grasped continuously and continuously. Thereby, it becomes possible to measure the photosynthesis and respiration rate by living organisms and the environmental conditions that regulate the photosynthesis and respiration rate.

また、電源として蓄電池の他にソーラーパネルからの太陽エネルギーを利用しているために従来よりも長時間の測定をすることが可能になる。   Moreover, since the solar energy from the solar panel is used in addition to the storage battery as a power source, it becomes possible to perform measurement for a longer time than before.

また、本実施形態では、フレーム12の第2のフレーム12bの下部に測定部14の後述の底部に合致させて下方に伸びる枠足12cを設け、水中水生生物生産呼吸測定装置10の支持点の拡がりを大きくすることにより、水中水生生物生産呼吸測定装置10の傾きや沈降等を防いで水中水生生物生産呼吸測定装置10を安定して設置することができる。   Further, in the present embodiment, a frame foot 12c is provided below the second frame 12b of the frame 12 so as to match a below-described bottom portion of the measurement unit 14 and extend downward, and the support point of the underwater aquatic organism production respiration measurement device 10 is provided. By increasing the spread, it is possible to stably install the aquatic aquatic organism production respiration measuring apparatus 10 while preventing the inclination and sedimentation of the aquatic aquatic organism production respiration measuring apparatus 10.

尚、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、水中水生生物生産呼吸測定装置10として測定部14と電源・データ処理部16が一体的に形成されたものを例として挙げたが、これに限られず、測定部14と電源・データ処理部16を別々のものとして構成しても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, an example in which the measurement unit 14 and the power source / data processing unit 16 are integrally formed as the underwater aquatic organism production respiration measurement apparatus 10 is described as an example. The power source / data processing unit 16 may be configured separately.

また、底板22は、ピン27を取り外すことにより本体20から取り外すことも可能となっており、底板22の替わりに水密性を有する遮蔽膜を装着することにより内部と外部とを遮断することが可能である。遮蔽膜としては、伸縮性を有する素材で形成されたシート、例えば合成樹脂製のシートが用いられる。底板の替わりに遮蔽膜を装着する場合には、図8に示すように、本体20の形状・大きさに合わせて概ね円形に形成された遮蔽膜97の周縁部が、密閉測定空間30の水密性が保たれるように本体20の底部の外周面にバンドで密着して固定される。遮蔽膜97の任意の位置には、海底・湖底固着生物95の固着基部96を貫通させるための貫通孔が設けられる。水中水生生物生産呼吸測定装置10を設置する際には、遮蔽膜97の任意の位置に設けられた貫通孔を押し広げて海底・湖底固着生物95を通過させ、貫通孔が固着基部96の位置に合わせられる。そして、貫通孔の周縁部がバンド98によって固着基部96外周面に密着して固定され、密閉測定空間30の水密性が確保される。   Further, the bottom plate 22 can be removed from the main body 20 by removing the pins 27, and the inside and the outside can be shut off by installing a water-tight shielding film instead of the bottom plate 22. It is. As the shielding film, a sheet made of a stretchable material, for example, a synthetic resin sheet is used. When a shielding film is attached instead of the bottom plate, as shown in FIG. 8, the peripheral portion of the shielding film 97 formed in a substantially circular shape according to the shape and size of the main body 20 is the watertightness of the sealed measurement space 30. In order to maintain the property, it is fixed in close contact with the outer peripheral surface of the bottom of the main body 20 with a band. At an arbitrary position of the shielding film 97, a through hole is provided for allowing the fixing base portion 96 of the sea bottom / lake bottom fixing organism 95 to pass through. When the underwater aquatic organism production respiration measuring device 10 is installed, the through hole provided at an arbitrary position of the shielding film 97 is expanded to allow the sea bottom / lake bottom adhering organism 95 to pass through, and the through hole is located at the position of the adhering base 96. Adapted to. And the peripheral part of a through-hole is closely_contact | adhered and fixed to the fixed base 96 outer peripheral surface with the band 98, and the watertightness of the sealed measurement space 30 is ensured.

本発明の水中水生生物生産呼吸測定装置の実施形態の一例を示す全体図(左部が断面図、右部が正面図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a general view (left part is sectional drawing, right part is front view) which shows an example of embodiment of the underwater aquatic organism production respiration measuring apparatus of this invention. 図1の水中水生生物生産呼吸測定装置の平面図である。It is a top view of the underwater aquatic organism production respiration measuring apparatus of FIG. 図1の水中水生生物生産呼吸測定装置で使用されるセンサ支持構造を表す拡大図であるIt is an enlarged view showing the sensor support structure used with the underwater aquatic organism production respiration measuring apparatus of FIG. 図1の水中水生生物生産呼吸測定装置で使用されるセンサコネクタの分解側面図である。It is a decomposition | disassembly side view of the sensor connector used with the underwater aquatic organism production respiration measuring apparatus of FIG. 図1の水中水生生物生産呼吸測定装置で使用される流入コネクタの部分断面側面図である。It is a partial cross section side view of the inflow connector used with the underwater aquatic organism production respiration measuring apparatus of FIG. 図1の水中水生生物生産呼吸測定装置で使用される流入コネクタの分解斜視図である。It is a disassembled perspective view of the inflow connector used with the underwater aquatic organism production respiration measuring apparatus of FIG. 図1の水中水生生物生産呼吸測定装置で使用される二方向逆止弁の断面図である。It is sectional drawing of the two-way check valve used with the underwater aquatic organism production respiration measuring apparatus of FIG. 本発明の水中水生生物生産呼吸測定装置の他の実施形態の一例を示す本体部分の概略図である。(A)は本体部分の概略平面図である。(B)は本体部分の概略縦断面図である。It is the schematic of the main-body part which shows an example of other embodiment of the underwater aquatic organism production respiration measuring apparatus of this invention. (A) is a schematic plan view of a main-body part. (B) is a schematic longitudinal cross-sectional view of a main-body part. 従来の海底用の酸素消費量測定装置の構成図である。It is a block diagram of the conventional oxygen consumption measuring device for the seabed.

符号の説明Explanation of symbols

10 水中水生生物生産呼吸測定装置
12 フレーム
12c 枠足
19 測定容器
20 本体
22 底板
24 蓋
30 密閉測定空間
32 溶存酸素センサ
34 塩分センサ
36 水温センサ
38 光量子センサ
40 クロロフィルセンサ
41 支持構造
42、44、46 センサホルダ
48 連結アーム
54 流入ポンプ
58 流入口
60 逆止弁
72 排出口
74 攪拌機
80 二方向逆止弁
97 遮蔽膜
DESCRIPTION OF SYMBOLS 10 Underwater aquatic organism respiration measuring device 12 Frame 12c Frame foot 19 Measurement container 20 Main body 22 Bottom plate 24 Lid 30 Sealed measurement space 32 Dissolved oxygen sensor 34 Salinity sensor 36 Water temperature sensor 38 Photon sensor 40 Chlorophyll sensor 41 Support structure 42, 44, 46 Sensor holder 48 Connecting arm 54 Inflow pump 58 Inlet port 60 Check valve 72 Outlet port 74 Stirrer 80 Two-way check valve 97 Shielding membrane

Claims (9)

透明部材によって形成されると共に水密性を備える密閉測定空間を有する測定容器と、前記密閉測定空間内に、前記密閉測定空間内に充満した水の溶存酸素量を検出する溶存酸素センサと、前記密閉測定空間内に充満した水を攪拌する攪拌機と、前記密閉測定空間外の水の前記密閉測定空間内への注水並びに遮断を行う流入口と、前記密閉測定空間内の水の前記密閉測定空間外への排水並びに遮断を行う排出口とを備えたことを特徴とする水中水生生物生産呼吸測定装置。   A measurement container formed by a transparent member and having a sealed measurement space having water tightness, a dissolved oxygen sensor for detecting a dissolved oxygen amount of water filled in the sealed measurement space in the sealed measurement space, and the sealed A stirrer that stirs water filled in the measurement space, an inlet for water injection and shut-off to the sealed measurement space of water outside the sealed measurement space, and an outside of the sealed measurement space for water in the sealed measurement space An apparatus for measuring respiration of aquatic aquatic organisms, comprising an outlet for draining and blocking water. 前記密閉測定空間内に、塩分センサ、水温センサ、光量子センサ、クロロフィルセンサのうちのいずれか一つ若しくは二つ以上を備えたことを特徴とする請求項1記載の水中水生生物生産呼吸測定装置。   The underwater aquatic organism respiration measurement apparatus according to claim 1, wherein one or more of a salinity sensor, a water temperature sensor, a photon sensor, and a chlorophyll sensor are provided in the sealed measurement space. 透明部材によって形成されると共に水密性を備える密閉測定空間を有する測定容器と、前記密閉測定空間内に、前記密閉測定空間内に充満した水の溶存酸素量を検出する溶存酸素センサと、前記密閉測定空間内に充満した水を攪拌する攪拌機と、前記密閉測定空間外の水の前記密閉測定空間内への注水並びに遮断を行う流入口と、前記密閉測定空間内の水の前記密閉測定空間外への排水並びに遮断を行う排出口と、前記密閉測定空間内に充満した水における測定対象とする水生生物による酸素の生産と消費あるいは分解が引き起こす溶存酸素量の測定の制御並びに記録を行うデータ処理部とを備え、水中に設置されて前記水生生物を前記密閉測定空間内に入れ若しくは導入し、前記水生生物が引き起こす溶存酸素量の変化を測定することを特徴とする水中水生生物生産呼吸測定装置。   A measurement container formed by a transparent member and having a sealed measurement space having water tightness, a dissolved oxygen sensor for detecting a dissolved oxygen amount of water filled in the sealed measurement space in the sealed measurement space, and the sealed A stirrer that stirs water filled in the measurement space, an inlet for water injection and shut-off to the sealed measurement space of water outside the sealed measurement space, and an outside of the sealed measurement space for water in the sealed measurement space Data processing to control and record the measurement of the amount of dissolved oxygen caused by the production and consumption or decomposition of oxygen by the aquatic organisms to be measured in the water filled in the sealed measurement space And measuring the change in the amount of dissolved oxygen caused by the aquatic organism by placing or introducing the aquatic organism into the sealed measurement space. Underwater aquatic organisms production breath measurement device to. 前記密閉測定空間内に、塩分センサ、水温センサ、光量子センサ、クロロフィルセンサのうちのいずれか一つ若しくは二つ以上を備え、前記溶存酸素量の変化に影響を及ぼす水中塩分、水温、光強度、クロロフィル濃度のうちのいずれか一つ若しくは二つ以上の変化を測定することを特徴とする請求項3記載の水中水生生物生産呼吸測定装置。   In the sealed measurement space, one or more of a salinity sensor, a water temperature sensor, a photon sensor, and a chlorophyll sensor are provided, and the salinity in water, the water temperature, the light intensity, which affect the change in the amount of dissolved oxygen, The underwater aquatic organism respiration measurement apparatus according to claim 3, wherein any one or two or more changes in chlorophyll concentration are measured. 前記密閉測定空間外の水を前記密閉測定空間内に注水するための流入ポンプを備えたことを特徴とする請求項1から4のいずれか一つに記載の水中水生生物生産呼吸測定装置。   The underwater aquatic organism respiration measurement apparatus according to any one of claims 1 to 4, further comprising an inflow pump for pouring water outside the sealed measurement space into the sealed measurement space. 前記測定容器の上部に、前記密閉測定空間外の水の前記密閉測定空間内への流入を防ぐと共に前記密閉測定空間内の気体の前記密閉測定空間外への排出を行い、且つ前記密閉測定空間内の水の噴出を防ぐ二方向逆止弁を設けたことを特徴とする請求項1から5のいずれか一つに記載の水中水生生物生産呼吸測定装置。   In the upper part of the measurement container, water outside the sealed measurement space is prevented from flowing into the sealed measurement space, and the gas in the sealed measurement space is discharged to the outside of the sealed measurement space, and the sealed measurement space The respiration measurement apparatus for underwater aquatic organism production according to any one of claims 1 to 5, further comprising a two-way check valve for preventing water from being ejected. 前記測定容器が、本体と、該本体の底部を閉塞する底板あるいは遮蔽膜と、前記本体の上部を閉塞する蓋とによって形成され、前記本体と前記底板あるいは遮蔽膜との間及び前記本体と前記蓋との間が水密性をもって閉塞されることを特徴とする請求項1から6のいずれか一つに記載の水中水生生物生産呼吸測定装置。   The measurement container is formed by a main body, a bottom plate or a shielding film that closes the bottom of the main body, and a lid that closes an upper part of the main body, and between the main body and the bottom plate or the shielding film, and the main body and the The underwater aquatic organism respiration measurement apparatus according to any one of claims 1 to 6, wherein the space between the lid and the lid is closed with water tightness. 前記本体を内部に固定するフレームを設け、該フレームに前記本体又は前記底板あるいは遮蔽膜の最下部と同じ高さまで伸びる枠足を更に設けたことを特徴とする請求項7記載の水中水生生物生産呼吸測定装置。   The underwater aquatic organism production according to claim 7, further comprising: a frame for fixing the main body therein; and a frame foot extending to the same height as the bottom of the main body, the bottom plate or the shielding film. Respiratory measurement device. 補助電源として太陽電池を設けたことを特徴とする請求項1から8のいずれか一つに記載の水中水生生物生産呼吸測定装置。   The apparatus for measuring respiration of aquatic aquatic organisms according to any one of claims 1 to 8, wherein a solar cell is provided as an auxiliary power source.
JP2006221645A 2005-08-25 2006-08-15 Underwater aquatic production respiration measuring device Expired - Fee Related JP4944539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221645A JP4944539B2 (en) 2005-08-25 2006-08-15 Underwater aquatic production respiration measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005244795 2005-08-25
JP2005244795 2005-08-25
JP2006221645A JP4944539B2 (en) 2005-08-25 2006-08-15 Underwater aquatic production respiration measuring device

Publications (2)

Publication Number Publication Date
JP2007086059A true JP2007086059A (en) 2007-04-05
JP4944539B2 JP4944539B2 (en) 2012-06-06

Family

ID=37973163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221645A Expired - Fee Related JP4944539B2 (en) 2005-08-25 2006-08-15 Underwater aquatic production respiration measuring device

Country Status (1)

Country Link
JP (1) JP4944539B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275605A (en) * 2007-04-04 2008-11-13 Central Res Inst Of Electric Power Ind Underwater aquatic organism production respiration measuring apparatus
KR101670355B1 (en) 2014-04-21 2016-10-31 한국해양과학기술원 Measurement chamber for behavior and respiro - physiological activity of microorganism
CN114767071A (en) * 2022-06-21 2022-07-22 海南浙江大学研究院 deep-Yuan-chip-foot-type biological metabolism rate in-situ automatic measuring device and using method
KR102567724B1 (en) * 2022-12-14 2023-08-17 한국해양과학기술원 Quantitating apparatus of biological carbon-pump using a measuring device of ocean microbe respiration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018720B (en) * 2016-05-19 2017-12-05 国家海洋局第二海洋研究所 Culture in situ system and its application method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297132A (en) * 1996-05-08 1997-11-18 Kurita Water Ind Ltd Microorganism respiration velocimeter
JPH10239306A (en) * 1997-02-26 1998-09-11 Kokuritsu Kankyo Kenkyusho Multiple tank type elution measuring device
JPH10260178A (en) * 1997-03-17 1998-09-29 Unyusho Kowan Gijutsu Kenkyusho Measuring device for oxygen consumption of sea bottom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297132A (en) * 1996-05-08 1997-11-18 Kurita Water Ind Ltd Microorganism respiration velocimeter
JPH10239306A (en) * 1997-02-26 1998-09-11 Kokuritsu Kankyo Kenkyusho Multiple tank type elution measuring device
JPH10260178A (en) * 1997-03-17 1998-09-29 Unyusho Kowan Gijutsu Kenkyusho Measuring device for oxygen consumption of sea bottom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275605A (en) * 2007-04-04 2008-11-13 Central Res Inst Of Electric Power Ind Underwater aquatic organism production respiration measuring apparatus
KR101670355B1 (en) 2014-04-21 2016-10-31 한국해양과학기술원 Measurement chamber for behavior and respiro - physiological activity of microorganism
CN114767071A (en) * 2022-06-21 2022-07-22 海南浙江大学研究院 deep-Yuan-chip-foot-type biological metabolism rate in-situ automatic measuring device and using method
KR102567724B1 (en) * 2022-12-14 2023-08-17 한국해양과학기술원 Quantitating apparatus of biological carbon-pump using a measuring device of ocean microbe respiration

Also Published As

Publication number Publication date
JP4944539B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4944539B2 (en) Underwater aquatic production respiration measuring device
CN112822940B (en) System and method for growing aquatic animals
KR102051547B1 (en) IoT-based smart buoy
JP5844495B1 (en) Pressure-adjustable underwater upward feed feeder for water ginger
US11008075B2 (en) Pontoon systems and methods
KR101981496B1 (en) Apparatus for real time monitoring of oxygen deficient water mass for a net type aquaculture place
EP3634122B1 (en) Fish farm
KR20210117775A (en) Floating air injection apparatus
JP3924639B2 (en) Subsidence fish farming equipment using an underwater motor
FR2507436A1 (en) Variable depth cage enclosing fish - has tubular framework with air tight upper part and lower part in communication with water
JP5191777B2 (en) Underwater aquatic production respiration measuring device
KR20170071340A (en) Fish cage apparatus type of buoyancy -fluctuation
KR20090020471A (en) Pipe line pipe water way siphon cistern structure aquarium installation and installation method
KR20160135020A (en) Multi-variable control flow-through equipment for marine organism experiment
KR20170098349A (en) Electrochemical TRO sensor
EP2773190B1 (en) Device for a land-based aquaculture farm
CN105486827B (en) A kind of method and apparatus of the aerobic measurement of bed mud
CN108776046A (en) A kind of ballast water sampling apparatus
JP2005334835A (en) Gas dissolving apparatus
KR20230077206A (en) Bubble generating device used in water
GB2547417A (en) Fish tank and method
NO345478B1 (en) Directly cooled and self-washing liquid lightweight solar power plant
KR20210064592A (en) water ciculating Apparatus for culturing oyster
JP5938005B2 (en) Blue seam removal device
AU2020203828A1 (en) Water monitoring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees