JPS596059B2 - Semiconductor surface identification device - Google Patents

Semiconductor surface identification device

Info

Publication number
JPS596059B2
JPS596059B2 JP14804678A JP14804678A JPS596059B2 JP S596059 B2 JPS596059 B2 JP S596059B2 JP 14804678 A JP14804678 A JP 14804678A JP 14804678 A JP14804678 A JP 14804678A JP S596059 B2 JPS596059 B2 JP S596059B2
Authority
JP
Japan
Prior art keywords
light
semiconductor chip
semiconductor
electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14804678A
Other languages
Japanese (ja)
Other versions
JPS5574155A (en
Inventor
清之 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14804678A priority Critical patent/JPS596059B2/en
Publication of JPS5574155A publication Critical patent/JPS5574155A/en
Publication of JPS596059B2 publication Critical patent/JPS596059B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の組立て装置等に利用される半導体
チップ表面、特に電極位置の識別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for identifying the surface of a semiconductor chip, particularly an electrode position, used in a semiconductor device assembly apparatus or the like.

電極が形成されたGaAsp、GaP等のような発光半
導体チップ面にワイヤボンディングを施こす場合、半導
体チップ表面に光が照射されて反射光をITVカメラを
介して映し出すことにより電極位置が読み取られ、ワイ
ヤ供給のためのキヤピラリイの移動方向及び移動量等が
制御されている。
When wire bonding is performed on the surface of a light-emitting semiconductor chip such as GaAsp or GaP on which an electrode is formed, the surface of the semiconductor chip is irradiated with light and the reflected light is projected through an ITV camera to read the electrode position. The direction and amount of movement of the capillary for wire supply are controlled.

ここで比較的鏡面状態に仕上げられた表面をもつ発光半
導体チップに対して、該チップが取付けられているリー
ドフレームは表面の凹凸がはげしく光が照射された際大
部分の光を乱反射させる。従つて半導体チップが取付け
られたリードフレームに光を照射した場合、リードフレ
ームに対して半導体チップ領域を認識することは比較的
容易に行うことができる。しかしワイヤボンディング工
程等においては、半導体チップ領域を認識するだけでは
不充分で、精度の高いボンディングを施こすためには半
導体チップ面に形成された電極位置を確実に認識するこ
とが必要になる。本発明は半導体基板の光吸収特性を利
用して、半導体チップ上に形成された電極領域を容易に
認識することができる半導体表面識別装置を提供する。
Here, while the light-emitting semiconductor chip has a relatively mirror-finished surface, the lead frame to which the chip is attached has a severely uneven surface and causes most of the light to be diffusely reflected when it is irradiated with light. Therefore, when a lead frame to which a semiconductor chip is attached is irradiated with light, it is relatively easy to recognize the semiconductor chip area with respect to the lead frame. However, in a wire bonding process, etc., it is insufficient to simply recognize the semiconductor chip area; in order to perform highly accurate bonding, it is necessary to reliably recognize the positions of electrodes formed on the semiconductor chip surface. The present invention provides a semiconductor surface identification device that can easily recognize electrode regions formed on a semiconductor chip by utilizing the light absorption characteristics of a semiconductor substrate.

まず本発明の原理を説明する。バンドキャップ(Eg)
の半導体基板に、このバンドキャップ(Eg)より大き
いエネルギー(れν)の光が照射された場合の光の吸収
は、理論的にはα・れν=B(れν上g)2 で表わさ
れる。
First, the principle of the present invention will be explained. Band cap (Eg)
When a semiconductor substrate of is irradiated with light with an energy (Reν) larger than this band gap (Eg), the absorption of light is theoretically expressed as α・Reν=B(Reν above g)2 It will be done.

ここでα:吸収係数、れν :光子のエネルギー、B:
定数及びEg:バンドギャップである。″ 半導体基板
のエネルギーギャップEgより小さいエネルギーの光が
照射された状態では、光は半導体基板月を透過する。一
方半導体基板表面に金属膜によつて形成された電極部分
に照射された光は透過することなく反射する。従つて半
導体基板c 表面に形成された電極位置を認識させるた
めには半導体基板表面に照射する光をエネルギーギャッ
プEgより小さいエネルギーの光を選択、し、電極部分
については照射光を直ちに反射させると共に半導体基板
部分では照射光を半導体基板内に入射o させ、該入射
光を半導体基板の底面で乱反射或いは吸収させて半導体
基板表面に出てゆく光をできるだけ少なくし、上記電極
部分からの反射光とは明瞭な差を生じさせることにより
、電極位置情報を得ることができる。5 次に実施例を
挙げて本発明を詳細に説明する。
where α: absorption coefficient, ν: photon energy, B:
Constant and Eg: band gap. '' When irradiated with light with energy smaller than the energy gap Eg of the semiconductor substrate, the light passes through the semiconductor substrate.On the other hand, light irradiated onto the electrode portion formed by a metal film on the surface of the semiconductor substrate does not pass through. Therefore, in order to recognize the position of the electrode formed on the surface of the semiconductor substrate c, the light to be irradiated onto the surface of the semiconductor substrate should be selected to have an energy smaller than the energy gap Eg. In addition to immediately reflecting the light, the irradiated light is made to enter the semiconductor substrate at the semiconductor substrate portion, and the incident light is diffusely reflected or absorbed by the bottom surface of the semiconductor substrate to minimize the light that exits to the surface of the semiconductor substrate. Electrode position information can be obtained by producing a clear difference from the reflected light from the part.5 Next, the present invention will be explained in detail with reference to Examples.

第1図に於て、1はリードフレーム2に縦型に固定され
た例えば発光ダイオードをなす半導体チッごプで、該半
導体チツプ1の表面には、例えば第2図に示す如くチツ
プ面のほぼ中央部にAl等の金属薄膜からなる電極11
が被着され、該電極11を囲む周辺部12が半導体基板
の発光部をなし、該発光部の更に周囲は酸化膜13で被
覆されている。
In FIG. 1, reference numeral 1 denotes a semiconductor chip, for example, a light emitting diode, which is vertically fixed to a lead frame 2. On the surface of the semiconductor chip 1, there is a chip, for example, almost the entire surface of the chip, as shown in FIG. An electrode 11 made of a thin metal film such as Al is located in the center.
A peripheral part 12 surrounding the electrode 11 constitutes a light emitting part of the semiconductor substrate, and the surrounding area of the light emitting part is covered with an oxide film 13.

上記半導体チツプ1は電極1,が設けられた表面と相対
向する面でリードフレーム2とボンデイングされている
。半導体チツプ1のリードフレーム2との接着面は、導
電性接着剤等が用いられるが、半導体チツプ1の底面は
鏡面反射を阻止して半導体基板内に入射された光が一定
方向に向うことなく乱反射されるように凹凸加工される
か、或いは光の吸収特性をもつ接着剤が用いられる。半
導体チツプ1と対向する関係に光学系3を介して半導体
チツプ面からの光を入射するITVカメラ4が設置され
、入射光に対応した映像が形成される。上記光学系3に
は第3図に示すような発光特性をもつハロゲンランプ5
が光源として設けられ、上記半導体チツプ1の表面に光
を照射する。上記光源5と半導体チツプ1間の光路上、
例えば位置A或いは位置Bに光源5からの放射光を選択
するフイルタ6が介挿される。上記半導体チツプ1がG
aASO.6pO.4からなる発光ダイオードである場
合には、エネルギーギャツプEgは約1.9eで、この
エネルギーギヤツプは約650nmの波長に相当するた
め、上記フイルタ6として650nm波長の光よりも長
い光を透過させる第4図に示すような透過特性をもつフ
イルタ6が位置A或いは位置Bに設置される。第5図a
は、上記フイルタ6が設置された光学系を介してカメラ
4に映し出された映像出力信号で、第5図bは更に演算
増幅器を介して増幅処理された後の映像出力信号を示す
The semiconductor chip 1 is bonded to a lead frame 2 at the surface opposite to the surface on which the electrodes 1 are provided. A conductive adhesive or the like is used for the adhesive surface of the semiconductor chip 1 with the lead frame 2, but the bottom surface of the semiconductor chip 1 prevents specular reflection so that the light incident on the semiconductor substrate is not directed in a fixed direction. The surface may be textured to cause diffuse reflection, or an adhesive with light absorption properties may be used. An ITV camera 4 is installed facing the semiconductor chip 1 and receives light from the semiconductor chip surface via an optical system 3 to form an image corresponding to the incident light. The optical system 3 includes a halogen lamp 5 having light emission characteristics as shown in FIG.
is provided as a light source, and irradiates the surface of the semiconductor chip 1 with light. On the optical path between the light source 5 and the semiconductor chip 1,
For example, a filter 6 is inserted at position A or position B to select the emitted light from the light source 5. The semiconductor chip 1 is G
aASO. 6pO. 4, the energy gap Eg is approximately 1.9e, and this energy gap corresponds to a wavelength of approximately 650 nm, so the filter 6 transmits light longer than light with a wavelength of 650 nm. A filter 6 having transmission characteristics as shown in FIG. 4 is installed at position A or position B. Figure 5a
is a video output signal projected onto the camera 4 through the optical system in which the filter 6 is installed, and FIG. 5b shows the video output signal after being further amplified through an operational amplifier.

同図映像出力信号から明らかなように、第2図に示した
半導体チツプ1の外形A、発光領域B及び電極領域Cに
対応して映像出力信号にもレベルの異なつた信号A,b
,eが出力され、増幅処理がなされない状態でも電極領
域Cでの出力信号は、周囲の半導体基板領域Bに比べて
20〜40mも高くなり、増幅処理すれば1V程度のレ
ベル差を得ることができる。このように出力信号にレベ
ル差が生じることに基いてスライスレベルをレベル差間
の適宜の値に設定することにより、二値化された映像信
号から電極位置を認識することができる。即ち、電極)
部11に照射された光は反射されてカメラ4に達するが
、半導体基板部12に照射された光は、光エネルギーが
バンドギヤツプより小さいため反射されるよりも基板内
部に入射され、基板底部に達して乱反射或いは吸収され
る。
As is clear from the video output signal in the same figure, the video output signal also has signals A and b of different levels corresponding to the outer shape A, the light emitting area B, and the electrode area C of the semiconductor chip 1 shown in FIG.
, e are output and even without amplification processing, the output signal in electrode area C is 20 to 40 m higher than that in the surrounding semiconductor substrate area B, and if amplification processing is performed, a level difference of about 1V can be obtained. I can do it. By setting the slice level to an appropriate value between the level differences based on the occurrence of level differences in the output signals in this way, the electrode positions can be recognized from the binarized video signal. i.e. electrode)
The light irradiated on the semiconductor substrate section 11 is reflected and reaches the camera 4, but the light irradiated on the semiconductor substrate section 12 has optical energy smaller than the band gap, so it enters the inside of the substrate rather than being reflected and reaches the bottom of the substrate. reflected or absorbed.

そのため再び半導体基板表面に達してカメラ4に入射さ
れる光はほとんどなく、上記電極部からの反射光との間
で強度差が生じ、半導体基板部と電極部間で出力信号に
レベル差が生じ、半導体チツプの表面状態が認識できる
。第6図a及び第6図bはフイルタ6を介挿することな
く、光源5から放射された光を半導体チツプ1の表面に
照射した状態で得られるカメラ4の映像出力信号及び該
映像出力信号を増幅した出力信号を示す。
Therefore, almost no light reaches the surface of the semiconductor substrate and enters the camera 4, and a difference in intensity occurs between the light reflected from the electrode section and a level difference in the output signal between the semiconductor substrate section and the electrode section. , the surface condition of a semiconductor chip can be recognized. 6a and 6b show the video output signal of the camera 4 and the video output signal obtained when the surface of the semiconductor chip 1 is irradiated with light emitted from the light source 5 without interposing the filter 6. This shows the output signal after amplifying the .

フイルタ6が介挿されていないためバンドギャツプより
大きいエネルギーをもつた光も照射され、このような大
きなエネルギーの光は半導体表面で反射されてカメラ4
に入射され、映像出力信号の形成に寄与する。従つて半
導体基板領域と電極領域からの映像出力信号間に明瞭な
レベル差がなく、両領域間を区別することが極めて困難
である。以上の如く本発明によれば、半導体チップに形
成された電極等を認識する装置に於て、半導体チツプに
半導体材料のバンドギヤツプより小さいエネルギーの光
を照射して、電極部からの反射光と半導体基板への入射
光との間でカメラによつて形成される映像出力信号のレ
ベルに明瞭な差を生じさせることにより、電極位置を簡
単により確実に認識することができ、半導体装置の組立
て、特にワイャボンデイング等の工程において組立て精
度を高め、半導体装置の信頼性を向土させることができ
る。
Since the filter 6 is not inserted, light with energy greater than the band gap is also irradiated, and this high energy light is reflected by the semiconductor surface and transmitted to the camera 4.
and contributes to the formation of a video output signal. Therefore, there is no clear level difference between the video output signals from the semiconductor substrate region and the electrode region, and it is extremely difficult to distinguish between the two regions. As described above, according to the present invention, in an apparatus for recognizing electrodes formed on a semiconductor chip, the semiconductor chip is irradiated with light having an energy smaller than the bandgap of the semiconductor material, and the light reflected from the electrode portion and the semiconductor By creating a clear difference in the level of the video output signal formed by the camera between the light incident on the substrate and the level of the video output signal formed by the camera, the electrode position can be recognized easily and more reliably, making it particularly useful in the assembly of semiconductor devices. It is possible to improve assembly accuracy in processes such as wire bonding and improve the reliability of semiconductor devices.

本発明は、実施例の如く垂直落射照明方式に限られるも
のではなく、角度θ(0〈θ〈90限)で斜めから照明
する反射式の場合でも同様に実施することができる。
The present invention is not limited to the vertical epi-illumination method as in the embodiment, but can be similarly implemented in the case of a reflective method in which illumination is performed obliquely at an angle θ (0<θ<90 limit).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例を示す概略構成図、第2図
は半導体チツプの正面図、第3図は光源の発光特性図、
第4図はフイルタの透過特性図、第5図A,bは本発明
によるフィルタを用いた場合の映像出力信号図、第6図
A,bはフイルタを用いない場合の映像出力信号図であ
る。 1:半導体チツプ、11:電極部、12:半導体基板部
、3:光学系、4:ITカメラ、5:光学系、6:フイ
ルタ。
FIG. 1 is a schematic configuration diagram showing an embodiment according to the present invention, FIG. 2 is a front view of a semiconductor chip, and FIG. 3 is a diagram of light emission characteristics of a light source.
Figure 4 is a transmission characteristic diagram of the filter, Figures 5A and b are video output signal diagrams when the filter according to the present invention is used, and Figures 6A and b are video output signal diagrams when the filter is not used. . 1: semiconductor chip, 11: electrode section, 12: semiconductor substrate section, 3: optical system, 4: IT camera, 5: optical system, 6: filter.

Claims (1)

【特許請求の範囲】 1 表面に電極領域が形成された半導体チップ面の映像
を形成する装置において、半導体チップ基板のバンドギ
ャップよりも小さいエネルギーの光を投射する光学系と
、該投射光による半導体チップ面の映像を入力信号とし
て映像出力信号を形成する作像手段とを備えてなる半導
体表面識別装置。 2 前記半導体チップは、表面が乱反射面或いは光吸収
面に加工されたリードフレームに塔載されてなることを
特徴とする特許請求の範囲第1項記載の半導体表面識別
装置。
[Scope of Claims] 1. An apparatus for forming an image of a semiconductor chip surface having an electrode region formed on the surface, comprising: an optical system that projects light with an energy smaller than the bandgap of a semiconductor chip substrate; A semiconductor surface identification device comprising an image forming means for forming a video output signal using an image of a chip surface as an input signal. 2. The semiconductor surface identification device according to claim 1, wherein the semiconductor chip is mounted on a lead frame whose surface is processed to have a diffused reflection surface or a light absorption surface.
JP14804678A 1978-11-29 1978-11-29 Semiconductor surface identification device Expired JPS596059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14804678A JPS596059B2 (en) 1978-11-29 1978-11-29 Semiconductor surface identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14804678A JPS596059B2 (en) 1978-11-29 1978-11-29 Semiconductor surface identification device

Publications (2)

Publication Number Publication Date
JPS5574155A JPS5574155A (en) 1980-06-04
JPS596059B2 true JPS596059B2 (en) 1984-02-08

Family

ID=15443921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14804678A Expired JPS596059B2 (en) 1978-11-29 1978-11-29 Semiconductor surface identification device

Country Status (1)

Country Link
JP (1) JPS596059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727044A (en) * 1980-07-25 1982-02-13 Toshiba Corp Automatic positioning device

Also Published As

Publication number Publication date
JPS5574155A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US11226402B2 (en) Optical ranging systems including optical cross-talk reducing features
US6271758B1 (en) Light projection device for a photoelectric smoke sensor
JPH11339295A (en) Integrated mirror and laser/detector integrated device using reflected and diffracted light beams
US4812631A (en) Bar code and read-out method thereof
JPS596059B2 (en) Semiconductor surface identification device
KR890002841A (en) Optical pickup
JPH04196189A (en) Semiconductor laser
EP1293768A3 (en) Sensor utilizing attenuated total reflection
JP2800396B2 (en) Chip observation device
JPS6273786A (en) Semiconductor light emitting device
US20110267453A1 (en) Surface inspecting apparatus and method
JPH0429352A (en) Manufacture of semiconductor device
US4153821A (en) Optical scanner masking means
JPS58216430A (en) Preparation of semiconductor device
JPH04369464A (en) Light scattering type particle detector
JPS58106947A (en) Optical sensor
JP2002195808A (en) Surface displacement detector
JPH1115915A (en) Illuminator for symbol reading
JP2949961B2 (en) How to measure the effective width of the lead
JPS60135805A (en) Pattern detecting method and apparatus therefor
JPH01264231A (en) Optical inspection apparatus
JPH109950A (en) Reflective detection device for object
JPS61139704A (en) Optical positioning method
JPH0653763A (en) Automatic gain controller
JPH09311928A (en) Camera incororating coaxial downward illumination