JPH04369464A - Light scattering type particle detector - Google Patents

Light scattering type particle detector

Info

Publication number
JPH04369464A
JPH04369464A JP3173106A JP17310691A JPH04369464A JP H04369464 A JPH04369464 A JP H04369464A JP 3173106 A JP3173106 A JP 3173106A JP 17310691 A JP17310691 A JP 17310691A JP H04369464 A JPH04369464 A JP H04369464A
Authority
JP
Japan
Prior art keywords
scattered light
flow cell
scattered
light detector
concave mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3173106A
Other languages
Japanese (ja)
Inventor
Kazuo Ichijo
和夫 一条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP3173106A priority Critical patent/JPH04369464A/en
Publication of JPH04369464A publication Critical patent/JPH04369464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enhance detection sensitivity by effectively condensing scattering light in the title detector. CONSTITUTION:A concave mirror 19 reflecting the scattering light advancing in the direction opposite to a scattering light detector in the direction of the scattering light detector 15 is provided to the side surface of the flow cell 12 opposed to the scattering light detector 15. In addition to said mirror 19, a convex lens 16 capable of allowing scattering light to straightly advance at the side surface position of the flow cell 12 without refracting the same is arranged to the side surface of the flow cell on the side of the scattering light detector. By this constitution, a fine particle can be detected with still more enhanced detection sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光散乱式粒子検出装置に
関し、特にフローセル流路内の微粒子を検出する装置に
適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light scattering particle detection device, and is particularly suitable for use in a device for detecting fine particles in a flow cell channel.

【0002】0002

【従来の技術】光散乱式粒子検出装置1は、図5に示す
ようにフローセル2のほぼ中央部に設けられた流路2A
を流れる試料流体に光源光LA1を集光レンズ3を介し
て照射し、試料流体に微粒子が含まれているとき、当該
微粒子から得られる散乱光を集光レンズ4を通じて散乱
光検出器5において検出し、その検出信号S1を用いて
微粒子の通過を検出するようになされている。
2. Description of the Related Art A light scattering particle detection device 1 has a flow path 2A provided approximately in the center of a flow cell 2, as shown in FIG.
A sample fluid flowing through the sample fluid is irradiated with light source light LA1 through a condenser lens 3, and when the sample fluid contains fine particles, scattered light obtained from the fine particles is detected by a scattered light detector 5 through a condenser lens 4. The passage of fine particles is detected using the detection signal S1.

【0003】0003

【発明が解決しようとする課題】ところが、この種の従
来の光散乱式粒子検出装置1においては、流路2Aにお
いて生じた散乱光は、図6に示すように例えば石英、サ
フアイヤ等を原料とするセル2と空気との屈折率の相違
に基づいて、セル2の厚味を透過して空気中に出る際に
、セル外壁位置において外側に拡がるように屈折し、そ
のため集光レンズ4を通過できる散乱光の光量が減少す
る結果になるように構成されている。
[Problems to be Solved by the Invention] However, in this type of conventional light scattering type particle detection device 1, the scattered light generated in the flow path 2A is caused by using a material such as quartz or sapphire as a raw material, as shown in FIG. Based on the difference in refractive index between the cell 2 and air, when the light passes through the thickness of the cell 2 and exits into the air, it is refracted so as to spread outward at the cell outer wall position, and therefore passes through the condenser lens 4. The structure is such that the amount of scattered light produced is reduced.

【0004】従つてフローセルを使用しない光散乱式粒
子検出装置、例えば空気中の粒子を検出する光散乱式粒
子検出装置などの場合と比較すると、この種のフローセ
ル方式の粒子検出装置の検出感度が極端に低くなる問題
がある。
Therefore, compared to a light scattering particle detector that does not use a flow cell, such as a light scattering particle detector that detects particles in the air, the detection sensitivity of this type of flow cell particle detector is lower. There is a problem where it becomes extremely low.

【0005】かかる問題を解決する方法として従来、第
1に光源を高出力のアルゴンイオンレーザ、高出力半導
体レーザ等の高出力のものによつて構成したり、また第
2に光源光LA1を形成する際にレーザビームを小さく
絞ることにより試料流体の一部だけを測定するようにし
たり、さらに第3に集光レンズ4として短焦点距離のレ
ンズを用いてフローセルにできるだけ近づけることによ
り受光角を大きくし、その結果集光能力を上げるように
したりする方法が提案されている。
[0005] Conventionally, methods for solving this problem include, firstly, configuring the light source with a high-output one such as a high-output argon ion laser or a high-output semiconductor laser, and secondly, forming the light source light LA1. When measuring, the laser beam can be narrowed to a small size to measure only a part of the sample fluid, and thirdly, the acceptance angle can be increased by using a short focal length lens as the condenser lens 4 and placing it as close to the flow cell as possible. However, methods have been proposed to increase the light gathering ability as a result.

【0006】しかしながら実際上、高出力アルゴンイオ
ンレーザや高出力半導体レーザを用いると出力が数ワツ
ト程度の大電力かつ大型の電源装置が必要となるという
問題がある。またレーザビームを小さく絞ると、測定デ
ータの信頼性が低下するという欠点がある。さらに短焦
点距離の集光レンズを用いるとレンズが肉厚となり収差
が発生するため集光能力が未だ不十分な問題がある。
However, in practice, there is a problem in that when a high-output argon ion laser or a high-output semiconductor laser is used, a large-sized power supply device with an output of several watts is required. Another disadvantage is that if the laser beam is narrowed down, the reliability of the measurement data will decrease. Furthermore, when a condensing lens with a short focal length is used, the lens becomes thick and aberrations occur, resulting in the problem that the condensing ability is still insufficient.

【0007】本発明は以上の点を考慮してなされたもの
で、従来のフローセルを用いた光散乱式粒子検出装置に
おける集光能力を一段と改善し得る光散乱式粒子検出装
置を提案しようとするものである。
The present invention has been made in consideration of the above points, and aims to propose a light scattering particle detection device that can further improve the light gathering ability of a conventional light scattering particle detection device using a flow cell. It is something.

【0008】[0008]

【課題を解決するための手段】かかる課題を解決するた
め第1の発明においては、フローセル12内の流路12
Aを通過する試料流体に含まれる微粒子20に対して、
光源光LA2を照射することにより得られる散乱光を散
乱光検出器15において検出信号S2に変換して測定デ
ータを得る光散乱式粒子検出装置において、散乱光検出
器15と反対方向に散乱した散乱光を散乱光検出器15
方向に反射させる凹面鏡19と、凹面鏡19により散乱
光検出器15方向に反射された散乱光及び直接散乱光検
出器15方向に散乱した散乱光を集束し散乱光検出器1
5に導く集光レンズ14とを設けるようにする。
[Means for Solving the Problem] In order to solve the problem, in the first invention, a flow path 12 in a flow cell 12 is provided.
For the fine particles 20 contained in the sample fluid passing through A,
In a light scattering particle detection device that obtains measurement data by converting scattered light obtained by irradiating light source light LA2 into a detection signal S2 in a scattered light detector 15, the scattered light that is scattered in the opposite direction to the scattered light detector 15 is used. Scattered light detector 15
A concave mirror 19 reflects the light in the direction of the scattered light detector 15, and the scattered light reflected by the concave mirror 19 in the direction of the scattered light detector 15 and the scattered light scattered in the direction of the direct scattered light detector 15 are focused on the scattered light detector 1.
5 is provided.

【0009】また第2の発明においては、凹面鏡19と
対向する散乱光検出器15側のフローセル側面12Bに
フローセル12とほぼ同一の屈折率を有する凸レンズ2
1を設けるようにする。
Further, in the second invention, a convex lens 2 having substantially the same refractive index as the flow cell 12 is provided on the side surface 12B of the flow cell on the side of the scattered light detector 15 facing the concave mirror 19.
1 should be provided.

【0010】0010

【作用】第1の発明においては、散乱光検出器15と対
向するフローセル側面12Cに凹面鏡19を設置するこ
とにより、散乱光検出器15と反対方向に散乱した散乱
光を散乱光検出器15方向に反射させ、これにより凹面
鏡19を設置しない場合と比較して散乱光検出器15に
おいて検出し得る散乱光の光量を一段と増大させること
ができる。
[Operation] In the first invention, by installing the concave mirror 19 on the side surface 12C of the flow cell facing the scattered light detector 15, the scattered light scattered in the opposite direction to the scattered light detector 15 is directed toward the scattered light detector 15. As a result, the amount of scattered light that can be detected by the scattered light detector 15 can be further increased compared to the case where the concave mirror 19 is not installed.

【0011】また第2の発明においては、散乱光検出器
15側のフローセル側面12Bにフローセルとほぼ同一
の屈折率を有する凸レンズ21を設置することにより、
直接散乱光検出器15方向に散乱した散乱光及び凹面鏡
によつて散乱光検出器15方向に反射された散乱光を、
散乱光検出器15側のフローセル側面12Bにおいて屈
折、拡散させずに集光レンズ14に入射することができ
、その結果散乱光検出器15において検出し得る散乱光
の光量を一段と高めることができる。
Further, in the second invention, by installing a convex lens 21 having almost the same refractive index as the flow cell on the side surface 12B of the flow cell on the side of the scattered light detector 15,
Scattered light directly scattered in the direction of the scattered light detector 15 and scattered light reflected in the direction of the scattered light detector 15 by the concave mirror,
The light can be incident on the condenser lens 14 without being refracted or diffused at the side surface 12B of the flow cell on the side of the scattered light detector 15, and as a result, the amount of scattered light that can be detected by the scattered light detector 15 can be further increased.

【0012】0012

【実施例】以下図面について、本発明の一実施例を詳述
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】(1)第1実施例 図1及び図2において、光散乱式粒子検出装置11のフ
ローセル12はほぼ正方形の断面形状を有し、その中心
位置に流路12Aが形成され、流路12A内を流れる試
料流体に対して集光レンズ13によつて集光された光源
光LA2を照射し、試料流体内に微粒子があるとき散乱
光を周囲に散乱させるようになされている。
(1) First Embodiment In FIGS. 1 and 2, the flow cell 12 of the light scattering particle detection device 11 has a substantially square cross-sectional shape, and a flow path 12A is formed at the center of the flow cell 12. The sample fluid flowing in the sample fluid 12A is irradiated with light source light LA2 focused by the condenser lens 13, and when there are particles in the sample fluid, the scattered light is scattered around.

【0014】フローセル12の1つの側面12Bから射
出した散乱光は、集光レンズ14によつて集光されて散
乱光検出器15に入射して検出信号S2に変換され、こ
れにより測定データを得るようになされている。
Scattered light emitted from one side surface 12B of the flow cell 12 is focused by a condenser lens 14, enters a scattered light detector 15, and is converted into a detection signal S2, thereby obtaining measurement data. It is done like this.

【0015】かかる構成に加えて、フローセル12の側
面12Bと対向する側面12Cには、フローセル12と
ほぼ同一の屈折率を有する凸レンズ16が、同様にフロ
ーセル12とほぼ同一の屈折率を有する接着剤17によ
つて固着されている。凸レンズ16の外表面には例えば
蒸着によつて反射層18が付着され、これにより凹面鏡
19が形成されている。
In addition to this configuration, a convex lens 16 having almost the same refractive index as the flow cell 12 is provided on the side surface 12C opposite to the side surface 12B of the flow cell 12, and an adhesive having the same refractive index as the flow cell 12 is provided. 17. A reflective layer 18 is attached to the outer surface of the convex lens 16 by, for example, vapor deposition, thereby forming a concave mirror 19.

【0016】ここでフローセル12の流路12Aの幅と
、凹面鏡19との関係は、試料流体が流路12Aのほぼ
中心位置を通過し、かつ凹面鏡19の焦点が試料流体の
位置にあるように選定される。実質上この条件を満足す
るように流路12Aの幅は小さい値に選定され、かつ凹
面鏡19の曲率半径はできるだけ大きい値に選定され、
流路12Aの幅を「1」としたとき凹面鏡19の曲率半
径はほぼ「8」以上に選定される。好ましい選定例とし
て、フローセル12の流路12Aの幅は、流路12Aが
汚染した場合の洗浄を考慮して、 0.5〔mm〕程度
に選定され、また凹面鏡19の曲率半径は、装置全体と
しての大きさを過大にさせない点を考慮して、4〜5〔
mm〕程度に選定されている。
The relationship between the width of the channel 12A of the flow cell 12 and the concave mirror 19 is such that the sample fluid passes through approximately the center of the channel 12A and the focal point of the concave mirror 19 is at the position of the sample fluid. Selected. In order to substantially satisfy this condition, the width of the flow path 12A is selected to be a small value, and the radius of curvature of the concave mirror 19 is selected to be as large as possible,
When the width of the flow path 12A is "1", the radius of curvature of the concave mirror 19 is selected to be approximately "8" or more. As a preferable selection example, the width of the channel 12A of the flow cell 12 is selected to be about 0.5 [mm] in consideration of cleaning when the channel 12A becomes contaminated, and the radius of curvature of the concave mirror 19 is selected to be about 0.5 [mm]. 4 to 5 [
mm].

【0017】図1及び図2の構成において、光源光LA
2が流路12A内の試料流体を照射することにより散乱
する散乱光のうち、散乱光検出器15の方向に散乱され
た散乱光は、フローセル12の側面12B位置において
屈折されて周囲に拡がるように折れ曲がりながら集光レ
ンズ14の方向に射出する。かくして側面12Bから射
出した散乱光のうち集光レンズ14を通つた散乱光は当
該集光レンズ14によつて散乱光検出器15に入射する
In the configurations shown in FIGS. 1 and 2, the light source light LA
Among the scattered light scattered by irradiating the sample fluid in the flow channel 12A, the scattered light scattered in the direction of the scattered light detector 15 is refracted at the side surface 12B position of the flow cell 12 and spread to the surroundings. The light is emitted in the direction of the condenser lens 14 while being bent. In this way, among the scattered light emitted from the side surface 12B, the scattered light that passes through the condenser lens 14 enters the scattered light detector 15 through the condenser lens 14.

【0018】これに対して、試料流体によつて散乱され
た散乱光のうち、散乱光検出器15と反対側の側面12
Cに向つて散乱した散乱光は凹面鏡19において反射さ
れて流路12Aに戻され、さらに流路12A位置を通り
過ぎて試料流体によつて散乱光検出器15の方向に直接
散乱された散乱光と一緒に側面12Bに向つて進み、そ
の結果散乱光検出器15の方向に直接散乱された散乱光
と一緒に側面12Bにおいて屈折され、集光レンズ14
によつて散乱光検出器15に集光される。
On the other hand, among the scattered light scattered by the sample fluid, the side surface 12 opposite to the scattered light detector 15
The scattered light scattered toward C is reflected by the concave mirror 19 and returned to the channel 12A, and further passes through the channel 12A position and is directly scattered by the sample fluid in the direction of the scattered light detector 15. Together with the scattered light that travels towards the side surface 12B and is thus scattered directly in the direction of the scattered light detector 15, it is refracted at the side surface 12B and is refracted by the condenser lens 14.
The light is focused on the scattered light detector 15 by the following.

【0019】ここで、凸レンズ16及び接着剤17の屈
折率がフローセルの屈折率とほぼ同じ値に選定され、し
かも凹面鏡19の焦点が流路12Aの位置にあるように
選定されていることにより、凹面鏡19において反射さ
れた散乱光がそのまま流路12Aに戻るように集束され
る。
Here, the refractive index of the convex lens 16 and adhesive 17 is selected to be approximately the same value as the refractive index of the flow cell, and the focal point of the concave mirror 19 is selected to be at the position of the flow path 12A. The scattered light reflected by the concave mirror 19 is focused so as to return to the flow path 12A as it is.

【0020】図1及び図2の構成によれば、フローセル
12の側面のうち、流路12Aを間に挟んで散乱光検出
器15とは反対側の側面に凹面鏡19を設けるようにし
たことにより、凹面鏡19の方向に散乱した散乱光を流
路12Aの方向に反射すると共に当該反射した散乱光を
散乱光検出器15への検出光として利用することができ
る。かくして光散乱式粒子検出装置11における散乱光
の検出感度を凹面鏡19によつて反射した散乱光の光量
に応じて一段と高めることができる。
According to the configurations shown in FIGS. 1 and 2, the concave mirror 19 is provided on the side surface of the flow cell 12 on the side opposite to the scattered light detector 15 with the flow path 12A in between. , the scattered light scattered in the direction of the concave mirror 19 can be reflected in the direction of the flow path 12A, and the reflected scattered light can be used as detection light for the scattered light detector 15. In this way, the detection sensitivity of scattered light in the light scattering type particle detection device 11 can be further increased according to the amount of scattered light reflected by the concave mirror 19.

【0021】(2)第2実施例 図1及び図2との対応部分に同一符号を付して示す図3
及び図4は第2実施例を示すもので、フローセル12の
側面12B及び集光レンズ14間位置に、凸レンズ21
を設けたことを除いて図1及び図2と同様の構成を有す
る。
(2) Second Embodiment FIG. 3 shows parts corresponding to those in FIGS. 1 and 2 denoted by the same reference numerals.
4 shows a second embodiment, in which a convex lens 21 is placed between the side surface 12B of the flow cell 12 and the condenser lens 14.
It has the same configuration as FIGS. 1 and 2 except that it is provided with.

【0022】凸レンズ21はフローセル12とほぼ同じ
屈折率をもつと共に、当該凸レンズ21がフローセル1
2とほぼ同じ屈折率をもつた接着剤22によつて側面1
2B上に固着されている。
The convex lens 21 has almost the same refractive index as the flow cell 12, and the convex lens 21 has a refractive index similar to that of the flow cell 12.
Side surface 1 is bonded by adhesive 22 having approximately the same refractive index as
It is fixed on 2B.

【0023】図3及び図4の構成において、光源光LA
2が流路12A内の試料流体を照射することにより散乱
された散乱光のうち、散乱光検出器15の方向の散乱光
及び凹面鏡19において反射されて流路12A位置を通
り過ぎて側面12Bに向つて進む散乱光は、フローセル
12の側面12B位置において、フローセル12とほぼ
同じ屈折率を有する接着剤22及び凸レンズ21を屈折
されずに直進して集光レンズ14に入射する。
In the configurations of FIGS. 3 and 4, the light source light LA
2 irradiates the sample fluid in the channel 12A, among the scattered light, the scattered light in the direction of the scattered light detector 15 and the scattered light reflected by the concave mirror 19, passing through the channel 12A position and directed toward the side surface 12B. The scattered light traveling along the flow cell 12 passes straight through the convex lens 21 and the adhesive 22 having substantially the same refractive index as the flow cell 12 at the position of the side surface 12B without being refracted, and enters the condenser lens 14.

【0024】かくして図3及び図4の構成によれば、図
1及び図2の構成と比較して、フローセル12の側面1
2Bを通過する際に屈折されない分集光レンズ14に入
射する散乱光の光密度を高めることができ、従つて散乱
光検出器15から得られる検出信号S2の検出感度をさ
らに一段と高めることができる。
Thus, according to the configurations of FIGS. 3 and 4, compared to the configurations of FIGS. 1 and 2, the side surface 1 of the flow cell 12
The optical density of the scattered light incident on the condensing lens 14 that is not refracted when passing through the scattered light detector 15 can be increased, and therefore the detection sensitivity of the detection signal S2 obtained from the scattered light detector 15 can be further increased.

【0025】(3)他の実施例 なお上述の図1及び図2の実施例並びに図3及び図4の
実施例においては、フローセル12及び凹面鏡19間に
フローセルとほぼ同じ屈折率を有する凸レンズ16を配
設した場合について述べたが、これに代え凸レンズ16
を省略すると共に、凹面鏡19をフローセル12の側面
12Cに密着して取り付けるようにしても、上述の場合
と同様の効果を得ることができる。
(3) Other Embodiments In the embodiments of FIGS. 1 and 2 and the embodiments of FIGS. 3 and 4 described above, a convex lens 16 having approximately the same refractive index as the flow cell is provided between the flow cell 12 and the concave mirror 19. has been described, but instead of this, a convex lens 16 is provided.
Even if the concave mirror 19 is attached to the side surface 12C of the flow cell 12 in close contact with the side surface 12C of the flow cell 12, the same effect as described above can be obtained.

【0026】また上述の図1及び図2並びに図3及び図
4の実施例においては、フローセル12の断面形状を正
方形としたが、本発明はこれに限らず、その他の断面形
状例えば断面円形のものにも適用し得る。
Furthermore, in the embodiments shown in FIGS. 1 and 2, as well as FIGS. 3 and 4, the cross-sectional shape of the flow cell 12 is square, but the present invention is not limited to this, and other cross-sectional shapes, such as a circular cross-section, can be used. It can also be applied to things.

【0027】さらに上述の図3及び図4の実施例におい
ては、フローセル12の側面の断面形状を正方形とした
ことにより、フローセル12の側面12B位置に設ける
凸レンズ21を平凸レンズとしたが、本発明はこれに限
らず、フローセルの側面形状に適合した形状を有する凸
レンズを適用することができる。
Furthermore, in the embodiments shown in FIGS. 3 and 4 described above, the cross-sectional shape of the side surface of the flow cell 12 is square, so that the convex lens 21 provided at the side surface 12B of the flow cell 12 is a plano-convex lens. However, the present invention is not limited to this, and a convex lens having a shape that matches the side surface shape of the flow cell can be applied.

【0028】さらに上述の図3及び図4の実施例におい
ては、フローセル12及び凸レンズ21をフローセルと
ほぼ同じ屈折率を有する接着剤22を用いて固着させる
ようにしたが、本発明はこれに限らず、例えばネジ等の
固定手段によつて締結すると共に、フローセル12及び
凸レンズ21間にできる隙間をフローセル12とほぼ同
じ屈折率を有する充填材により充填するようにしても良
い。
Further, in the embodiments shown in FIGS. 3 and 4 described above, the flow cell 12 and the convex lens 21 are fixed using the adhesive 22 having approximately the same refractive index as the flow cell, but the present invention is not limited to this. First, in addition to fastening with a fixing means such as a screw, the gap between the flow cell 12 and the convex lens 21 may be filled with a filler having approximately the same refractive index as the flow cell 12.

【0029】[0029]

【発明の効果】上述のように本発明によれば、フローセ
ル流路中の微粒子から得られる散乱光を散乱光検出器に
集光させる手段として、散乱光検出器とは反対側のフロ
ーセルの側面に凹面鏡を設けるようにしたことにより、
この分散乱光検出器に入射する散乱光の光量を増大し得
、その結果検出感度が一段と高い粒子検出装置を実現で
きる。
As described above, according to the present invention, the side surface of the flow cell opposite to the scattered light detector is used as a means for condensing scattered light obtained from fine particles in the flow cell channel onto the scattered light detector. By installing a concave mirror in the
The amount of scattered light incident on the dispersion scattered light detector can be increased, and as a result, a particle detection device with even higher detection sensitivity can be realized.

【0030】さらに本発明によれば、これに加えて、フ
ローセルから散乱光検出器への散乱光の射出位置にフロ
ーセルとほぼ同じ屈折率の凸レンズを設けるようにした
ことにより、散乱光検出器に向つて射出する散乱光を屈
折により拡散させないようにでき、この分検出感度がさ
らに高い粒子検出装置を実現できる。
Furthermore, according to the present invention, in addition to this, a convex lens having approximately the same refractive index as the flow cell is provided at the emission position of the scattered light from the flow cell to the scattered light detector. It is possible to prevent the scattered light emitted in the direction from being diffused by refraction, and it is possible to realize a particle detection device with even higher detection sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による光散乱式粒子検出装置の第1の実
施例の全体構成を示す断面図である。
FIG. 1 is a sectional view showing the overall configuration of a first embodiment of a light scattering particle detection device according to the present invention.

【図2】図1のフローセルの近傍の構成を示す部分的拡
大図である。
FIG. 2 is a partially enlarged view showing the configuration near the flow cell in FIG. 1;

【図3】本発明による光散乱式粒子検出装置の第2の実
施例の全体構成を示す断面図である。
FIG. 3 is a sectional view showing the overall configuration of a second embodiment of the light scattering particle detection device according to the present invention.

【図4】図3のフローセルの近傍の構成を示す部分的拡
大図である。
FIG. 4 is a partially enlarged view showing the configuration near the flow cell in FIG. 3;

【図5】従来の光散乱式粒子検出装置の全体構成を示す
断面図である。
FIG. 5 is a sectional view showing the overall configuration of a conventional light scattering particle detection device.

【図6】図5のフローセルの近傍の構成を示す部分的拡
大図である。
FIG. 6 is a partially enlarged view showing the configuration near the flow cell in FIG. 5;

【符号の説明】[Explanation of symbols]

2、12……フローセル、2A、12A……流路、3、
4、13、14……集光レンズ、5、15……散乱光検
出器、6、20……微粒子、16……凸レンズ、17…
…接着剤、18……反射層、19……凹面鏡、LA1、
LA2……光源光、S1、S2……検出信号。
2, 12...flow cell, 2A, 12A...channel, 3,
4, 13, 14... Condensing lens, 5, 15... Scattered light detector, 6, 20... Fine particles, 16... Convex lens, 17...
...Adhesive, 18...Reflection layer, 19...Concave mirror, LA1,
LA2...Light source light, S1, S2...Detection signal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フローセル内の流路部を通過する試料流体
に含まれる微粒子に対して、光源光を照射することによ
り得られる散乱光を散乱光検出器において検出信号に変
換して測定データを得る光散乱式粒子検出装置において
、散乱光検出器と反対方向に散乱した散乱光を散乱光検
出器方向に反射させる凹面鏡と、上記凹面鏡により散乱
光検出器方向に反射された散乱光及び直接散乱光検出器
の方向に散乱した散乱光を集束し散乱光検出器に導く集
光レンズとを具えることを特徴とする光散乱式粒子検出
装置。
[Claim 1] Scattered light obtained by irradiating light from a light source to microparticles contained in a sample fluid passing through a flow path in a flow cell is converted into a detection signal in a scattered light detector to obtain measurement data. A light scattering particle detection device to be obtained includes a concave mirror that reflects the scattered light scattered in the opposite direction to the scattered light detector toward the scattered light detector, and a concave mirror that reflects the scattered light that is reflected toward the scattered light detector by the concave mirror and the scattered light that is directly scattered. A light scattering particle detection device comprising a condenser lens that focuses scattered light in the direction of a photodetector and guides it to the scattered light detector.
【請求項2】上記凹面鏡と対向する散乱光検出器側のフ
ローセル側面にフローセルとほぼ同一の屈折率を有する
凸レンズを設けることを特徴とする特許請求の範囲第1
項に記載の光散乱式粒子検出装置。
2. A convex lens having substantially the same refractive index as that of the flow cell is provided on a side surface of the flow cell on the scattered light detector side facing the concave mirror.
The light-scattering particle detection device described in 2.
JP3173106A 1991-06-17 1991-06-17 Light scattering type particle detector Pending JPH04369464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173106A JPH04369464A (en) 1991-06-17 1991-06-17 Light scattering type particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173106A JPH04369464A (en) 1991-06-17 1991-06-17 Light scattering type particle detector

Publications (1)

Publication Number Publication Date
JPH04369464A true JPH04369464A (en) 1992-12-22

Family

ID=15954280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173106A Pending JPH04369464A (en) 1991-06-17 1991-06-17 Light scattering type particle detector

Country Status (1)

Country Link
JP (1) JPH04369464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031594A (en) * 2000-05-12 2002-01-31 Rion Co Ltd Light scattering type particle detector
JP2004085573A (en) * 2002-08-27 2004-03-18 Particle Measuring Syst Inc Particle counter equipped with strapped laser diode
JP2008524560A (en) * 2004-12-17 2008-07-10 フォトン コントロール インコーポレイテッド Travel time optical speedometer
WO2020095569A1 (en) * 2018-11-06 2020-05-14 株式会社堀場製作所 Optical measurement cell for use in particle physical property measurement, and particle physical property measuring device employing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136475A (en) * 1975-05-05 1976-11-25 Particle Tech Inc Light chamber used in instrument for measuring characteristics of particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136475A (en) * 1975-05-05 1976-11-25 Particle Tech Inc Light chamber used in instrument for measuring characteristics of particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031594A (en) * 2000-05-12 2002-01-31 Rion Co Ltd Light scattering type particle detector
JP2004085573A (en) * 2002-08-27 2004-03-18 Particle Measuring Syst Inc Particle counter equipped with strapped laser diode
JP2008524560A (en) * 2004-12-17 2008-07-10 フォトン コントロール インコーポレイテッド Travel time optical speedometer
JP4777360B2 (en) * 2004-12-17 2011-09-21 フォトン コントロール インコーポレイテッド Travel time optical speedometer
WO2020095569A1 (en) * 2018-11-06 2020-05-14 株式会社堀場製作所 Optical measurement cell for use in particle physical property measurement, and particle physical property measuring device employing same
JPWO2020095569A1 (en) * 2018-11-06 2021-09-30 株式会社堀場製作所 Optical measurement cell used for particle physical property measurement and particle physical property measurement device using this

Similar Documents

Publication Publication Date Title
JPH0678982B2 (en) Fluorescence measuring device for substance concentration in sample
JPH0329318B2 (en)
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
JP4491277B2 (en) Sample analyzer
JPH04369464A (en) Light scattering type particle detector
KR890002841A (en) Optical pickup
JP3530078B2 (en) Flow cell and particle measuring apparatus using the flow cell
JPH04369463A (en) Light scattering type particle detector
JP2001281097A (en) Method and apparatus for measuring scattered light
JP5300249B2 (en) Liquid analyzer
US11513048B2 (en) Optical particle detector
JPH0755490Y2 (en) Device for measuring fine particles in liquid
JP2009204484A (en) Sensing device
JP2595315B2 (en) Light scattering measuring device
JP3040131B2 (en) Spherical surface scratch inspection device
JPH08178831A (en) Light scattering particle detector
KR100252944B1 (en) Device for picking-up light
US7041964B2 (en) Method and apparatus for improved collection efficiency of speckle based navigation sensors using lightpipes and reflectors
JPH0676970B2 (en) Optical inspection device
JP2006242649A (en) Apparatus and method for measuring photothermal conversion, and sample cell
SU1265822A1 (en) Smoke detector
JPH09257697A (en) Surface plasmon resonance sensor apparatus
JP6574584B2 (en) Optical sensor
JPH01267601A (en) Condenser lens
JPH04323542A (en) Smoke sensor