JPH0464026B2 - - Google Patents

Info

Publication number
JPH0464026B2
JPH0464026B2 JP57174010A JP17401082A JPH0464026B2 JP H0464026 B2 JPH0464026 B2 JP H0464026B2 JP 57174010 A JP57174010 A JP 57174010A JP 17401082 A JP17401082 A JP 17401082A JP H0464026 B2 JPH0464026 B2 JP H0464026B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
measurement container
aeration
measurement
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57174010A
Other languages
Japanese (ja)
Other versions
JPS5963567A (en
Inventor
Masao Kaneko
Akio Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP17401082A priority Critical patent/JPS5963567A/en
Publication of JPS5963567A publication Critical patent/JPS5963567A/en
Publication of JPH0464026B2 publication Critical patent/JPH0464026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔技術分野の説明〕 本発明は活性汚泥処理において曝気槽内の混合
液の酸素利用速度を測定する酸素利用速度測定方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Description of the Technical Field] The present invention relates to an oxygen utilization rate measuring method for measuring the oxygen utilization rate of a mixed liquid in an aeration tank in activated sludge treatment.

〔発明の技術的背景および問題点〕[Technical background and problems of the invention]

活性汚泥処理とは、曝気槽の活性汚泥中に存在
する微生物が、下水中に含まれる有機汚濁物質
を、水中の溶存酸素を利用して酸化することから
なりたつている。微生物は、有機汚濁物質の酸化
のために溶存酸素を利用するだけでなく、微生物
自体が生命を維持するためにも溶存酸素を利用し
ている。微生物がこのように溶存酸素を消費する
ため、活性汚泥処理を効果的に行なうには、微生
物の必要とする酸素を曝気により供給する必要が
ある。従つて、微生物の酸素利用速度が活性汚泥
処理における重要な指標となる。
Activated sludge treatment consists of microorganisms present in activated sludge in an aeration tank oxidizing organic pollutants contained in sewage using dissolved oxygen in the water. Microorganisms use dissolved oxygen not only to oxidize organic pollutants, but also to sustain their own lives. Since microorganisms consume dissolved oxygen in this way, in order to effectively perform activated sludge treatment, it is necessary to supply the oxygen required by microorganisms through aeration. Therefore, the oxygen utilization rate of microorganisms is an important index in activated sludge treatment.

従来の酸素利用速度測定装置は第1図に示す構
造であつた。すなわち、2は測定容器で、曝気槽
1内に浸漬されており、この測定容器2の内部の
試料水と接する位置に溶存酸素電極3を取付けて
いる。この溶存酸素電極3の出力は溶存酸素測定
器4に送られ、ここで溶存酸素濃度として測定さ
れる。測定容器2の上部と下部にはそれぞれピン
チバルブ等の開閉弁5と開閉弁6が設けてあり、
それぞれストレーナ7とストレーナ8が接続され
ている。9はスターラで、測定容器2の外壁に取
付けられ、測定容器2内に設けた回転子10を回
転駆動する。11は曝気用空気供給口で、下部連
通口の側壁に開口する。この曝気用空気供給口1
1および開閉弁5,6には電磁弁等の開閉弁1
2,13,14を介してコンプレツサ、計装用空
気等の空気供給装置15が接続される。また開閉
弁12,13,14およびスターラ9は工程制御
装置16に配線されており、これにより予め設定
された順序で動作指令を受ける。さらに溶存酸素
測定器4と配線されている演算処理器17も工程
制御装置16と配線されている。
A conventional oxygen utilization rate measuring device had a structure shown in FIG. That is, a measurement container 2 is immersed in the aeration tank 1, and a dissolved oxygen electrode 3 is attached to the inside of the measurement container 2 at a position in contact with the sample water. The output of this dissolved oxygen electrode 3 is sent to a dissolved oxygen measuring device 4, where it is measured as a dissolved oxygen concentration. An on-off valve 5 and an on-off valve 6, such as a pinch valve, are provided at the top and bottom of the measurement container 2, respectively.
A strainer 7 and a strainer 8 are connected to each other. A stirrer 9 is attached to the outer wall of the measurement container 2 and rotates a rotor 10 provided inside the measurement container 2. Reference numeral 11 denotes an aeration air supply port, which opens in the side wall of the lower communication port. This aeration air supply port 1
1 and the on-off valves 5 and 6 are on-off valves 1 such as solenoid valves.
An air supply device 15 such as a compressor or instrument air is connected via 2, 13, and 14. Further, the on-off valves 12, 13, 14 and the stirrer 9 are wired to a process control device 16, thereby receiving operation commands in a preset order. Furthermore, the arithmetic processor 17 that is wired to the dissolved oxygen measuring device 4 is also wired to the process control device 16 .

上記構成において、測定に当つては、先ず開閉
弁13,14を工程制御装置16で開制御し、ス
ターラ9を駆動して回転子10を回転させ、測定
容器2内の試料水を曝気槽1内の周囲の試料水と
置換する。次に開閉弁6を閉じ、曝気用空気供給
口11から試料水中に空気を供給して曝気する。
この時、試料水中溶存酸素濃度を溶存酸素電極3
および溶存酸素測定器4により測定する。その結
果、所定の溶存酸素濃度に達したことを演算処理
器17が判断すると工程制御装置16により曝気
を停止させる。次にスターラ9を停止し、開閉弁
5を閉じ、気泡を含まない状態で試料水を測定容
器2内に密封した後に、スターラ9を再始動し回
転子10を回転させ試料水を撹拌しながら溶存酸
素測定器4により溶存酸素濃度の減少を測定す
る。この溶存酸素濃度の減少から演算処理器17
により酸素利用速度を算出する。
In the above configuration, for measurement, first the on-off valves 13 and 14 are controlled to open by the process control device 16, the stirrer 9 is driven to rotate the rotor 10, and the sample water in the measurement container 2 is transferred to the aeration tank 1. Replace with the surrounding sample water inside. Next, the on-off valve 6 is closed, and air is supplied into the sample water from the aeration air supply port 11 for aeration.
At this time, the dissolved oxygen concentration in the sample water is measured by the dissolved oxygen electrode 3.
and measured by dissolved oxygen measuring device 4. As a result, when the arithmetic processor 17 determines that a predetermined dissolved oxygen concentration has been reached, the process control device 16 stops the aeration. Next, the stirrer 9 is stopped, the on-off valve 5 is closed, and the sample water is sealed in the measurement container 2 in a bubble-free state, and then the stirrer 9 is restarted and the rotor 10 is rotated to stir the sample water while stirring the sample water. The decrease in dissolved oxygen concentration is measured using the dissolved oxygen measuring device 4. From this decrease in dissolved oxygen concentration, the arithmetic processor 17
Calculate the oxygen utilization rate.

この酸素利用速度測定装置では測定を長期間継
続すると試料水中の汚物が測定容器2内に付着、
堆積してくる。特に溶存酸素電極3表面と測定容
器2の内壁に付着、堆積した汚物は測定誤差を生
じる。また、溶存酸素電極3は内部液および内部
の検出電極の経時的な劣化によつても測定値が変
動する。従つて、定期的に指示値の点検が必要と
なる。点検は測定容器2を曝気槽1外へ引出し、
溶存酸素電極3を測定容器2から取りはずした
後、飽和溶存酸素溶液中に浸漬して行なう。この
点検および測定容器2の引上げと据付け作業はわ
ずらわしいうえに作業時間もかなりの長時間を要
する。また、測定容器2内壁に付着、堆積した汚
物による測定誤差の点検は適正な方法がなく、実
施されていなかつた。しかし、実際には測定容器
2内壁に付着、堆積した汚物は溶存酸素を消費
し、見かけの酸素利用速度を大きくしている。
In this oxygen utilization rate measuring device, if the measurement is continued for a long period of time, dirt in the sample water will adhere to the inside of the measurement container 2.
It accumulates. In particular, dirt adhering to and accumulating on the surface of the dissolved oxygen electrode 3 and the inner wall of the measurement container 2 causes measurement errors. Furthermore, the measured value of the dissolved oxygen electrode 3 fluctuates due to deterioration of the internal solution and the internal detection electrode over time. Therefore, it is necessary to periodically check the indicated values. For inspection, pull the measurement container 2 out of the aeration tank 1,
After removing the dissolved oxygen electrode 3 from the measurement container 2, the measurement is carried out by immersing it in a saturated dissolved oxygen solution. This inspection, lifting and installation of the measuring container 2 is troublesome and requires a considerable amount of time. Furthermore, there is no proper method for checking measurement errors due to dirt adhering to and accumulating on the inner wall of the measuring container 2, and this has not been carried out. However, in reality, the dirt that adheres to and accumulates on the inner wall of the measurement container 2 consumes dissolved oxygen, increasing the apparent rate of oxygen utilization.

以上のとおり、これまでの酸素利用速度測定装
置では定期的に極めて煩雑な点検が必要なうえ
に、これを実施しても測定容器2内壁の汚れによ
る測定誤差は避けられなかつた。
As described above, conventional oxygen utilization rate measuring devices require extremely complicated inspections on a regular basis, and even if they are carried out, measurement errors due to dirt on the inner wall of the measurement container 2 cannot be avoided.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、測定容器内壁に付着、堆積し
た汚物による溶存酸素の消費に対応する補正値を
求めて正確な酸素利用速度の測定を可能とし、か
つこの補正値を曝気槽内に浸漬したままで求める
ことができる酸素利用速度測定方法を提供するこ
とにある。
The purpose of the present invention is to obtain a correction value corresponding to the consumption of dissolved oxygen due to filth that adheres to and accumulates on the inner wall of a measurement container, thereby making it possible to accurately measure the oxygen utilization rate, and to immerse this correction value in an aeration tank. The object of the present invention is to provide a method for measuring the oxygen utilization rate that can be determined directly.

〔発明の概要〕[Summary of the invention]

本発明は、曝気槽内に連通可能な測定容器内に
空気を送つて測定容器内の汚水を排除した後、校
正液を測定容器内に充満させ、前記校正液が飽和
溶存酸素濃度に達するまで曝気した後この曝気を
停止し、撹拌は継続した状態で溶存酸素濃度を測
定し、その単位時間当りの減少速度を求め、その
大きさを測定容器内壁に付着した汚物による酸素
消費に対応した補正値として求めることにより正
確な酸素利用速度の測定を可能とすると共に、こ
の補正値を曝気槽内に浸漬したまま求め得るよう
に構成したものである。
In the present invention, air is sent into a measurement container that can be communicated with an aeration tank to remove sewage in the measurement container, and then the measurement container is filled with a calibration solution until the calibration solution reaches a saturated dissolved oxygen concentration. After aeration, the aeration is stopped, stirring is continued, the dissolved oxygen concentration is measured, the rate of decrease per unit time is determined, and its magnitude is corrected to account for oxygen consumption due to dirt adhering to the inner wall of the measurement container. By determining the value as a value, it is possible to accurately measure the oxygen utilization rate, and this correction value can be determined while being immersed in the aeration tank.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例により詳細
に説明する。
Hereinafter, the present invention will be explained in detail with reference to an embodiment shown in the drawings.

第2図は本発明による酸素利用速度測定装置の
一実施例を示す構成図である。図において、22
は校正液供給口で、測定容器21内の下部に開口
する。この校正液供給口22は電磁弁等の開閉弁
23を介して校正液供給装置24と接続する。校
正液供給装置24は、純水、水道水等の、飽和溶
存酸素溶液となりうる液体を加圧して供給するも
ので、工程制御装置25により制御される。ま
た、上部のストレーナ26は配管27を介して上
部開閉弁5に接続される。上記配管27は一端が
開閉弁5の上部に接続され、曝気槽1の水面に向
かつて延びた後に曲折し、曝気槽1水面方向とは
反対に向かつて延びた他端がストレーナ26と接
続されている。28は温度センサで、測定容器2
1の側壁に設けてある。この温度センサ28は温
度測定器29に配線され、温度測定器29は演算
処理器30に配線されている。
FIG. 2 is a block diagram showing an embodiment of the oxygen utilization rate measuring device according to the present invention. In the figure, 22
is a calibration solution supply port, which opens at the bottom of the measurement container 21. This calibration liquid supply port 22 is connected to a calibration liquid supply device 24 via an on-off valve 23 such as a solenoid valve. The calibration liquid supply device 24 supplies a pressurized liquid that can become a saturated dissolved oxygen solution, such as pure water or tap water, and is controlled by the process control device 25 . Further, the upper strainer 26 is connected to the upper opening/closing valve 5 via a pipe 27. The piping 27 has one end connected to the upper part of the on-off valve 5, extends toward the water surface of the aeration tank 1, and then bends, and the other end, which extends toward the opposite direction to the water surface of the aeration tank 1, is connected to the strainer 26. ing. 28 is a temperature sensor, measuring container 2
It is provided on the side wall of 1. This temperature sensor 28 is wired to a temperature measuring device 29, and the temperature measuring device 29 is wired to an arithmetic processor 30.

次に本発明の作用について説明する。測定時は
第1図より説明した従来の酸素利用速度測定装置
と同一の操作を行なう。次に溶存酸素電極3の経
時的な特性変化を点検する場合には、まず測定容
器21内に溜つていた試料水(汚水)を曝気槽1
内に向つて排除する。このためには開閉弁6を開
き、開閉弁5を閉じ、曝気用空気供給口11から
測定容器21内に空気を満たす。続いて、開閉弁
6を閉じた後、開閉弁5を開き、曝気用空気供給
口11から空気を供給し配管27内に空気を満た
す。再び、開閉弁5を閉じ、開閉弁6を開き曝気
用空気供給口11から空気を供給することで、測
定容器21内と配管27内に空気を満たす。この
動作により測定容器21内の試料水はほぼ完全に
排除される。次に開閉弁6を閉じた後に開閉弁5
を開いた状態で、校正液供給口22から純水、水
道水等の校正液を、測定容器21内から溢れるま
で供給する。このことで測定容器21内を校正液
で確実に満たすことができる。次にスターラ9を
駆動し回転子10で校正液を撹拌しながら曝気用
空気供給口11から空気を供給し、校正液を曝気
する。曝気は測定容器21内の校正液が飽和溶存
酸素濃度に到達するまで行なう。一般には0.5〜
2/分の曝気空気流量で1〜10分間曝気すれば
飽和溶存酸素濃度に達する。この飽和溶存酸素濃
度の校正液を溶存酸素電極3および溶存酸素測定
器4で測定する。一方、温度センサ28および温
度測定器29により校正液の水温を測定する。飽
和溶存酸素濃度は水温により辺かするが、その値
は既知である。従つて、測定した校正液の水温か
ら既知の飽和溶存酸素濃度がわかる。この既知の
飽和溶存酸素濃度と溶存酸素測定器4による実際
の測定値との差が、溶存酸素電極3の汚れおよび
電極固有の経時的特性変化である。
Next, the operation of the present invention will be explained. At the time of measurement, the same operation as in the conventional oxygen utilization rate measuring device explained with reference to FIG. 1 is performed. Next, when checking changes in the characteristics of the dissolved oxygen electrode 3 over time, first pour the sample water (sewage) accumulated in the measurement container 21 into the aeration tank 2.
Eliminate inward. For this purpose, the on-off valve 6 is opened, the on-off valve 5 is closed, and the measurement container 21 is filled with air from the aeration air supply port 11. Subsequently, after closing the on-off valve 6, the on-off valve 5 is opened, and air is supplied from the aeration air supply port 11 to fill the pipe 27 with air. The on-off valve 5 is closed again, the on-off valve 6 is opened, and air is supplied from the aeration air supply port 11, thereby filling the measuring container 21 and the piping 27 with air. By this operation, the sample water in the measurement container 21 is almost completely removed. Next, after closing the on-off valve 6, the on-off valve 5
In the opened state, a calibration solution such as pure water or tap water is supplied from the calibration solution supply port 22 until it overflows from inside the measurement container 21. This allows the measurement container 21 to be reliably filled with the calibration liquid. Next, the stirrer 9 is driven to aerate the calibration liquid by supplying air from the aeration air supply port 11 while stirring the calibration liquid with the rotor 10. Aeration is continued until the calibration solution in the measurement container 21 reaches a saturated dissolved oxygen concentration. Generally 0.5~
Saturated dissolved oxygen concentration is reached by aeration for 1 to 10 minutes at an aeration air flow rate of 2/min. This calibration solution for saturated dissolved oxygen concentration is measured using a dissolved oxygen electrode 3 and a dissolved oxygen measuring device 4. On the other hand, the temperature sensor 28 and temperature measuring device 29 measure the water temperature of the calibration liquid. The saturated dissolved oxygen concentration varies depending on water temperature, but its value is known. Therefore, the known saturated dissolved oxygen concentration can be determined from the measured water temperature of the calibration solution. The difference between this known saturated dissolved oxygen concentration and the actual value measured by the dissolved oxygen measuring device 4 is due to contamination of the dissolved oxygen electrode 3 and changes in characteristics specific to the electrode over time.

このようにして、測定容器21と溶存酸素電極
3を曝気槽1に浸漬した状態で、曝気槽1外にお
ける操作で溶存酸素電極3の特性変化を点検出来
る。特性変化を確認した場合には溶存酸素測定器
4を校正する。この校正は溶存酸素測定器4と温
度測定器29からの信号により演算処理器30で
自動的に行なうこともできる。
In this way, with the measurement container 21 and dissolved oxygen electrode 3 immersed in the aeration tank 1, changes in the characteristics of the dissolved oxygen electrode 3 can be inspected by operating outside the aeration tank 1. If a change in characteristics is confirmed, the dissolved oxygen measuring device 4 is calibrated. This calibration can also be automatically performed by the arithmetic processor 30 using signals from the dissolved oxygen measuring device 4 and the temperature measuring device 29.

上記溶存酸素電極3の点検を実施後、曝気を停
止し、スターラ9による撹拌は継続した状態で校
正液の溶存酸素濃度を測定する。ここで、測定容
器21内壁に汚物が付着、堆積した場合としない
場合では、溶存酸素濃度の経時的変化に第3図に
示すような差が生じる。第3図に示した実線aは
測定容器21内壁に汚物の付着、堆積がない場合
の測定結果であり、溶存酸素濃度の減少速度r
(=溶存酸素濃度変化/経過時間=△c/△t)は極め
て小さい。
After inspecting the dissolved oxygen electrode 3, the aeration is stopped and the dissolved oxygen concentration of the calibration solution is measured while stirring by the stirrer 9 is continued. Here, a difference as shown in FIG. 3 occurs in the change in dissolved oxygen concentration over time depending on whether or not dirt adheres or accumulates on the inner wall of the measurement container 21. The solid line a shown in FIG.
(=dissolved oxygen concentration change/elapsed time=Δc/Δt) is extremely small.

これに対し、測定容器21内壁に汚物が付着、堆
積した場合には第3図実線bに示したように溶存
酸素の減少速度が大きくあらわれる。
On the other hand, when dirt adheres to or accumulates on the inner wall of the measurement container 21, the rate of decrease in dissolved oxygen appears to be large, as shown by the solid line b in FIG.

従つて、酸素利用速度測定における溶存酸素濃
度減少が試料水中の微生物による酸素消費だけで
なく、測定容器21内壁に付着、堆積した汚物に
よる酸素消費、すなわち、実線bの差との合計と
なるため、酸素利用速度が大きくなる。
Therefore, the decrease in dissolved oxygen concentration in oxygen utilization rate measurement is the sum of not only the oxygen consumption by microorganisms in the sample water but also the oxygen consumption by the filth that has adhered and accumulated on the inner wall of the measurement container 21, that is, the difference between solid line b. , the rate of oxygen utilization increases.

以上のことから、溶存酸素電極3の点検後、ス
ターラ9は継続して駆動させ、曝気を停止し、校
正液の溶存酸素減少を溶存酸素電極3および溶存
酸素測定器4により測定する。これにより測定容
器21内に付着堆積した汚物による溶存酸素の消
費を点検でき、汚物による消費が確認された場合
には酸素利用速度測定値を補正する。この補正は
測定値を人手により計算しても実施できるが、わ
ずらわしいため演算処理器30により自動補正す
ると効率的である。
From the above, after inspecting the dissolved oxygen electrode 3, the stirrer 9 is driven continuously, aeration is stopped, and the decrease in dissolved oxygen in the calibration solution is measured using the dissolved oxygen electrode 3 and the dissolved oxygen measuring device 4. This makes it possible to check the consumption of dissolved oxygen by the filth deposited in the measurement container 21, and if consumption by filth is confirmed, the measured value of the oxygen utilization rate is corrected. This correction can be performed by manually calculating the measured values, but since it is troublesome, it is more efficient to perform automatic correction using the arithmetic processor 30.

前記説明は溶存酸素電極3の特性変化と測定容
器21内壁の汚れによる酸素消費の点検および校
正についてのみであるが、それぞれの校正量の積
算値を演算処理器30に演算記憶させ、この値が
あらかじめ設定してあるそれぞれの許容値に到達
した場合に、測定容器21内壁と溶存酸素電極3
の洗浄等が必要となつたことを表示させることも
できる。
The above explanation is only about the change in characteristics of the dissolved oxygen electrode 3 and the inspection and calibration of oxygen consumption due to dirt on the inner wall of the measurement container 21, but the integrated value of each calibration amount is calculated and stored in the processor 30, and this value When each preset allowable value is reached, the inner wall of the measurement container 21 and the dissolved oxygen electrode 3
It is also possible to display a message indicating that cleaning, etc., is required.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなとおり、本発明の酸素利
用速度測定方法によれば、測定容器内壁の汚れに
よる溶存酸素消費に対応する補正値が求められる
ので、正確な酸素利用速度の測定が可能になると
共に、前記補正値を測定時と同様に、測定容器お
よび溶存酸素電極を曝気槽に浸漬した状態で容易
に実施することができる。
As is clear from the above explanation, according to the oxygen utilization rate measurement method of the present invention, a correction value corresponding to dissolved oxygen consumption due to dirt on the inner wall of the measurement container is obtained, so that accurate oxygen utilization rate measurement is possible. In addition, the correction value can be easily measured with the measurement container and the dissolved oxygen electrode immersed in the aeration tank, as in the case of measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を示す構成図、第2図は本発
明による酸素利用速度測定方法に用いる装置の一
実施例を示す構成図、第3図は経過時間と溶存酸
素濃度との関係一測定例を示す説明図である。 1……曝気槽、3……溶存酸素電極、4……溶
存酸素測定器、5,6……開閉弁、9,10……
撹拌装置、11……曝気用空気供給口、12,1
3,14,23……開閉弁、15……空気供給装
置、21……測定容器、22……校正液供給口、
24……校正液供給装置、27……配管、28…
…温度センサ、29……温度測定器。
Fig. 1 is a block diagram showing a conventional device, Fig. 2 is a block diagram showing an embodiment of the device used in the oxygen utilization rate measuring method according to the present invention, and Fig. 3 is a measurement of the relationship between elapsed time and dissolved oxygen concentration. It is an explanatory diagram showing an example. 1... Aeration tank, 3... Dissolved oxygen electrode, 4... Dissolved oxygen measuring device, 5, 6... Open/close valve, 9, 10...
Stirring device, 11...Aeration air supply port, 12,1
3, 14, 23...Opening/closing valve, 15...Air supply device, 21...Measurement container, 22...Calibration liquid supply port,
24... Calibration liquid supply device, 27... Piping, 28...
...Temperature sensor, 29...Temperature measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 曝気槽内に連通可能な測定容器内に空気を送
つて測定容器内の汚水を排除した後、校正液を測
定容器内に充満させ、この測定容器内の校正液を
撹拌しながらこの校正液が飽和溶存酸素濃度に達
するまで曝気した後この曝気を停止し、撹拌は継
続した状態で溶存酸素濃度を測定し、その単位時
間当りの減少速度を求め、その大きさを測定容器
内壁に付着した汚物による酸素消費に対応した補
正値として求めることを特徴とする酸素利用速度
測定方法。
1. After sending air into a measurement container that can communicate with the aeration tank to remove waste water inside the measurement container, fill the measurement container with the calibration solution, and add this calibration solution while stirring the calibration solution in the measurement container. After aeration was carried out until it reached a saturated dissolved oxygen concentration, this aeration was stopped, and the dissolved oxygen concentration was measured while stirring was continued.The rate of decrease per unit time was determined, and its size was measured by measuring the amount of dissolved oxygen adhered to the inner wall of the measuring container. A method for measuring oxygen utilization rate, characterized in that it is determined as a correction value corresponding to oxygen consumption by filth.
JP17401082A 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen Granted JPS5963567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17401082A JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17401082A JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Publications (2)

Publication Number Publication Date
JPS5963567A JPS5963567A (en) 1984-04-11
JPH0464026B2 true JPH0464026B2 (en) 1992-10-13

Family

ID=15971060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17401082A Granted JPS5963567A (en) 1982-10-05 1982-10-05 Method and device for measuring velocity in using oxygen

Country Status (1)

Country Link
JP (1) JPS5963567A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9206796D0 (en) * 1992-03-27 1992-05-13 Thames Water Utilites Limited Apparatus and method for monitoring condition of a biomass
CN113916849B (en) * 2021-09-10 2022-07-29 山东省科学院海洋仪器仪表研究所 Calibration method and calibration device for optical dissolved oxygen sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797432A (en) * 1980-12-09 1982-06-17 Daido Steel Co Ltd Oxygen meter and its using method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797432A (en) * 1980-12-09 1982-06-17 Daido Steel Co Ltd Oxygen meter and its using method

Also Published As

Publication number Publication date
JPS5963567A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
US5198192A (en) Apparatus for detecting ingredient in urine, a toilet stool equipped with a urine detecting device and a room for urine detecting facility
US6763714B2 (en) Method and apparatus for controlling the level of liquids
CN201331497Y (en) Permanganate index on-line automatic monitor device
EP0346083B1 (en) Apparatus for detecting ingredient in urine, and a toilet stool equipped with a urine detecting device
JPH0464026B2 (en)
JPH07243964A (en) Water quality measuring device, water quality measuring method, and waste water treating method
JP3615954B2 (en) In-tank liquid level detector for substrate processing equipment
US20020050460A1 (en) Method and apparatus for calibrating a pH meter
JP3497429B2 (en) Underwater alkalinity measuring device
US3949611A (en) Sample collecting system
JP3837350B2 (en) Sampling device
JPS5999353A (en) Method and apparatus for measuring bod
CN201434785Y (en) Precision metering device of water quality analyzer
JPS5888646A (en) Measuring apparatus for utilizing velocity of oxygen
CN108645766A (en) Sludge settling ratio online auto monitoring device
JP3567453B2 (en) Activity evaluation test equipment
JPH0633415Y2 (en) Water quality measuring device
JP2782713B2 (en) Weight titrator and titration method using the same
CN212301221U (en) Sludge settlement ratio in-situ automatic detection device
CN208313763U (en) Sludge settling ratio online auto monitoring device
JPS6116523Y2 (en)
JPS59212755A (en) Device for measuring oxygen utilizing speed
JPS5890158A (en) Measuring device for oxygen utilization velocity
JPH0747731Y2 (en) Electrolyte concentration measuring device
JPH0622209Y2 (en) Respiratory rate measuring device