JPS5961162A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5961162A
JPS5961162A JP17215582A JP17215582A JPS5961162A JP S5961162 A JPS5961162 A JP S5961162A JP 17215582 A JP17215582 A JP 17215582A JP 17215582 A JP17215582 A JP 17215582A JP S5961162 A JPS5961162 A JP S5961162A
Authority
JP
Japan
Prior art keywords
chip
elements
circuit
semiconductor integrated
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17215582A
Other languages
Japanese (ja)
Inventor
Haruo Tamada
玉田 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17215582A priority Critical patent/JPS5961162A/en
Publication of JPS5961162A publication Critical patent/JPS5961162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analogue/Digital Conversion (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the semiconductor integrated circuit, in which relative accuracy among circuit elements in an IC chip is excellent even when the circuit is enclosed in a package, by arranging each of element pairs requiring relative accuracy among the elements at symmetrical positions to the central point or the central axis of the semiconductor chip. CONSTITUTION:The circuit elements 12a, 12b are arranged at the positions as point symmetries to the central point 14 of the IC chip 10. Consequently, the circuit is enclosed in the package, and stress applied to both elements 12a, 12b is approximately equalized mutually. Accordingly, the quantities of change of element values are also equalized mutually, thus maintaining the relative accuracy of both elements at a high value. It is preferable that not only the positions but also shapes and the directions of extensions are symmetrized mutually in these element pairs 12a and 12b.

Description

【発明の詳細な説明】[Detailed description of the invention]

(1)発 (1) Departure

【夕]の技術分野 本発明はアナログの半導体集積回路に関する。 (2)技術の背景 高’1h11度のA/、コンバータヤD/Aコンバータ
では、その一部回路素子間で非常に高い相対精度を要求
される。例えばD/Aコンバータにおいて、基準電流発
生用抵抗の抵抗値と出力電流電圧変換用フィードバック
抵抗の抵抗値とは、非常に高い精度で互いに等しいかあ
るいは両者の比が一定となることが要求される。 この種のデバイスを半導体集積回路(半導体IC)で構
成しようとする場合、マスク技術、プロセス技術が大幅
に進歩している近年の技術によれば、回路素子間の相対
精度をかなりの程度まで上げるととができ、従ってかな
シ高精度のICチップを形成することができる。 (3)従来技術と問題点 しかしながら上述の如き高精度化は、チップ単体である
ときのみ、言えることであり、この種のICチップをパ
ッケージングした場合、回路素子にかなシの特性変化が
生じてし咬う。即ち、パンケージングは、一般にセラミ
ック板の上に設けられた金属基板にICチップを種々の
接着剤、例えば金シリコン(AuSi)、金(Au)、
金ペースト。 等でダイス付けすることによって行われるが、この金属
基板とICチップとの熱膨張係数に大きな差があること
から、パッケージ温度が変化するとチップに応力が印加
され、これによってチップ内の素子値が変動しでし捷う
のである。 (4)本発明の目的 従って本発明は従来技術の上述の問題を解消するもので
あり、本発明の目的はパッケージングした場合にもIC
チップ内の回路素子間の相対精度が悪化しないようにし
た半導体集積回路を提供することにある。 (5)発明の構成 上述した目的を達成する本発明の特徴は、半導体チップ
内に形成される素子であって素子間の相対精度を必要と
する素子対の各々を、該チップの中心点もしくは中心軸
に対して対称の位置に配置せしめたことにある。 (6)  発明の実施例 以下図面を用いて本発明の詳細な説明する。 第1図は本発明の一実施例を表わしている。 同図において、10はICチップであり、12a及び1
2bはICチップ10内に形成された回路′素子(抵抗
素子)であって高い相対精度を要求されるものである。 これらの回路素子12a、12bはICチップ10の中
心点14に対して点対称となる位置に配置されている。 これによシ、パッケージに封入した後画素子12a、1
2bに印加される応力は互いにほぼ等しくなり、従って
素子値変化量も互いに等しくなるから画素子の相対精度
は高い値に維持される。なお、これらの素子対12a及
び12bは、位置ばかりでなくその形状及び伸長方向を
も互いに対称とすることが望ましい。 第2図は本発明の他の実施例を表わしている。 この例では、回路素子16a及び16bがICチップ】
8の縦方向の中心線20に対して線対称の位置に設けら
れている。本実施例の作用効果は第1図の実施例の場合
と同じである。素子対16a及び16bも位置ばかって
なくその形状及び伸長方向を互いに対称とすることが望
ましい。 第3図は本発明のさらに他の実施例を表わしている。こ
の例は回路素子22a及び22bがICチップ24の横
方向の中心軸線26に対して線対称の位置に設けられて
いる。中心線が横方向であることを除いて本実施例は第
2図の実施例と全く同じである。 以上3つの実施例について述べたが、これらの回路素子
対は、できるだけICチップの外周に近い位置に配置す
ることが望ましい。即ち、第4図(A)、 (B)に示
す如く、ICチップ28 に印加さシ)、た応力に対す
る各抵抗素子30の抵抗変化率はICチップ28の中心
部に位置するものほど大きくなるのである。なお、第4
図(A)は、第4図(B)に示す如<ICチップ28に
パターニングされた抵抗素子30そり、ぞtl、につい
て、一定心力をICチップに印加した際の抵抗変動率を
表わしたものである。 第5図及び第6図はそれぞれ本発明のさらに他の実施例
であり、高い相対精度を要求される回路素子のパターン
形状が多少複雑となった場合である。 第5図の実施例は抵抗素子の場合であり、ICチップ3
2上に形成された各抵抗素子34 a、 34 b。 34 c、 35 dは、ICチップ32の中心点36
に対して位置、形状及び伸長方向共互いに点対称に設け
られている。第6図の実施例はトランジスタの場合であ
り、ICチップ38上に形成された各トランジスタ素子
40a、40b、40c、40dは、チップ中心点42
に対して位置、形状、伸長方向共に互いに点対称に設け
られている。なお、トランジスタ素子40aにおいてE
はエミッタ、Bはペース、Cはコレクタをそれぞれ示し
ている。 (7)発明の効果 以上詳細に説明したように本発明によれば、ICチップ
の中心点もしくは中心軸に対して対称位置に素子対の各
々が配置されているため、パッケージVC封入した場合
にもこれらの素子間の相対精度は、たとえ熱膨張に基づ
く応力がICチップに印加された場合にもさほど悪化ぜ
す、従って素子間の相対精度の良好な半導体集積回路が
実現できる。
TECHNICAL FIELD OF THE INVENTION The present invention relates to analog semiconductor integrated circuits. (2) Background of the Technology An A/D/A converter with a height of 1h11 degrees requires extremely high relative precision between some of its circuit elements. For example, in a D/A converter, the resistance value of the reference current generation resistor and the resistance value of the output current/voltage conversion feedback resistor are required to be equal to each other with very high precision, or the ratio of the two must be constant. . When attempting to construct this type of device using semiconductor integrated circuits (semiconductor ICs), recent advances in mask technology and process technology have enabled the relative precision between circuit elements to be increased to a considerable degree. Therefore, a high-precision IC chip can be formed. (3) Conventional technology and problems However, the above-mentioned high precision can only be achieved in the case of a single chip, and when this type of IC chip is packaged, slight changes in the characteristics of the circuit elements occur. I bite. That is, pancaging generally involves attaching an IC chip to a metal substrate provided on a ceramic plate using various adhesives such as gold silicon (AuSi), gold (Au),
gold paste. However, since there is a large difference in the coefficient of thermal expansion between this metal substrate and the IC chip, when the package temperature changes, stress is applied to the chip, which causes the element values within the chip to change. It changes and changes. (4) Purpose of the present invention Therefore, the present invention solves the above-mentioned problems of the prior art, and the purpose of the present invention is to
An object of the present invention is to provide a semiconductor integrated circuit in which relative accuracy between circuit elements within a chip is prevented from deteriorating. (5) Structure of the Invention A feature of the present invention that achieves the above-mentioned object is that each element pair, which is an element formed in a semiconductor chip and requires relative precision between elements, is positioned at the center point of the chip or This is because they are placed in symmetrical positions with respect to the central axis. (6) Embodiments of the invention The present invention will be described in detail below with reference to the drawings. FIG. 1 represents one embodiment of the invention. In the figure, 10 is an IC chip, 12a and 1
2b is a circuit element (resistance element) formed within the IC chip 10, which requires high relative accuracy. These circuit elements 12a and 12b are arranged at positions symmetrical with respect to the center point 14 of the IC chip 10. Accordingly, after being sealed in a package, the pixel elements 12a, 1
The stresses applied to the pixels 2b are approximately equal to each other, and therefore the amounts of change in element values are also equal to each other, so that the relative accuracy of the pixel elements is maintained at a high value. Note that it is desirable that these element pairs 12a and 12b are symmetrical not only in position but also in shape and direction of extension. FIG. 2 represents another embodiment of the invention. In this example, the circuit elements 16a and 16b are IC chips]
8 is provided at a line symmetrical position with respect to the longitudinal center line 20 of the frame 8. The effects of this embodiment are the same as those of the embodiment shown in FIG. It is desirable that the element pairs 16a and 16b are symmetrical not only in their positions but also in their shapes and extending directions. FIG. 3 shows yet another embodiment of the invention. In this example, the circuit elements 22a and 22b are provided at positions symmetrical to the horizontal center axis 26 of the IC chip 24. This embodiment is identical to the embodiment of FIG. 2, except that the centerline is in the transverse direction. Although the three embodiments have been described above, it is desirable that these pairs of circuit elements be placed as close to the outer periphery of the IC chip as possible. That is, as shown in FIGS. 4(A) and 4(B), the rate of change in resistance of each resistive element 30 with respect to the stress applied to the IC chip 28 increases as the resistance element 30 is located in the center of the IC chip 28. It is. In addition, the fourth
Figure (A) shows the rate of resistance variation when a constant mental force is applied to the IC chip for the resistance element 30 patterned on the IC chip 28 as shown in Figure 4 (B). It is. FIGS. 5 and 6 show still other embodiments of the present invention, in which the pattern shape of the circuit element requiring high relative accuracy is somewhat complicated. The embodiment shown in FIG. 5 is a case of a resistor element, and the IC chip 3
Each resistor element 34a, 34b formed on 2. 34 c and 35 d are the center point 36 of the IC chip 32
The positions, shapes, and extension directions are point-symmetrical to each other. The embodiment shown in FIG. 6 is a case of a transistor, and each transistor element 40a, 40b, 40c, 40d formed on an IC chip 38 is connected to a chip center point 40.
They are provided point-symmetrically with respect to each other in terms of position, shape, and direction of extension. Note that in the transistor element 40a, E
indicates the emitter, B indicates the pace, and C indicates the collector. (7) Effects of the Invention As explained in detail above, according to the present invention, each of the element pairs is arranged at a symmetrical position with respect to the center point or central axis of the IC chip. However, the relative accuracy between these elements does not deteriorate significantly even if stress due to thermal expansion is applied to the IC chip, so a semiconductor integrated circuit with good relative accuracy between elements can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図1第3図はそれぞれ本発明の一実施例の
パターン図、 第4図(A)、 CB)は回路素子位俗′と抵抗変動率
との関係を説明する図、 第5り1.嬉6は1はそれぞれ本発明の他の実施例のパ
ターン図である。 10.18,24,28,32.38 ・・ICチップ
、12a、 ]2b、 16a、 16b、 22a、
 22b、 32a、 32b。 32c、 32d、 40a、 40b、 40c、 
40d 、、、回gB2子、14.36.42・・・中
心点、  20.26・・・中心軸。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 第4図
Figures 1, 2, 1 and 3 are pattern diagrams of an embodiment of the present invention, Figures 4 (A) and CB) are diagrams explaining the relationship between circuit element orientation and resistance fluctuation rate, 5th R1. Figures 6 and 1 are pattern diagrams of other embodiments of the present invention. 10.18,24,28,32.38...IC chip, 12a, ]2b, 16a, 16b, 22a,
22b, 32a, 32b. 32c, 32d, 40a, 40b, 40c,
40d,,, GB2 child, 14.36.42...center point, 20.26...center axis. Patent applicant Fujitsu Limited Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akira Yamaguchi Figure 4

Claims (1)

【特許請求の範囲】 1、半導体チップ内に形成される素子であって素子間の
相対精度を必要どする素子対の各々を、該チップの中心
点もしくは中心軸に対して対称の位置に配置せしめたこ
とを特徴とする半導体集積回路。 2、前記素子対の伸長方向を互いに対称とせしめた特許
請求の範囲第1項記載の半導体集積回路。 3、前記素子対を該チップの外周に近い位置に配@せし
めた特許請求の範囲第1項記載の半導体集積回路。
[Claims] 1. Each element pair that is formed in a semiconductor chip and requires relative precision between the elements is arranged at a symmetrical position with respect to the center point or central axis of the chip. A semiconductor integrated circuit characterized by: 2. The semiconductor integrated circuit according to claim 1, wherein the extending directions of the pair of elements are made symmetrical to each other. 3. The semiconductor integrated circuit according to claim 1, wherein the element pair is arranged near the outer periphery of the chip.
JP17215582A 1982-09-30 1982-09-30 Semiconductor integrated circuit Pending JPS5961162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17215582A JPS5961162A (en) 1982-09-30 1982-09-30 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17215582A JPS5961162A (en) 1982-09-30 1982-09-30 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS5961162A true JPS5961162A (en) 1984-04-07

Family

ID=15936581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17215582A Pending JPS5961162A (en) 1982-09-30 1982-09-30 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5961162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694949A (en) * 1984-05-29 1987-09-22 Murata Kikai Kabushiki Kaisha Article selecting system
JPS6316460U (en) * 1986-07-17 1988-02-03
EP0280277A2 (en) * 1987-02-24 1988-08-31 Brooktree Corporation Digital-to-analog converter
JP2005311742A (en) * 2004-04-22 2005-11-04 Nec Electronics Corp Semiconductor integrated circuit device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694949A (en) * 1984-05-29 1987-09-22 Murata Kikai Kabushiki Kaisha Article selecting system
JPS6316460U (en) * 1986-07-17 1988-02-03
EP0280277A2 (en) * 1987-02-24 1988-08-31 Brooktree Corporation Digital-to-analog converter
JP2005311742A (en) * 2004-04-22 2005-11-04 Nec Electronics Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
Spielberger et al. Silicon-on-silicon packaging
US6047467A (en) Printed circuit board layout to minimize the clock delay caused by mismatch in length of metal lines and enhance the thermal performance of microelectronics packages via conduction through the package leads
JPS61117858A (en) Semiconductor device
JPS5961162A (en) Semiconductor integrated circuit
JPH03209781A (en) Manufacture of light source for image sensor
JP2836465B2 (en) Semiconductor device
JPS62194640A (en) Semiconductor integrated circuit using bump mounting
JPH09172036A (en) Manufacturing method for semiconductor package device
JPS58143550A (en) Semiconductor device
JPH0357248A (en) Resin-sealed semiconductor device according to tape carrier system
JPS6217382B2 (en)
JPH0131303B2 (en)
JPH0645527A (en) Semiconductor device
JPS6148944A (en) Semiconductor device
JPH07263448A (en) Manufacture of semiconductor integrated circuit device and electrode to be used in the same
JPH0481863B2 (en)
JPH0539473Y2 (en)
JPH02174252A (en) Pellet packaging method and circuit
JPS61177734A (en) Hybrid ic
JPH0210758A (en) Semiconductor device
JPS6295848A (en) Semiconductor integrated circuit device
JPS6148948A (en) Semiconductor device
JPH1041454A (en) Multi-chip package structure
JPS63104434A (en) Semiconductor device
JPS62122257A (en) Multiple-chip module