JP3530078B2 - Flow cell and particle measuring apparatus using the flow cell - Google Patents

Flow cell and particle measuring apparatus using the flow cell

Info

Publication number
JP3530078B2
JP3530078B2 JP19119499A JP19119499A JP3530078B2 JP 3530078 B2 JP3530078 B2 JP 3530078B2 JP 19119499 A JP19119499 A JP 19119499A JP 19119499 A JP19119499 A JP 19119499A JP 3530078 B2 JP3530078 B2 JP 3530078B2
Authority
JP
Japan
Prior art keywords
flow cell
light
wall surface
incident
sample fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19119499A
Other languages
Japanese (ja)
Other versions
JP2001021480A (en
Inventor
朋信 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP19119499A priority Critical patent/JP3530078B2/en
Priority to US09/528,146 priority patent/US6465802B1/en
Publication of JP2001021480A publication Critical patent/JP2001021480A/en
Application granted granted Critical
Publication of JP3530078B2 publication Critical patent/JP3530078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粒子検出部として
の照射領域を内部に形成するフローセル及びこのフロー
セルを用いて照射領域を通過する試料流体に含まれる粒
子の粒径等の粒子情報を得る粒子測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention obtains particle information such as a particle diameter of particles contained in a sample fluid passing through an irradiation region, using a flow cell having an irradiation region as a particle detection unit formed therein, and the flow cell. The present invention relates to a particle measuring device.

【0002】[0002]

【従来の技術】図4に示すように、従来のフローセル1
00は、透明部材から成り、断面形状を四角形状として
所定長さの直線流路を有して形成されている。そして、
レーザ光Laが透過するフローセル100を構成する壁
部101の外壁面101aと内壁面101bは平行に形
成されている。
2. Description of the Related Art As shown in FIG.
00 is made of a transparent member and has a rectangular cross section and a linear flow path of a predetermined length. And
The outer wall surface 101a and the inner wall surface 101b of the wall portion 101 that constitutes the flow cell 100 through which the laser light La is transmitted are formed in parallel.

【0003】また、フローセル100にレーザ光源から
レーザ光Laを照射する場合には、図5に示すように、
レーザ光Laを空気と外壁面101aとの境界面に所定
の入射角θ11(θ11≠0°)で入射させ、屈折角θ12
屈折させている。これは、レーザ光Laを入射角θ11
0°としてフローセル100の外壁面101aに垂直に
入射させると、レーザ光Laが外壁面101aで反射し
て反射光の一部がレーザ光源に戻り、帰還ノイズとして
レーザ光Laに重畳するのを防止するためである。
When the flow cell 100 is irradiated with laser light La from a laser light source, as shown in FIG.
The laser light La is incident on the boundary surface between the air and the outer wall surface 101a at a predetermined incident angle θ 1111 ≠ 0 °) and refracted at a refraction angle θ 12 . This is the incident angle θ 11 = of the laser light La.
When 0 ° is made to enter the outer wall surface 101a of the flow cell 100 vertically, it is prevented that the laser light La is reflected by the outer wall surface 101a and a part of the reflected light returns to the laser light source and is superimposed on the laser light La as feedback noise. This is because

【0004】[0004]

【発明が解決しようとする課題】しかし、フローセル1
00中を流れる試料流体(試料の溶媒)102の屈折率
によって、内壁面101bと試料流体102との境界面
におけるレーザ光Laの屈折角が異なるため、試料流体
102中を進むレーザ光はLa1(試料流体の屈折率が
2の場合)又はLa2(試料流体の屈折率がn3の場
合)となり、流路の中心に設けられる粒子検出部として
の照射領域Mが位置ずれを起こしてしまう。即ち、スネ
ルの法則により、内壁面101bと試料流体102との
境界面にレーザ光Laが入射角θ13(外壁面101aと
内壁面101bが平行に形成されているので、θ13=θ
12となる。)で入射すると、試料流体102の屈折率が
2の場合には、屈折角θ14となり、試料流体102の
屈折率がn3の場合には、屈折角θ15となるからであ
る。
However, the flow cell 1
Since the refraction angle of the laser light La at the boundary surface between the inner wall surface 101b and the sample fluid 102 is different depending on the refractive index of the sample fluid (solvent of the sample) 102 flowing in 00, the laser light traveling in the sample fluid 102 is La1 ( The refractive index of the sample fluid is n 2 ) or La 2 (when the refractive index of the sample fluid is n 3 ), and the irradiation region M as the particle detection unit provided at the center of the flow path is displaced. That is, according to Snell's law, the incident angle θ 13 of the laser beam La on the boundary surface between the inner wall surface 101b and the sample fluid 102 (since the outer wall surface 101a and the inner wall surface 101b are formed in parallel, θ 13 = θ
Twelve . ), The sample fluid 102 has a refraction angle θ 14 when the refractive index is n 2 , and the sample fluid 102 has a refraction angle θ 15 when the sample fluid 102 has a refractive index n 3 .

【0005】すると、屈折率n2の試料流体に対応した
照射領域Mの位置に合せて設定されている集光手段は、
屈折率n3の試料流体の場合には照射領域Mが位置ずれ
し、照射領域Mを通過する粒子による散乱光などを検出
することができない。従って、試料流体の違いにより、
粒径等の粒子情報を正確に検出することができないとい
う問題がある。
Then, the condensing means set in accordance with the position of the irradiation region M corresponding to the sample fluid having the refractive index n 2 is
In the case of the sample fluid having the refractive index n 3, the irradiation area M is displaced, and scattered light by particles passing through the irradiation area M cannot be detected. Therefore, due to the difference in sample fluid,
There is a problem that the particle information such as the particle diameter cannot be detected accurately.

【0006】また、フローセル100を構成する壁部1
01の形状によっては、照射領域Mを通過したレーザ光
Laが、試料流体102と内壁面101cとの境界面、
又は外壁面101dと空気との境界面で反射して反射光
の一部がレーザ光源に戻り、帰還ノイズとしてレーザ光
Laに重畳するという問題と、反射光の一部が照射領域
Mを再び通過してノイズを増加させるという問題があ
る。
The wall portion 1 which constitutes the flow cell 100
Depending on the shape of 01, the laser light La that has passed through the irradiation region M may have a boundary surface between the sample fluid 102 and the inner wall surface 101c,
Alternatively, the problem that a part of the reflected light is reflected by the boundary surface between the outer wall surface 101d and the air and returns to the laser light source and is superimposed on the laser light La as feedback noise, and a part of the reflected light passes through the irradiation area M again. There is a problem of increasing noise.

【0007】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、試料流体に入射して照射領域を通過した光がフ
ローセルの内壁面などで反射して光源に逆戻りしたり、
照射領域を再度通過したりすることのないようにしたフ
ローセル及びこのフローセルを用いた粒子測定装置を提
供しようとするものである。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is that the light incident on the sample fluid and passing through the irradiation region is the inner wall surface of the flow cell. And then return to the light source,
An object of the present invention is to provide a flow cell that does not pass through the irradiation region again and a particle measuring device using this flow cell.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、光を照射して粒子検出部としての
照射領域を内部に形成し、この照射領域を通過する試料
流体に含まれる粒子の粒径等の粒子情報を得るためのフ
ローセルにおいて、前記光が空気とフローセルの外壁面
との境界面に所定の入射角θ(θ≠0°)で入射すると
共に、フローセルの内壁面と前記試料流体との境界面に
入射角0°で入射するようにフローセルの壁部の形状を
形成し、前記光が前記照射領域を通過した後に、前記試
料流体とフローセルの内壁面との境界面に所定の入射角
α(α≠0°)で入射するようにフローセルの壁部の形
状を形成したものである。
In order to solve the above-mentioned problems, the invention according to claim 1 irradiates light to form an irradiation region as a particle detection portion inside, and a sample fluid passing through this irradiation region is used. In a flow cell for obtaining particle information such as the particle size of particles contained, the light is incident on a boundary surface between air and an outer wall surface of the flow cell at a predetermined incident angle θ (θ ≠ 0 °), and The shape of the wall of the flow cell is formed so as to be incident on the boundary surface between the wall surface and the sample fluid at an incident angle of 0 °, and after the light passes through the irradiation region, the sample fluid and the inner wall surface of the flow cell are separated from each other. The shape of the wall portion of the flow cell is formed so as to be incident on the boundary surface at a predetermined incident angle α (α ≠ 0 °).

【0009】請求項2に係る発明は、請求項1に記載の
フローセルにおいて、前記光がフローセルの外壁面と空
気との境界面に所定の入射角α’(α’≠0°)で入射
するようにフローセルの壁部の形状を形成したものであ
る。
According to a second aspect of the present invention, in the flow cell according to the first aspect, the light is incident on a boundary surface between the outer wall surface of the flow cell and air at a predetermined incident angle α '(α' ≠ 0 °). Thus, the shape of the wall of the flow cell is formed.

【0010】請求項3に係る発明は、光を照射して粒子
検出部としての照射領域を内部に形成し、この照射領域
を通過する試料流体に含まれる粒子の粒径等の粒子情報
を得るためのフローセルにおいて、前記光が前記試料流
体に入射して前記照射領域を通過した後に、前記試料流
体とフローセルの内壁面との境界面に入射角が0°で入
射し、その後、前記光がフローセルの外壁面と空気との
境界面に所定の入射角α”(α”≠0°)で入射するよ
うにフローセルの壁部の形状を形成したものである。
According to a third aspect of the present invention, light is irradiated to form an irradiation region as a particle detection unit inside, and particle information such as the particle size of particles contained in the sample fluid passing through this irradiation region is obtained. In the flow cell for the following, after the light is incident on the sample fluid and passes through the irradiation region, the light is incident on the boundary surface between the sample fluid and the inner wall surface of the flow cell at an incident angle of 0 °, and then the light is emitted. The shape of the wall portion of the flow cell is formed so as to be incident on the boundary surface between the outer wall surface of the flow cell and air at a predetermined incident angle α ″ (α ″ ≠ 0 °).

【0011】請求項4に係る発明は、請求項1乃至請求
項3のいずれかに記載のフローセルと、このフローセル
の流路に光を照射して照射領域を形成する光源と、前記
照射領域の粒子の散乱光、透過光又は回折光を検出処理
する光学的検出処理手段を備えるものである。
The invention according to claim 4 is the flow cell according to any one of claims 1 to 3, a light source for irradiating the flow path of the flow cell with light to form an irradiation region, and the irradiation region. An optical detection processing means for detecting scattered light, transmitted light or diffracted light of particles is provided.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
粒子測定装置の構成図、図2は本発明に係るフローセル
の断面図、図3はフローセルの壁部における光の透過経
路の説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a configuration diagram of a particle measuring apparatus according to the present invention, FIG. 2 is a cross-sectional view of a flow cell according to the present invention, and FIG. 3 is an explanatory diagram of a light transmission path in a wall portion of the flow cell.

【0013】本発明に係る粒子測定装置は、図1に示す
ように、フローセル1、レーザ光源2、集光光学系3、
光電変換素子4などを備えて成る。フローセル1は、透
明部材から成り、所定長さの直線流路1aを有し、全体
としてL型筒形状に屈曲している。
As shown in FIG. 1, the particle measuring apparatus according to the present invention comprises a flow cell 1, a laser light source 2, a condensing optical system 3,
The photoelectric conversion element 4 and the like are provided. The flow cell 1 is made of a transparent member, has a linear flow path 1a of a predetermined length, and is bent into an L-shaped tubular shape as a whole.

【0014】また、フローセル1は、図2に示すよう
に、断面形状が四角形状の壁部5からなり、内側の断面
形状は台形であり、外側の断面形状も台形である。そし
て、レーザ光Laが入射する外壁面5aとレーザ光La
が出射する内壁面5bとは、平行ではなく、外壁面5a
は内壁面5bに対して所定の角度(傾斜)を有して形成
されている。更に、レーザ光Laが出射する内壁面5b
とレーザ光Laが入射する内壁面5cとは、平行ではな
く、内壁面5cは内壁面5bに対して所定の角度(傾
斜)を有して形成されている。
Further, as shown in FIG. 2, the flow cell 1 is composed of a wall 5 having a quadrangular cross section, the inner cross section having a trapezoidal shape, and the outer cross section having a trapezoidal shape. The outer wall surface 5a on which the laser light La is incident and the laser light La
Is not parallel to the inner wall surface 5b from which the
Are formed with a predetermined angle (inclination) with respect to the inner wall surface 5b. Furthermore, the inner wall surface 5b from which the laser light La is emitted
The inner wall surface 5c on which the laser light La is incident is not parallel to each other, and the inner wall surface 5c is formed with a predetermined angle (inclination) with respect to the inner wall surface 5b.

【0015】なお、所定長さの直線流路1aを設けた理
由は、フローセル1に試料流体6を流したとき、試料流
体6の流れを層流にするためである。層流を得るための
条件としては、試料流体6の粘度、直線流路の長さ、流
路の断面形状及び流速などが挙げられ、直線流路1aの
長さ及び流路の断面形状については、試料流体6の粘度
と流速を勘案して決定している。
The reason why the linear flow path 1a having a predetermined length is provided is to make the flow of the sample fluid 6 laminar when the sample fluid 6 is flown into the flow cell 1. The conditions for obtaining the laminar flow include the viscosity of the sample fluid 6, the length of the linear flow channel, the cross-sectional shape of the flow channel and the flow velocity, and the length of the linear flow channel 1a and the cross-sectional shape of the flow channel are as follows. , And is determined in consideration of the viscosity and flow velocity of the sample fluid 6.

【0016】レーザ光源2は、フローセル1の直線流路
1aの所定箇所にレーザ光Laを照射して照射領域Mを
形成する。ここで、レーザ光Laの光軸は、直線流路1
a内において直線流路1aの中心軸とほぼ直交してい
る。
The laser light source 2 irradiates a predetermined portion of the linear flow path 1a of the flow cell 1 with the laser light La to form an irradiation area M. Here, the optical axis of the laser light La is the linear flow path 1
Within a, it is substantially orthogonal to the central axis of the linear flow path 1a.

【0017】また、図2に示すように、レーザ光La
は、空気と外壁面5aの境界面に対して入射角θで入射
している。これは、上述のようにレーザ光Laが空気と
外壁面5aの境界面で反射して反射光の一部がレーザ光
源2に戻るのを防止するためである。反射光の一部がレ
ーザ光源2に戻ると、帰還ノイズがレーザ光Laに重畳
するので好ましくないからである。
Further, as shown in FIG. 2, laser light La
Is incident on the boundary surface between the air and the outer wall surface 5a at an incident angle θ. This is to prevent the laser light La from being reflected at the boundary surface between the air and the outer wall surface 5a and returning part of the reflected light to the laser light source 2 as described above. This is because, when a part of the reflected light returns to the laser light source 2, the feedback noise is superimposed on the laser light La, which is not preferable.

【0018】更に、照射領域Mを通過したレーザ光La
は、試料流体6と内壁面5cの境界面に所定の入射角α
(α≠0°)で入射すると共に、外壁面5dと空気との
境界面にも所定の入射角α’(α’≠0°)で入射して
いる。
Further, the laser beam La which has passed through the irradiation area M
Is a predetermined incident angle α at the boundary surface between the sample fluid 6 and the inner wall surface 5c.
The light enters at (α ≠ 0 °) and also enters at the boundary surface between the outer wall surface 5d and the air at a predetermined incident angle α ′ (α ′ ≠ 0 °).

【0019】このように、レーザ光Laの入射角α,
α’を0°としないのは、上述のようにレーザ光Laが
試料流体6と内壁面5cの境界面及び外壁面5dと空気
との境界面で反射して、反射光の一部がレーザ光源2に
戻ること及び反射光の一部が照射領域Mを再び通過する
ことを防止するためである。反射光の一部がレーザ光源
2に戻ると、帰還ノイズがレーザ光Laに重畳するので
好ましくないからである。また、反射光の一部が照射領
域Mを再び通過すると、ノイズを増加させるので、やは
り好ましくないからである。
In this way, the incident angle α of the laser light La,
The reason why α ′ is not set to 0 ° is that the laser light La is reflected by the boundary surface between the sample fluid 6 and the inner wall surface 5c and the boundary surface between the outer wall surface 5d and the air as described above, and a part of the reflected light is laser light. This is to prevent the light from returning to the light source 2 and a part of the reflected light from passing through the irradiation region M again. This is because, when a part of the reflected light returns to the laser light source 2, the feedback noise is superimposed on the laser light La, which is not preferable. Further, when a part of the reflected light passes through the irradiation area M again, noise is increased, which is also undesirable.

【0020】集光光学系3は、フローセル1の直線流路
1aの中心軸と一致する光軸を有し、照射領域Mにおい
てレーザ光Laを受けた粒子が発する散乱光Lsを集光
する機能を備える。なお、集光光学系3は、必ずしもフ
ローセル1の直線流路1aの中心軸上に設ける必要はな
い。
The condensing optical system 3 has an optical axis that coincides with the central axis of the linear flow path 1a of the flow cell 1, and has a function of condensing the scattered light Ls emitted by the particles that have received the laser light La in the irradiation region M. Equipped with. The condensing optical system 3 does not necessarily have to be provided on the central axis of the linear flow path 1a of the flow cell 1.

【0021】光電変換素子4は、集光光学系3の光軸上
に設けられている。光電変換素子4は、粒子が照射領域
Mを通過する間に発する散乱光Lsを電圧に変換する。
なお、集光光学系3以降の手段を光学的検出処理手段と
いう。
The photoelectric conversion element 4 is provided on the optical axis of the condensing optical system 3. The photoelectric conversion element 4 converts the scattered light Ls emitted while the particles pass through the irradiation region M into a voltage.
In addition, the means after the condensing optical system 3 is referred to as an optical detection processing means.

【0022】以上のように構成した本発明に係るフロー
セル及びこのフローセルを用いた粒子測定装置の作用に
ついて説明する。ここで、空気の屈折率をn0、フロー
セル1の壁部5の屈折率をn1、試料流体6の屈折率を
2又はn3とする。
The operation of the flow cell according to the present invention constructed as above and the particle measuring apparatus using the flow cell will be described. Here, the refractive index of air is n 0 , the wall 5 of the flow cell 1 is n 1 , and the sample fluid 6 is n 2 or n 3 .

【0023】図3に示すように、レーザ光源2から出射
されたレーザ光Laが、空気と外壁面5aとの境界面に
入射して屈折するときには、スネルの法則に従い、入射
角θ 1と屈折角θ2との間に、以下に示す数式(1)が成
り立つ。
As shown in FIG. 3, the light is emitted from the laser light source 2.
The generated laser light La is applied to the boundary surface between the air and the outer wall surface 5a.
When incident and refracted, according to Snell's law, incident
Angle θ 1And refraction angle θ2The following formula (1) is established between
Stand up.

【0024】 n0・sinθ1=n1・sinθ2 (1)N 0 · sin θ 1 = n 1 · sin θ 2 (1)

【0025】次いで、レーザ光Laは、壁部5を直進す
る。そして、内壁面5bと試料流体6との境界面では、
同様にスネルの法則に従い、入射角θ3と屈折率n2の試
料流体6の場合の屈折角θ4、又は入射角θ3と屈折率n
3の試料流体6の場合の屈折角θ5との間に、以下に示す
数式(2)が成り立つ。
Next, the laser light La goes straight on the wall portion 5. Then, at the boundary surface between the inner wall surface 5b and the sample fluid 6,
Similarly, according to Snell's law, the refraction angle θ 4 in the case of the sample fluid 6 having the incident angle θ 3 and the refractive index n 2 or the incident angle θ 3 and the refractive index n
In the case of the sample fluid 6 of 3 and the refraction angle θ 5 , the following formula (2) is established.

【0026】 n1・sinθ3=n2・sinθ4=n3・sinθ5 (2)N 1 · sin θ 3 = n 2 · sin θ 4 = n 3 · sin θ 5 (2)

【0027】従って、試料流体6の屈折率の値(n2
はn3)に影響されずに照射領域Mの位置を一定にする
には、屈折角をほぼ等しくすればよい。数式(2)か
ら、その条件を満足させるには、sinθ3=sinθ4
=sinθ5=0、即ちレーザ光Laを内壁面5bと試
料流体6との境界面に入射角θ3=0°で入射させれば
よい。
Therefore, in order to make the position of the irradiation region M constant without being affected by the value (n 2 or n 3 ) of the refractive index of the sample fluid 6, the refraction angles may be made substantially equal. From Expression (2), to satisfy the condition, sin θ 3 = sin θ 4
= Sin θ 5 = 0, that is, the laser beam La may be incident on the boundary surface between the inner wall surface 5b and the sample fluid 6 at an incident angle θ 3 = 0 °.

【0028】レーザ光Laを内壁面5bと試料流体6と
の境界面に入射角θ3=0°で入射させると、屈折角θ4
=屈折角θ5=0°となり、常に等しい屈折角(0°)
でレーザ光Laは試料流体6中を進むことになる。な
お、θ3は厳密に0°である必要はなく、照射領域Mの
位置ずれが許容できる範囲内であればよい。従って、θ
3は、ほぼ0°であればよい。
When the laser light La is incident on the boundary surface between the inner wall surface 5b and the sample fluid 6 at the incident angle θ 3 = 0 °, the refraction angle θ 4
= Refraction angle θ 5 = 0 °, always equal refraction angle (0 °)
Thus, the laser light La travels in the sample fluid 6. Note that θ 3 does not have to be exactly 0 °, and may be within a range in which the displacement of the irradiation region M can be tolerated. Therefore, θ
3 may be approximately 0 °.

【0029】そこで、内壁面5bと試料流体6との境界
面に入射角θ3=0°でレーザ光Laを入射させるため
には、図3に示すように、外壁面5aと内壁面5bとの
なす角をθ6とすると、空気と外壁面5aとの境界面に
おける屈折角θ2がθ6に等しくなる(θ2=θ6)ように
すればよい。
Therefore, in order to cause the laser beam La to enter the boundary surface between the inner wall surface 5b and the sample fluid 6 at the incident angle θ 3 = 0 °, as shown in FIG. 3, the outer wall surface 5a and the inner wall surface 5b are connected to each other. Letting θ 6 be the angle formed by, the refraction angle θ 2 at the boundary surface between the air and the outer wall surface 5 a should be equal to θ 62 = θ 6 ).

【0030】更に、数式(1)において、θ2=θ6とし
て、どのくらいの入射角θ1で、レーザ光Laを空気と
外壁面5aとの境界面に入射させればよいかを求める。
入射角θ1は、空気の屈折率n0、フローセル1の壁部5
の屈折率n1、外壁面5aと内壁面5bとのなす角θ6
より決定され、以下に示す数式(3)より求めることが
できる。
Further, in equation (1), assuming θ 2 = θ 6 , what angle of incidence θ 1 should be used to make the laser beam La incident on the boundary surface between the air and the outer wall surface 5a is determined.
The incident angle θ 1 is the refractive index n 0 of air and the wall portion 5 of the flow cell 1.
Is determined by the refractive index n 1 and the angle θ 6 formed by the outer wall surface 5a and the inner wall surface 5b, and can be obtained by the following mathematical expression (3).

【0031】 θ1=sin-1{(n1/n0)sinθ6} (3)Θ 1 = sin −1 {(n 1 / n 0 ) sin θ 6 } (3)

【0032】従って、数式(3)を満たす角度θ1で、
レーザ光Laを空気と外壁面5aとの境界面に入射させ
れば、試料流体6の屈折率の値に関係せずに照射領域M
の位置を一定に維持することができる。
Therefore, at the angle θ 1 which satisfies the equation (3),
When the laser light La is incident on the boundary surface between the air and the outer wall surface 5a, the irradiation area M is irrelevant to the value of the refractive index of the sample fluid 6.
The position of can be maintained constant.

【0033】このようなフローセル1に試料流体6を流
すと、照射領域Mを通過する粒子にレーザ光Laが照射
され、レーザ光Laを受けた粒子が発する散乱光Lsが
集光光学系3により集光される。
When the sample fluid 6 is caused to flow through such a flow cell 1, the particles passing through the irradiation region M are irradiated with the laser light La, and the scattered light Ls emitted from the particles receiving the laser light La is collected by the condensing optical system 3. Collected.

【0034】次いで、集光光学系3により集光した散乱
光Lsが、光電変換素子4により電圧に変換される。そ
して、光電変換素子4により変換された電圧のピークの
数により粒子の数が、電圧の値により粒子の粒径が測定
される。
Next, the scattered light Ls condensed by the condensing optical system 3 is converted into a voltage by the photoelectric conversion element 4. Then, the number of particles is measured by the number of peaks of the voltage converted by the photoelectric conversion element 4, and the particle size of the particles is measured by the value of the voltage.

【0035】そして、照射領域Mを通過したレーザ光L
aが、屈折率n2の試料流体6と内壁面5cの境界面に
入射し屈折するときには、スネルの法則に従い、入射角
α1(α1≠0°)と屈折角β1との間に、以下に示す数
式(4)が成り立つ。
Then, the laser light L which has passed through the irradiation area M
When a is incident on the boundary surface between the sample fluid 6 having the refractive index n 2 and the inner wall surface 5c and is refracted, according to Snell's law, it is between the incident angle α 11 ≠ 0 °) and the refraction angle β 1. , The following formula (4) is established.

【0036】 n2・sinα1=n1・sinβ1 (4)N 2 · sin α 1 = n 1 · sin β 1 (4)

【0037】また、照射領域Mを通過したレーザ光La
が、屈折率n3の試料流体6と内壁面5cの境界面に入
射し屈折するときにも、同様にスネルの法則に従い、入
射角α1(α1≠0°)と屈折角β2との間に、以下に示
す数式(5)が成り立つ。
Further, the laser beam La that has passed through the irradiation area M
When incident on the boundary surface between the sample fluid 6 having the refractive index n 3 and the inner wall surface 5c and refracting, the angle of incidence α 11 ≠ 0 °) and the angle of refraction β 2 follow the Snell's law. The following formula (5) is established during the period.

【0038】 n3・sinα1=n1・sinβ2 (5)N 3 · sin α 1 = n 1 · sin β 2 (5)

【0039】このように、入射角α1が0°でないの
は、レーザ光Laが入射する試料流体6と内壁面5cの
境界面が、レーザ光Laの屈折角θ4,θ5が0°となる
内壁面5bと試料流体6の境界面に対し平行でないから
である。即ち、入射角α1が0°にならないように、内
壁面5cと内壁面5bとが所定の角度を持つようフロー
セル1の壁部5が形成されているからである。
As described above, the incident angle α 1 is not 0 ° because the boundary between the sample fluid 6 on which the laser beam La is incident and the inner wall surface 5c has the refraction angles θ 4 and θ 5 of the laser beam La of 0 °. This is because it is not parallel to the boundary surface between the inner wall surface 5b and the sample fluid 6. That is, the wall portion 5 of the flow cell 1 is formed so that the inner wall surface 5c and the inner wall surface 5b have a predetermined angle so that the incident angle α 1 does not become 0 °.

【0040】更に、屈折角β1で屈折したレーザ光La
3が、外壁面5dと空気の境界面に入射し屈折するとき
には、スネルの法則に従い、入射角α2(α2≠0°とす
る)と屈折角β3との間に、以下に示す数式(6)が成
り立つ。
Further, the laser beam La refracted at the refraction angle β 1
When 3 is incident on the boundary surface between the outer wall surface 5d and air and is refracted, according to Snell's law, between the incident angle α 22 ≠ 0 °) and the refraction angle β 3 , the following mathematical formula (6) is established.

【0041】 n1・sinα2=n0・sinβ3 (6)N 1 · sin α 2 = n 0 · sin β 3 (6)

【0042】また、屈折角β2で屈折したレーザ光La
4が、外壁面5dと空気の境界面に入射し屈折するとき
も、同様にスネルの法則に従い、入射角α3(α3≠0°
とする)と屈折角β4との間に、以下に示す数式(7)
が成り立つ。
Further, the laser beam La refracted at the refraction angle β 2
Even when 4 is incident on the boundary surface between the outer wall surface 5d and air and is refracted, the incident angle α 33 ≠ 0 °) is similarly obeyed by Snell's law.
And the refraction angle β 4 between the following equation (7)
Holds.

【0043】 n1・sinα3=n0・sinβ4 (7)N 1 · sin α 3 = n 0 · sin β 4 (7)

【0044】なお、入射角α2及び入射角α3は、屈折率
1と屈折率n0によって決まる臨界角(sin-1(n0
/n1))より小さくしておくことが望ましい。入射角
α2,α3が臨界角より大きいと、レーザ光La3,La
4が外壁面5dと空気との境界面で全反射することにな
り、好ましくないからである。
[0044] Incidentally, the incident angle alpha 2 and the incident angle alpha 3, the critical angle determined by the refractive index n 1 and the refractive index n 0 (sin -1 (n 0
/ N 1 )) is preferable. When the incident angles α 2 and α 3 are larger than the critical angle, the laser beams La3 and La3 are
This is because 4 is totally reflected at the boundary surface between the outer wall surface 5d and the air, which is not preferable.

【0045】ここで、入射角α2,α3が、0°になるの
は、内壁面5cと外壁面5dのなす角度β5が、夫々屈
折角β1,β2と等しい場合(β5=β1、β5=β2)であ
る。屈折角β1,β2は、それぞれ以下に示す数式
(8)、(9)で求めることができる。
Here, the incident angles α 2 and α 3 become 0 ° when the angle β 5 formed by the inner wall surface 5c and the outer wall surface 5d is equal to the refraction angles β 1 and β 2 , respectively (β 5 = Β 1 , β 5 = β 2 ). The refraction angles β 1 and β 2 can be calculated by the following equations (8) and (9), respectively.

【0046】 β1=sin-1{(n2/n1)sinα1} (8)Β 1 = sin −1 {(n 2 / n 1 ) sin α 1 } (8)

【0047】 β2=sin-1{(n3/n1)sinα1} (9)Β 2 = sin −1 {(n 3 / n 1 ) sin α 1 } (9)

【0048】従って、入射角α2,α3を、0°にしない
ためには、フローセル1の内壁面5cと外壁面5dのな
す角度β5が、屈折角β1,β2と等しくならないよう
に、壁部5を形成すればよい。
Therefore, in order not to set the incident angles α 2 and α 3 to 0 °, the angle β 5 formed by the inner wall surface 5c and the outer wall surface 5d of the flow cell 1 should not be equal to the refraction angles β 1 and β 2. Then, the wall portion 5 may be formed.

【0049】ここで、フローセル1及び試料流体6の屈
折率に拘らず、外壁面5dと空気との境界面へのレーザ
光Laの入射角α2,α3が、0°にならない条件を求め
ると、数式(4)、数式(5)から、β1≠0°、β2
0°となる。従って、入射角α2,α3が、0°にならな
い条件であるβ5≠β1、β5≠β2を満足させるために
は、β5=0°となる。
Here, regardless of the refractive indexes of the flow cell 1 and the sample fluid 6, the conditions under which the incident angles α 2 , α 3 of the laser light La on the boundary surface between the outer wall surface 5d and the air do not become 0 ° are obtained. From Equations (4) and (5), β 1 ≠ 0 °, β 2
It becomes 0 °. Therefore, in order to satisfy the conditions that the incident angles α 2 and α 3 do not become 0 °, β 5 ≠ β 1 and β 5 ≠ β 2 , β 5 = 0 °.

【0050】β5=0°とは、フローセル1の内壁面5
cと外壁面5dとが平行であることを意味する。即ち、
内壁面5cと外壁面5dを平行に形成すれば、フローセ
ル1及び試料流体6の屈折率に拘らず、外壁面5dと空
気との境界面へのレーザ光Laの入射角は、0°になら
ない。
Β 5 = 0 ° means the inner wall surface 5 of the flow cell 1.
This means that c and the outer wall surface 5d are parallel to each other. That is,
If the inner wall surface 5c and the outer wall surface 5d are formed in parallel, the incident angle of the laser light La on the boundary surface between the outer wall surface 5d and the air will not be 0 ° regardless of the refractive index of the flow cell 1 and the sample fluid 6. .

【0051】ところで、レーザ光Laがフローセル1か
ら出射するフローセル1の内壁面5cと外壁面5dとの
角度等の形態は、本発明の実施の形態に限定されるもの
ではない。即ち、本発明においては、レーザ光Laがフ
ローセル1内を流れる試料流体6の屈折率に左右される
ことなく、フローセル1の照射領域Mを確実に通過し、
更に試料流体6と内壁面5cとの境界面に所定の入射角
α(α≠0°)で入射すると共に、外壁面5dと空気と
の境界面にも所定の入射角α’(α’≠0°)で入射す
るように、フローセル1の壁部5の形状が形成されてい
ればよい。
By the way, the form such as the angle between the inner wall surface 5c and the outer wall surface 5d of the flow cell 1 from which the laser light La is emitted from the flow cell 1 is not limited to the embodiment of the present invention. That is, in the present invention, the laser light La surely passes through the irradiation region M of the flow cell 1 without being influenced by the refractive index of the sample fluid 6 flowing in the flow cell 1.
Further, the light is incident on the boundary surface between the sample fluid 6 and the inner wall surface 5c at a predetermined incident angle α (α ≠ 0 °), and also at the boundary surface between the outer wall surface 5d and the air at a predetermined incident angle α ′ (α ′ ≠. It suffices that the shape of the wall portion 5 of the flow cell 1 is formed so as to be incident at 0 °.

【0052】従って、フローセル1の内壁面5cと外壁
面5dとの角度等の形態は、内壁面5c及び外壁面5d
の全面について、図2又は図3に示すように、同じ形状
に形成する必要はなく、レーザ光Laが通過する部分の
み、入射角が0°にならないように形成することもでき
る。
Therefore, the form such as the angle between the inner wall surface 5c and the outer wall surface 5d of the flow cell 1 is determined by the inner wall surface 5c and the outer wall surface 5d.
As shown in FIG. 2 or FIG. 3, it is not necessary to form the entire surface in the same shape, and it is also possible to form only the portion through which the laser light La passes so that the incident angle does not become 0 °.

【0053】これまでは、レーザ光Laを、試料流体6
と内壁面5cとの境界面に所定の入射角α(α≠0°)
で入射させ、ここでの反射光がレーザ光源又は照射領域
Mに戻らないようにすることを前提に説明してきた。し
かし、レーザ光源又は照射領域Mに戻る反射光を少しで
も減らすことができれば、それに応じた効果が得られる
ことは明らかである。
Up to now, the laser light La is supplied to the sample fluid 6
Incident angle α (α ≠ 0 °) on the boundary surface between the inner wall surface 5c and
The description has been made on the premise that the light is incident on the laser light source and the reflected light here is prevented from returning to the laser light source or the irradiation region M. However, if the reflected light returning to the laser light source or the irradiation region M can be reduced as much as possible, it is obvious that the corresponding effect can be obtained.

【0054】そこで、レーザ光Laを試料流体6と内壁
面5cとの境界面に入射角αを0°で入射させた場合で
あっても、レーザ光Laが外壁面5dと空気との境界面
に所定の入射角α”(α”≠0°)で入射するようにフ
ローセル1の壁部5の形状を形成すれば、レーザ光La
が外壁面5dと空気との境界面で反射するのを防止する
ことができ、反射光の一部がレーザ光源に戻ることによ
り帰還ノイズがレーザ光Laに重畳するのを回避するこ
とができる。
Therefore, even when the laser light La is incident on the boundary surface between the sample fluid 6 and the inner wall surface 5c at an incident angle α of 0 °, the laser light La is at the boundary surface between the outer wall surface 5d and the air. If the shape of the wall portion 5 of the flow cell 1 is formed so as to be incident at a predetermined incident angle α ″ (α ″ ≠ 0 °) on the laser beam La,
Can be prevented from being reflected at the boundary surface between the outer wall surface 5d and the air, and it is possible to prevent feedback noise from being superposed on the laser light La by returning a part of the reflected light to the laser light source.

【0055】なお、本発明の実施の形態においては、光
散乱式の粒子測定装置について説明したが、照射領域M
を通過する粒子の存在による透過光量の減少量を検出し
て粒子の数や粒径などを測定する光遮断式の粒子測定装
置、及び照射領域Mを通過する粒子の存在により生じる
回折光を検出する光回折式の粒子測定装置にも適用でき
る。
In the embodiment of the present invention, the light scattering type particle measuring device has been described.
Light-blocking type particle measuring device for measuring the number of particles or the particle size by detecting the amount of reduction of the amount of transmitted light due to the presence of particles passing through, and detecting the diffracted light generated by the presence of particles passing through the irradiation area M. It can also be applied to a light diffraction type particle measuring device.

【0056】[0056]

【発明の効果】以上説明したように請求項1に係る発明
によれば、光が粒子検出部としての照射領域を通過した
後、試料流体の屈折率の大きさに影響されずに、試料流
体と内壁面の境界面で光源に戻る方向に反射するのを防
止することができ、反射光の一部が光源に戻ることによ
り帰還ノイズが光に重畳すること及び反射光の一部が照
射領域を再び通過してノイズを増加させることを回避す
ることができる。
As described above, according to the first aspect of the invention, after the light passes through the irradiation area as the particle detecting section, the sample fluid is not affected by the magnitude of the refractive index of the sample fluid. It is possible to prevent reflection in the direction of returning to the light source at the boundary surface between the inner wall surface and the inner wall surface, part of the reflected light is returned to the light source, and feedback noise is superimposed on the light, and part of the reflected light is the irradiation area. It is possible to avoid passing through again to increase the noise.

【0057】請求項2に係る発明によれば、光が粒子検
出部としての照射領域を通過した後、試料流体の屈折率
の大きさに影響されずに、試料流体と内壁面の境界面で
光源に戻る方向に反射するのを防止することができるの
に加えて、更に光が外壁面と空気との境界面で光源に戻
る方向に反射するのを防止することができ、反射光の一
部が光源に戻ることにより帰還ノイズが光に重畳するこ
と及び反射光の一部が照射領域を再び通過してノイズを
増加させることを回避することができる。
According to the second aspect of the present invention, after the light passes through the irradiation area as the particle detecting portion, the light is not affected by the magnitude of the refractive index of the sample fluid, and the light is passed through the boundary surface between the sample fluid and the inner wall surface. In addition to being able to prevent reflection in the direction returning to the light source, it is also possible to prevent light from being reflected in the direction returning to the light source at the boundary surface between the outer wall surface and air, thus By returning the part to the light source, it is possible to avoid that feedback noise is superposed on the light and that part of the reflected light again passes through the irradiation area to increase the noise.

【0058】請求項3に係る発明によれば、光が外壁面
と空気との境界面で光源に戻る方向に反射するのを防止
することができ、反射光の一部が光源に戻ることにより
帰還ノイズが光に重畳すること及び反射光の一部が照射
領域を再び通過してノイズを増加させることを回避する
ことができる。
According to the third aspect of the invention, it is possible to prevent light from being reflected in the direction of returning to the light source at the boundary surface between the outer wall surface and the air, and a part of the reflected light is returned to the light source. It is possible to avoid that the feedback noise is superimposed on the light and that part of the reflected light passes through the irradiation area again and increases the noise.

【0059】請求項4に係る発明によれば、試料流体の
屈折率の大きさに影響されずに、試料流体に含まれる粒
子の数及び粒子の粒径を測定することができる。
According to the fourth aspect of the present invention, the number of particles contained in the sample fluid and the particle size of the particles can be measured without being affected by the magnitude of the refractive index of the sample fluid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子測定装置の構成図FIG. 1 is a block diagram of a particle measuring apparatus according to the present invention.

【図2】本発明に係るフローセルの断面図FIG. 2 is a sectional view of a flow cell according to the present invention.

【図3】フローセルの壁部における光の透過経路の説明
FIG. 3 is an explanatory diagram of a light transmission path in a wall portion of a flow cell.

【図4】従来のフローセルの断面図FIG. 4 is a sectional view of a conventional flow cell.

【図5】従来のフローセルの壁部における光の透過経路
の説明図
FIG. 5 is an explanatory diagram of a light transmission path in a wall portion of a conventional flow cell.

【符号の説明】[Explanation of symbols]

1…フローセル、2…レーザ光源、3…集光光学系、4
…光電変換素子、5…壁部、5a,5d…外壁面、5
b,5c…内壁面、6…試料流体、La…レーザ光、M
…照射領域。
1 ... Flow cell, 2 ... Laser light source, 3 ... Condensing optical system, 4
... photoelectric conversion element, 5 ... wall portion, 5a, 5d ... outer wall surface, 5
b, 5c ... inner wall surface, 6 ... sample fluid, La ... laser light, M
… Irradiated area.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光を照射して粒子検出部としての照射領
域を内部に形成し、この照射領域を通過する試料流体に
含まれる粒子の粒径等の粒子情報を得るためのフローセ
ルにおいて、前記光が空気とフローセルの外壁面との境
界面に所定の入射角θ(θ≠0°)で入射すると共に、
フローセルの内壁面と前記試料流体との境界面に入射角
0°で入射するようにフローセルの壁部の形状を形成
し、前記光が前記照射領域を通過した後に、前記試料流
体とフローセルの内壁面との境界面に所定の入射角α
(α≠0°)で入射するようにフローセルの壁部の形状
を形成したことを特徴とするフローセル。
1. A flow cell for irradiating light to form an irradiation region as a particle detection unit therein and obtaining particle information such as a particle size of particles contained in a sample fluid passing through the irradiation region, Light is incident on the boundary surface between the air and the outer wall surface of the flow cell at a predetermined incident angle θ (θ ≠ 0 °), and
The wall of the flow cell is shaped so as to be incident on the boundary surface between the inner wall surface of the flow cell and the sample fluid at an incident angle of 0 °, and after the light passes through the irradiation region, the inside of the sample fluid and the flow cell is Predetermined incident angle α on the boundary surface with the wall surface
A flow cell in which the shape of the wall of the flow cell is formed so as to be incident at (α ≠ 0 °).
【請求項2】 請求項に記載のフローセルにおいて、
前記光がフローセルの外壁面と空気との境界面に所定の
入射角α’(α’≠0°)で入射するようにフローセル
の壁部の形状を形成したことを特徴とするフローセル。
2. The flow cell according to claim 1 , wherein
The flow cell is characterized in that the shape of the wall portion of the flow cell is formed so that the light is incident on a boundary surface between the outer wall surface of the flow cell and air at a predetermined incident angle α '(α' ≠ 0 °).
【請求項3】 光を照射して粒子検出部としての照射領
域を内部に形成し、この照射領域を通過する試料流体に
含まれる粒子の粒径等の粒子情報を得るためのフローセ
ルにおいて、前記光が前記試料流体に入射して前記照射
領域を通過した後に、前記試料流体とフローセルの内壁
面との境界面に入射角が0°で入射し、その後、前記光
がフローセルの外壁面と空気との境界面に所定の入射角
α”(α”≠0°)で入射するようにフローセルの壁部
の形状を形成したことを特徴とするフローセル。
3. A flow cell for irradiating light to form an irradiation region as a particle detection unit therein and obtaining particle information such as a particle size of particles contained in a sample fluid passing through the irradiation region, After the light is incident on the sample fluid and passes through the irradiation region, it is incident on the boundary surface between the sample fluid and the inner wall surface of the flow cell at an incident angle of 0 °, and then the light is incident on the outer wall surface of the flow cell and the air. A flow cell in which the shape of the wall portion of the flow cell is formed so as to be incident at a predetermined incident angle α ″ (α ″ ≠ 0 °) on the boundary surface with.
【請求項4】 請求項1乃至請求項のいずれかに記載
のフローセルと、このフローセルの流路に光を照射して
照射領域を形成する光源と、前記照射領域の粒子の散乱
光、透過光又は回折光を検出処理する光学的検出処理手
段を備えることを特徴とする粒子測定装置。
Flow cell according to any one of claims 4] claims 1 to 3, a light source for forming the irradiation region is irradiated with light in the flow path of the flow cell, the scattered light of the particles of the irradiation region, transmission A particle measuring apparatus comprising an optical detection processing means for detecting light or diffracted light.
JP19119499A 1999-03-18 1999-07-06 Flow cell and particle measuring apparatus using the flow cell Expired - Fee Related JP3530078B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19119499A JP3530078B2 (en) 1999-07-06 1999-07-06 Flow cell and particle measuring apparatus using the flow cell
US09/528,146 US6465802B1 (en) 1999-03-18 2000-03-17 Particle measurement apparatus flow cell useful for sample fluids having different refractive indexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19119499A JP3530078B2 (en) 1999-07-06 1999-07-06 Flow cell and particle measuring apparatus using the flow cell

Publications (2)

Publication Number Publication Date
JP2001021480A JP2001021480A (en) 2001-01-26
JP3530078B2 true JP3530078B2 (en) 2004-05-24

Family

ID=16270478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19119499A Expired - Fee Related JP3530078B2 (en) 1999-03-18 1999-07-06 Flow cell and particle measuring apparatus using the flow cell

Country Status (1)

Country Link
JP (1) JP3530078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171182A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Method of supplying light to channel or its constituent part
JP2008224342A (en) * 2007-03-12 2008-09-25 Rion Co Ltd Flow cell, manufacturing method for flow cell, and particle measuring instrument

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564542B2 (en) * 2006-04-11 2009-07-21 Guava Technologies Asymmetric capillary for capillary-flow cytometers
JP4939108B2 (en) * 2006-05-02 2012-05-23 ローム株式会社 Microchip
JP4921307B2 (en) * 2007-10-02 2012-04-25 日本電信電話株式会社 Optical absorption analyzer
JP7260308B2 (en) * 2019-01-24 2023-04-18 リオン株式会社 Flow cell and particle counter for measuring suspended solids in fluid
WO2021048962A1 (en) * 2019-09-11 2021-03-18 株式会社島津製作所 Light-scattering detection device
WO2022068630A1 (en) * 2020-09-30 2022-04-07 深圳市帝迈生物技术有限公司 Optical measurement apparatus and sample analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171182A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Method of supplying light to channel or its constituent part
JP2008224342A (en) * 2007-03-12 2008-09-25 Rion Co Ltd Flow cell, manufacturing method for flow cell, and particle measuring instrument

Also Published As

Publication number Publication date
JP2001021480A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US8576396B2 (en) Cell construction for light scatter detectors having self-focusing properties
US7205521B2 (en) Speckle based sensor for three dimensional navigation
JP6691043B2 (en) Particle characterization device
US5999256A (en) Particle measurement system
JPH0792092A (en) Device and method for detecting interface of liquid/gas flowing in pipe
US11221289B2 (en) Optical particle detector
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
JP3530078B2 (en) Flow cell and particle measuring apparatus using the flow cell
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
JPS5839931A (en) Method of measuring characteristic of plastic film by using infrared ray
JP4050748B2 (en) Particle measuring device
US20070047836A1 (en) Analysis of signal oscillation patterns
US20070242258A1 (en) Device for Measuring the Distance to Far-Off Objects and Close Objects
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
US6465802B1 (en) Particle measurement apparatus flow cell useful for sample fluids having different refractive indexes
JP3530061B2 (en) Flow cell and particle measuring apparatus using the flow cell
US6737665B1 (en) Edge detector
JPH0444204B2 (en)
US20030122054A1 (en) Vertical cavity surface emitting laser array for velocity measurement
US10384152B2 (en) Backscatter reductant anamorphic beam sampler
JP2008070383A (en) Apparatus for measuring particles
JPH0121453B2 (en)
JPH0755490Y2 (en) Device for measuring fine particles in liquid
JPH01232235A (en) Flow cell for fine-particle measuring instrument
JPH04369464A (en) Light scattering type particle detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees