WO2021048962A1 - Light-scattering detection device - Google Patents

Light-scattering detection device Download PDF

Info

Publication number
WO2021048962A1
WO2021048962A1 PCT/JP2019/035785 JP2019035785W WO2021048962A1 WO 2021048962 A1 WO2021048962 A1 WO 2021048962A1 JP 2019035785 W JP2019035785 W JP 2019035785W WO 2021048962 A1 WO2021048962 A1 WO 2021048962A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample cell
detection device
cell
angle
Prior art date
Application number
PCT/JP2019/035785
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 晃
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/035785 priority Critical patent/WO2021048962A1/en
Priority to JP2021545039A priority patent/JP7052925B2/en
Publication of WO2021048962A1 publication Critical patent/WO2021048962A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present invention relates to a light scattering detection device.
  • Size exclusion chromatography SEC
  • GPC gel filtration chromatography
  • the MALS detector includes a cell that holds a liquid sample introduced from a liquid chromatograph such as SEC or GPC, a light source that irradiates the liquid sample held in the cell with a laser beam, and a plurality of detectors. ..
  • a cylindrical cell is usually used in a MALS detector, and a liquid sample held in the cell is irradiated with light from a light source from a direction perpendicular to the central axis of the cell. When the light from the light source passes through the liquid sample, the light is radiated with a scattering cross section depending on the fine particles contained in the liquid sample in the passage path, and exits from the cell.
  • a plurality of detectors are arranged so as to surround the center of the cell so that the light emitted from the liquid sample (cell) in a plurality of directions can be detected at the same time. Then, the relationship between the scattering angle and the scattering cross section is obtained from the intensity of the scattered light obtained by the plurality of detectors, and the molecular weight and size (turning radius) of the unknown substance in the liquid sample are calculated from this relationship. ..
  • a through hole for holding a liquid sample is formed in the radial direction of the cylindrical cell, and the light from the light source is emitted from one end to the other end of the through hole.
  • the cell is irradiated so as to pass through the through hole toward the (see Patent Document 1).
  • a through hole for holding a liquid sample is formed in the direction of the central axis of the cylindrical cell, and the light from the light source is formed in the cell so as to cross the through hole. It is irradiated (see Patent Document 2).
  • the first type cell functions as a cylindrical lens with respect to the light scattered by the liquid sample (fine particles contained in the liquid sample) in the path of the irradiation light. Therefore, in the MALS detection device using this cell, various angular components (angle components) of the scattered light are collected by the cell. Since the detector is arranged at the condensing position of each angle component, the intensity of each angle component can be detected by the corresponding detector.
  • the flow path for introducing the liquid sample from the chromatograph into the through hole does not interfere spatially with the light source, and the penetration thereof.
  • the conductance of the liquid sample flowing through the flow path is greatly modulated. Such conductance modulation reduces the measurement accuracy of the chromatograph.
  • the scattered light generation region corresponds to the diameter of the cell
  • the spherical aberration is large.
  • the scattered light of the angular component having a large aberration is added to the scattered light of the angular component in the vicinity as noise, there is a problem that the angular resolution is reduced.
  • the light from the light source irradiates the cell so as to cross the through hole, so that the introduction flow paths provided on both ends of the through hole of the cell are provided. And the discharge channel does not interfere with the light from the light source.
  • the second type cell has a circular outer and inner circumference (that is, the side surface of the through hole), and the interface between the liquid sample flowing through the through hole and the cell and the interface between the cell and air are optically formed.
  • the function as a cylindrical lens is the same as that of the first type.
  • the light emitting region is limited to a narrow region near the center of the cell, the problem of spherical aberration is much smaller when the second type cell is used. Therefore, a MALS detector using a second type cell is useful as a detector for chromatographically separated fine particles.
  • quartz glass which is a general material for optical members, is used as the cell material. Since the refractive index (1.46) of quartz glass is larger than the refractive index (1.0) of air, the interface between the cell and air always has a converging action. On the other hand, since various kinds of solvents are used as mobile phases in chromatography, the refractive index of the solvent of the liquid sample introduced from the chromatograph is wide. Therefore, depending on the magnitude relationship between the refractive index of the liquid sample (solvent) and the refractive index of the cell, the interface between the liquid sample and the cell has a high refractive index / low refractive index interface having a converging action and a low refractive index / having a divergent action. It can be any of the high index interfaces. That is, whether the interface between the liquid sample and the cell has a converging action or a dispersing action depends on the refractive index of the solvent of the liquid sample.
  • the scattered light generated in the liquid sample can be taken out from the cell as parallel light by canceling the convergence action at the interface between the cell and the air.
  • the interface between the liquid sample and the cell has a converging action
  • the scattered light is more strongly converged by being superimposed on the converging action of the interface between the cell and the air, and a focal point is formed in the immediate vicinity of the cell. Since the scattered light after passing through the focal point continues to diverge, it cannot be made into parallel light.
  • the emitted light can be condensed to some extent, but if the difference in refractive index between the solvent and the cell becomes large, the imaging element It becomes difficult for some children to collect light at a desired position.
  • an imaging element such as a lens, a diffractive element, or a curved mirror
  • An object to be solved by the present invention is to enable a light scattering detection device to detect the intensity of scattered light generated in a liquid sample regardless of the refractive index of the solvent of the liquid sample.
  • a light scattering detector for detecting fine particles in a liquid sample A sample cell having a circular outer cross-sectional shape and having a flow path for holding a liquid sample, A light source that irradiates a laser beam from a direction perpendicular to the axis of the sample cell toward the flow path, A plurality of photodetectors arranged on a predetermined circumference outside the sample cell centered on the axis in a plane perpendicular to the axis are provided.
  • the present invention relates to a light scattering detection device in which a side surface of the flow path facing at least one of the plurality of photodetectors is a flat surface.
  • the laser light from the light source when the laser light from the light source is irradiated toward the flow path in the sample cell, the laser light is oriented in various directions due to the fine particles contained in the liquid sample in the flow path. It is scattered and radiated from the sample cell.
  • the various angular components (angle components) of the scattered light generated in the flow path are the interface between the solvent of the liquid sample and the sample cell, and the external space between the sample cell and the sample cell before coming out of the sample cell. Pass through the interface with.
  • the side surface of the flow path facing at least one of the plurality of detectors is a plane
  • the angular component of the scattered light generated in the flow path that passes through this side surface is determined. Although it is refracted on the plane side surface, it heads toward the interface between the sample cell and the external space as parallel light while maintaining the wave plane of the plane wave.
  • the refractive index of the sample cell is larger than the refractive index of the external space (air), and in the present invention, the cross-sectional shape of the outer shape of the sample cell is circular, so that the interface between the sample cell and the external space is Has a convergence effect.
  • the angular component of the scattered light that has passed through the plane side surface of the flow path and directed toward the interface between the sample cell and the external space as parallel light is centered on the axis of the sample cell regardless of the refractive index of the liquid sample solvent. Focus on a predetermined circumference. Since a plurality of photodetectors are arranged on the predetermined circumference, the light that faces the angular component of the scattered light that has passed through the plane side surface regardless of the refractive index of the solvent of the liquid sample. It can be detected by a detector.
  • the plane side surface faces at least one of a plurality of photodetectors is not limited to the case where the plane side surface and the photodetector face each other, and the flow with at least one of the plurality of photodetectors. It means that the plane side surface is in a position that contributes to the detection by the detector between the scattered light generation region in the road. That is, it is sufficient that at least one of the plurality of photodetectors is arranged at a position where the angular component of the scattered light generated in the scattered light generation region in the flow path and passed through the plane side surface can be detected.
  • a schematic overall configuration diagram of a multi-angle light scattering detection device which is a form of a conventional light scattering detection device.
  • the figure which shows the positional relationship of a beam splitter, a sample cell, an imaging optical system, and a detector in a conventional multi-angle light scattering detection apparatus.
  • Explanatory drawing of the parallel component of the scattered light emitted from the generation area of scattered light Scattered light emitted in the normal direction from each generation region of scattered light of a liquid sample in which the refractive index n0 of the solvent is (a) 1.26, (b) 1.36, (c) 1.46, (d) 1.56, and (e) 1.66.
  • the schematic whole block diagram of the multi-angle light scattering detection apparatus which is one Embodiment of this invention.
  • the cross-sectional shape of the through hole is (a) a ray diagram of each angle component of scattered light when a sample cell having a rectangular shape is irradiated with laser light, and (b) scattering when a sample cell having a square shape is irradiated with laser light.
  • a ray diagram of each angle component of light (C) A ray diagram of each angle component of the forward scattered light and (d) a ray diagram of each angle component of the back scattered light when a sample cell having an isosceles triangle cross-sectional shape is irradiated with laser light.
  • FIG. 9 is a spot diagram for evaluating the angular resolution of the photodetector when an angular component having a scattering angle of 90 °, which is shown in FIG. 9, is detected by the photodetector.
  • the figure which shows the name of the interface used when explaining the behavior of the angular component of the scattered light at the solvent / cell interface when the cross-sectional shape of a through hole is an equilateral triangle.
  • the conventional configuration of the light scattering detection device according to the present invention will be described by taking as an example a multi-angle light scattering detection device (MALS detection device), which is a form of the light scattering detection device.
  • MALS detection device multi-angle light scattering detection device
  • FIG. 1 shows a conventional general schematic configuration of a MALS detection device.
  • the MALS detection device 100P surrounds the sample cell 7 at a predetermined angle ⁇ on the cylindrical transparent sample cell 7 in which the liquid sample 71 is housed and the circumference E centered on the sample cell 7. It includes a plurality of arranged light detectors 8 and 9, and a laser light source 1 and an incoherent light source 2 that irradiate the sample cell 7 with light.
  • Laser light which is coherent light, is emitted from the laser light source 1, and incoherent light or partial coherent light is emitted from the incoherent light source 2.
  • the laser light emitted from the laser light source 1 and traveling along the optical path L1 and the incoherent light emitted from the incoherent light source 2 and traveling along the optical path L2 are alternately selected by the sector mirror 3 in the sample cell 7. It is sent to an optical path L3 having the same optical axis toward it.
  • the sector mirror 3 is composed of, for example, a rotating plate in which reflecting portions and transmitting portions are alternately arranged.
  • the rotating plate is rotationally driven in the same direction at a predetermined speed by a drive mechanism 4 such as a motor, and laser light is sent to the optical path L3 at the timing when the transmitting portion comes at the intersection of the optical paths L1 and L2, and in at the timing when the reflecting portion comes.
  • Coherent light is sent to the optical path L3.
  • the direction perpendicular to the same plane in which the photodetectors 8 and 9 are arranged is the polarization direction of the electric vector.
  • a beam splitter 5 is arranged on the optical path L3, and a part of the light radiated to the sample cell 7 is split and reflected by the beam splitter 5 and introduced into the intensity monitor detector 6.
  • the detection signal of the intensity monitor detector 6 is input to the data processing unit 11 and used to correct fluctuations in the emission intensity of the light sources 1 and 2.
  • the photodetector 8 arranged on the extension of the optical path L3 in a plan view is a detector for measuring the transmitted absorbance, and all the other photodetectors 9 are. It is a detector for multi-angle scattering measurement.
  • the detection signal by the photodetector 8 is input to the concentration calculation unit 13 included as a function in the data processing unit 11, while the detection signal by the plurality of photodetectors 9 is a particle information calculation unit included as a function in the data processing unit 11. It is input to 12.
  • the laser light emitted from the light source 1 travels along the optical path L1
  • the incoherent light emitted from the light source 2 travels along the optical path L2. Since these light fluxes are periodically and alternately selected by the sector mirror 3 and sent to the optical path L3, the liquid sample 71 in the sample cell 7 is alternately irradiated with the laser beam and the incoherent light.
  • the drive mechanism 4 that drives the sector mirror 3 is controlled by the control unit 10.
  • the control unit 10 sends a timing control signal indicating which of the laser beam and the incoherent light is the period during which the sample 71 is irradiated to the data processing unit 11 in synchronization with the rotation position of the sector mirror 3.
  • the data processing unit 11 reads the detection signal of the photodetector 8 during the period in which the incoherent light is irradiated.
  • the concentration calculation unit 13 calculates the absorbance of the sample 71 based on this detection signal, and calculates the concentration of the fine particles in the sample 71. The calculated concentration value is sent to the particle information calculation unit 12.
  • the data processing unit 11 simultaneously reads the detection signals of the plurality of photodetectors 9 during the period in which the sample 71 is irradiated with the laser beam.
  • the particle information calculation unit 12 calculates the scattered light intensity at each angular position based on these detection signals.
  • the particle information calculation unit 12 calculates the molecular weight, turning radius, and the like of the fine particles contained in the sample 71 based on the scattered light intensity at each angular position and the concentration value of the fine particles in the sample.
  • FIG. 2 is a schematic view showing the positional relationship between the beam splitter 5, the sample cell 7, and the photodetector 9 in the MALS detector 100P.
  • FIG. 2 since it is a side view, it seems that the photodetector 9 is located on the extension of the optical path L3, but in reality, all of the plurality of detectors 9 are located outside the extension of the optical path L3. is there.
  • an imaging optical system 20 composed of a slit plate 21 having a slit for limiting scattered light and a plano-convex lens 22 is arranged between the sample cell 7 and the photodetector 9.
  • the slit of the slit plate 21 has a vertically long rectangular shape in order to limit the scattering angle in the horizontal direction and to take in a large amount of light flux in the vertical direction.
  • the sample cell 7 and the imaging optics so that the components (angle components) of the scattered light emitted from the sample cell 7 in various angular directions are focused on the light receiving surface of the corresponding photodetector 9.
  • the arrangement of the system 20 and the photodetector 9 is set. In order for each angle component of the scattered light emitted from the sample cell 7 to be focused on the light receiving surface of the photodetector 9 after passing through the imaging optical system 20, each angle component should be as close to parallel light as possible. It is desirable that the light is incident on the imaging optical system 20.
  • the sample cell 7 has a through hole having a circular cross section formed along the central axis thereof, and the liquid sample 71 is housed in the through hole. Therefore, the through hole corresponds to the flow path of the present invention.
  • the laser beam emitted to the sample cell 7 is scattered by the fine particles contained in the liquid sample 71 when crossing the through hole, and is scattered at the interface between the liquid sample 71 (solvent) and the sample cell 7, and the sample cell 7 and its outside ( Generally, after passing through the interface with air), the sample cell 7 emits light. Whether or not each angular component of the scattered light generated in the liquid sample 71 is emitted from the sample cell 7 as parallel light depends on the optical function of these interfaces.
  • the optical function of the interface of the sample cell 7 in the conventional MALS detection device 100P is as follows.
  • FIG. 5 is a light ray diagram when light (parallel light) is incident so as to penetrate the center of the sample cell 7.
  • the sample cell 7 on the left side of FIG. 3 holds a liquid sample 71 having a solvent refractive index n0 of 1.26, and the sample cell 7 on the right side holds a liquid sample 71 having a solvent refractive index n0 of 1.66. ..
  • the light beam incident on the liquid sample 71 from the sample cell 7 is large regardless of whether the refractive index n0 of the solvent is smaller than the refractive index n1 of the sample cell 7 (left side) or larger (right side). It can be seen that the sample passes through the liquid sample 71 in a state of being substantially parallel without being converged or diverged. Born approximation is established from the width of the light beam and the ratio of the inner diameter to the outer diameter of the sample cell 7 and from the intensity ratio of the laser light and the scattered light, and the influence of multiple scattering can be excluded.
  • a region in which scattered light is generated when a laser beam is incident on the liquid sample 71 housed in the through hole of the sample cell 7 is formed by a line segment having a length corresponding to the inner diameter of the sample cell 8 and having no width. It can be approximated as a light emitting region).
  • Scattered light is emitted from the above-mentioned light emitting region in various directions.
  • the refractive index n0 of the solvent is 1.26 ((a), for example, fluorescent solvent), 1.36 ((b), for example, ethanol), 1.46 ((c), for example, fluorobenzene), 1.56 ((d), for example, nitrobenzene). ), 1.66 ((e), for example, quinoline) is a ray diagram of scattered light emitted in the normal direction from the light emitting region of the liquid sample 71.
  • air exists in the external space of the sample cell 7, and its refractive index n2 is 1.0.
  • the lens functions as a divergent lens, and n0> n1.
  • the lens functions as a focusing lens.
  • n0 n1 (when (c))
  • the light beam travels straight without being refracted at the solvent / cell interface.
  • the interface between the sample cell 7 and the external space (hereinafter referred to as “cell / air interface”) is always a convergent lens. Functions as. Therefore, as shown in FIG. 5, in the cases (a) and (b) where the solvent / cell interface functions as a divergence lens, the divergence and convergence cancel each other out, and in the case of (b) in particular, the parallel components of the scattered light. Most of them are emitted from the sample cell 7 as substantially parallel rays.
  • the solvent / cell interface does not function as a lens (c)
  • the cell / air interface converges
  • the solvent / cell interface functions as a condensing lens (d) and (e).
  • the light emitted from the sample cell 7 is focused on a predetermined focal point by superimposing the convergence action.
  • the focus is focused in the immediate vicinity of the sample cell 7, and the divergence continues after that.
  • the conventional MALS detector cannot accurately measure the scattered light intensity or cannot measure it at all depending on the refractive index of the solvent of the liquid sample to be measured.
  • the sample cells with different refractive indexes are replaced according to the refractive index of the solvent of the liquid sample, or the position of the light receiving surface of the light detector is changed. It is conceivable to change or arrange a condensing optical system having an appropriate configuration between the sample cell and the detector.
  • the sample cell may be replaced according to the refractive index of the solvent, or the detector may be replaced. It is almost impractical to change the arrangement or the configuration of the condensing optical system.
  • the refractive index of the solvent contributes only to the solvent / cell interface.
  • the reason why the scattered light emitted from the sample cell becomes divergent light, parallel light, or convergent light is that the scattered light crosses the solvent / cell interface depending on the refractive index of the solvent of the liquid sample. This is because the behavior when passing is different.
  • the angular component of the scattered light generated in the light emitting region has a plane wave surface.
  • a plane wave ray passes through a planar interface, the ray is refracted at the interface, but its wave surface is retained. That is, if the solvent / cell interface is made flat, all the angular components of the scattered light are parallel light and go from the solvent / cell interface to the cell / air interface. Since the cell / air interface has a converging effect, it is expected that the individual angular components of the scattered light will be focused on the circumference centered on the axis of the sample cell 7, regardless of the refractive index of the solvent.
  • the present invention has been made based on such findings.
  • the light scattering detector according to the present invention will be described by taking as an example a multi-angle light scattering detection device (MALS detection device) which is an embodiment thereof.
  • MALS detection device multi-angle light scattering detection device
  • FIG. 6 is a schematic overall configuration diagram of the MALS detection device 100 of the present embodiment.
  • the MALS detection device 100 has substantially the same configuration as the conventional MALS detection device 100P shown in FIG. Therefore, in the configuration of the MALS detection device 100, the same or corresponding parts as the MALS detection device 100P are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be mainly described.
  • the MALS detection device 100 of the present embodiment has a different configuration of through holes in the sample cell 17 from the sample cell 7.
  • the sample cell 17 has a flat side surface facing at least one of the photodetectors 9 among the side surfaces of the through hole.
  • a flat side surface flat side surface
  • Such a flat side surface can be obtained, for example, by forming a through hole having a circular cross-sectional shape inside the sample cell and processing a part of the side surface, but at least a part of the side surface is straight.
  • a through hole having a closed curve may be formed inside the sample cell 17. In this configuration, the side surface of the plane is formed in the entire axial direction of the sample cell 17.
  • closed curves include, but are not limited to, polygons, sectors, and shapes surrounded by strings and arcs with the same end points.
  • the through hole of the conventional sample cell 7 having a circular cross-sectional shape and all the side surfaces having a curved surface is excluded.
  • the cross-sectional shape is polygonal, all the side surfaces of the through hole are composed of a plurality of plane side surfaces.
  • the MALS detection device 100 does not include an imaging optical system arranged between the sample cell 7 and the photodetector 9 in the conventional MALS detection device 100P.
  • the rectangle and the square have a symmetry having a two-fold rotation axis and a four-fold rotation axis, respectively, in the sample cell 17 having a rectangular and square cross-sectional shape of the through hole ((a) and (b) in FIG. 7A), the right side. Only the angular component of the forward scattering (scattering angle is 10 ° interval from 10 ° to 90 °) is shown. Further, since the isosceles triangle has different modes of forward scattering and backscatter due to its symmetry, in the sample cell 17 ((c), (d) of FIG.
  • the solvent / cell interface is composed of a plurality of planes.
  • the angular component of the scattered light it is incident across a plurality of planes constituting the solvent / cell interface of the through hole, and splits when passing through the planes.
  • some angular components of the scattered light were split in two directions by passing through the two planes.
  • the intensity distribution ratio in the two planes is calculated, and only the angle component having the larger intensity distribution ratio among the two planes is used as the measurement target for photodetection. It is preferable to perform weighting correction by detecting with the device 9 and multiplying the detection result by the inverse of the intensity distribution ratio.
  • the scattered light intensity of the entire angle component incident on the two planes can be obtained.
  • the cross-sectional shape of the through hole is a polygon other than the triangle and the quadrangle shown in FIG. 7, in principle, the light intensity of all the angular components of the scattered light can be obtained. it can.
  • FIG. 8 shows an angular component of scattered light passing through three plane side surfaces of a through hole having an equilateral triangular cross section.
  • FIG. 10 is a light intensity distribution depending on the detection position obtained by tracing a light ray having an angular component of 90 ° in two dimensions.
  • the horizontal axis of FIG. 10 is the detection position coordinates, and each spectrum corresponds to a different ⁇ 0 when the emission angle from the sample cell 17 is ⁇ 0 and ⁇ 0 is expressed by the following equation (1).
  • ⁇ 0 90 ° - ⁇ 0 ⁇ ⁇ ⁇ (1)
  • FIG. 10 shows the peaks when three of 0 °, 0.02 °, and 0.04 ° are selected as ⁇ 0. As can be seen from FIG. 10, all the peaks in which ⁇ 0 is 0 °, 0.02 ° and 0.04 ° can be clearly discriminated. From this, the angular resolution of the photodetector 9 can be estimated to be 0.02 °. Since the angle of 0.02 ° corresponds to the length of 4 ⁇ m on the circumference with a radius of 12.7 mm, tentatively, a one-dimensional photodiode array detector with a pixel width of 4 ⁇ m is placed on the circumference E without any gap. In principle, all angular components of scattered light can be measured with an angular resolution of 0.02 ° if they can be arranged over the same.
  • FIG. 11 is a ray diagram of each angle component of scattered light when the solvent of the liquid sample flowing through the through hole of the sample cell 17 having an equilateral triangular cross-sectional shape is quinoline.
  • the index of refraction of water (1.333) is smaller than the index of refraction of the sample cell (1.46), whereas the index of refraction of quinoline is 1.66, which is larger than the index of refraction of the sample cell (1.46).
  • the focal positions of scattered light in different directions match because the refractive index ratio (n1 / n0) of the solvent and the sample cell 17 is large, and the cross-sectional shape of the through hole is an equilateral triangle.
  • the three plane side surfaces of the through holes constituting the solvent / cell interface are designated by the names of the sides of the equilateral triangle (right side, upper left side, lower left side), respectively. I will call it.
  • the upper left side and the lower left side are divided into a right part and a left part, respectively, with the position where the laser beam crosses the upper left side and the lower left side as a boundary. Sometimes called a club.
  • the larger the refractive index ratio of two media sandwiching a flat interface the higher the reflectance of light.
  • the incident angle critical incident angle
  • the angle of incidence is defined by the angle of inclination of the incident light with respect to the normal of the interface, a smaller critical angle of incidence means closer to vertical incidence.
  • FIGS. 13A and 13B show a luminous flux that is emitted from the scattered light generation region (light emitting region) in the through hole in a certain direction and directly passes through the upper left side or the right side, and is emitted from the light emitting region in a direction different from the light flux. Then, after reflecting on any side of the equilateral triangle, the path of the luminous flux passing through the upper left side or the right side is shown. In this description, “reflection” includes reflections other than total internal reflection.
  • the region indicated by reference numeral 101 in FIGS. 13A and 13B is a light emitting region. Further, in FIG. 13A, the laser light passes through the midpoints of the upper left side and the lower left side, and in FIG. 13B, the laser light passes closer to the right side than the midpoints of the upper left side and the lower left side. ..
  • a luminous flux (direct luminous flux 110, indicated by a solid line) that emits light from the light emitting region 101 in a certain direction on the left side and directly passes through the upper left side, and a direction on the left side different from the direct luminous flux 110.
  • the light flux emitted from the light emitting region 101, reflected at the left portion of the lower left side, and passed through the upper left side is depicted in the same direction. Further, in FIG.
  • a luminous flux (direct luminous flux 111, indicated by a solid line) that emits light from the light emitting region 101 in a certain direction on the right side and directly passes through the right side, and emits light in a direction on the right side different from the direct luminous flux 111.
  • a state in which the directions of the luminous flux (indirect luminous flux 121, indicated by a broken line) emitted from the region 101, reflected at the right portion of the upper left side and passing through the right side is drawn. Further, in FIG.
  • the luminous flux to be detected is only the direct luminous flux 110, 111, and the luminous flux 110, 111 is the signal light. Since the indirect luminous fluxes 120, 121, and 122 have different scattering angles from the signal light, they become noise components.
  • the upper left side and the right side of FIG. 13A and the upper left side of FIG. 13B show a region 310 through which signal light passes and a region 320 and 322 through which noise components pass, respectively, with thick arrows.
  • the direct luminous flux 110 and the indirect luminous flux 120, and the direct luminous flux 111 and the indirect luminous flux 121 all have the same direction, but the regions passing through the upper left side and the right side do not overlap. That is, the signal light and the noise component pass through the upper left side or the right side without overlapping. Since the discrimination between the signal light and the noise component is maintained outside the sample cell, the noise component can be completely removed by providing an appropriate light-shielding plate or slit between the sample cell and the photodetector.
  • the noise component that does not overlap with the signal light can be removed, but the noise component that overlaps cannot be removed.
  • the "degree” such as whether or not an irremovable noise component is generated and the ratio of the irremovable noise component to the light emitted from the light emitting region 101 in a certain direction is the refractive index ratio between the solvent and the sample cell and the through hole.
  • Cross-sectional shape equilateral triangle
  • the part where the laser light passes through the through hole for example, the midpoint of the upper left and lower left sides of the equilateral triangle, the center of gravity, or the vicinity of the right side It depends on.
  • the angle of incidence with respect to the right side is in the range of -30 ° to 30 °, assuming that the normal orientation on the right side of the light emitting region 101 is 0 °. ..
  • the incident angle range with respect to the right side is in the range of ⁇ 90 ° to 90 °. That is, since the range of the incident angle is widened as the light emitting region 101 is located to the right, the components having high reflectance increase and total reflection is likely to occur.
  • the light intensity of the noise component is determined by two factors.
  • One is the ratio of the noise light generation region to which the reference numerals 220, 221 and 222 are attached to FIGS. 13A and 13B to the light emitting region 101.
  • Not all specific angular components of scattered light become noise components, and it is the luminous flux emitted from the noise light generation regions 220, 221 and 222 that is reflected at the sides (interfaces) of the equilateral triangle and superimposed on the signal light. Limited to.
  • Another factor is the reflectance at the interface of the noise component. From the above, the value obtained by multiplying "the length of the noise light generation region / the length of the light emitting region" by the reflectance at the interface of the noise light becomes an index of the light intensity of the noise component.
  • This index is called "normalized strength".
  • the value obtained by multiplying the light intensity of a specific angle component by the normalized intensity is the light intensity of the noise component. Therefore, for example, when the normalized intensity is 0.4 and the total scattering intensity in the direction of the noise light is Inoise, 0.4 ⁇ Inoise of Inoise is added to the signal to be detected.
  • Figures 14A and 14B show the relationship between the normalized intensity of the noise component and the scattering angle.
  • the scattering angle is limitedly represented by using the angle metric shown in FIG. 15A.
  • the angle metric shown in FIG. 15B has been used for the measurement of the scattering angle, but at this coordinate, the axis of symmetry of the forward scattering and the backscatter is the axis of 90 ° or -90 °, and the right side. The sign is inverted on the left. In order to avoid this, the angle measurement shown in FIG. 15A is used here.
  • FIGS. 14A and 14B correspond to the case where the laser beam penetrates the midpoint of the upper left lower side of the equilateral triangle and the case where it penetrates the center of gravity of the equilateral triangle, respectively.
  • the horizontal axis of FIGS. 14A and 14B is the scattering angle ⁇ 0 [degree] in the solvent, and represents the direction of emission from the light emitting region 101.
  • the vertical axis of FIGS. 14A and 14B is the normalized intensity of the noise component that follows the signal light emitted at the scattering angle ⁇ 0, and is indicated as the noise contribution rate in the figure. Since the noise contribution rate depends on the refractive index of the solvent, the refractive indexes shown in FIGS. 14A and 14B are 1.26 (fluorescent solvent), 1.333 (water), 1.492 (toluene), 1.56 (Nitrobenzene) and 1.66 (Quinoline). The noise contribution rate at the time is shown.
  • the numerical values shown together with the horizontal arrows indicate the scattering angles of the noise components following the signal light of the scattering angle ⁇ shown on the horizontal axis corresponding to the arrows as local coordinates.
  • the curve representing the contribution rate of the noise component reflected on the right side is displayed with the zero point based up to 0.5 in order to avoid overlapping with other noise contribution rate curves.
  • the refractive index of the solvent is 1.66
  • the photodetector 9 may not be installed in the above angle range.
  • the noise contribution rate becomes remarkable when the solvent has a high refractive index, but when the solvent has a low refractive index. It can be seen that has a small noise contribution rate and has little effect on the detection of the light intensity of the signal light.
  • the scattering angle is represented by the conventional angle measurement.
  • the angle component with a scattering angle of 70 ° (shown in pink) has an angle component with a scattering angle of 50 ° (shown in light blue), and the angle component with a scattering angle of -50 ° (shown in purple) has a scattering angle.
  • the -70 ° angle component (shown in green) follows as a noise component. From FIG. 16, it is clear that these noise components are completely removed by the slits, which supports the geometrical consideration.
  • the angle component and the direction (degree) of the detection position are angles represented by the angle measurement shown in FIG. 15 (a).
  • the scattering angle represented by the conventional customary angle measurement of FIG. 15B is shown in the upper part (conventional scattering angle) of Table 1.
  • the orientations of the photodetector 9 for detecting the angular components with scattering angles of 0 °, 20 °, 140 °, 120 ° and 100 ° are 0 °, 18.25 °, 138.25 °, 120 ° and 120 °, respectively. It becomes 101.75 °.
  • the angle components with angles of 0 ° and 120 ° are vertically incident on the interface, so there is no refraction. Therefore, the scattering angle and the orientation of the photodetector 9 match. Since the other angular components are obliquely incident on the interface, the orientation of the photodetector 9 depends on the refractive index of the solvent.
  • the orientation of the photodetector 9 for detecting the angular component of the scattered light to be measured varies depending on the refractive index of the solvent, but there is only a slight difference and it is not a particularly big problem.
  • Table 1 shows the orientation of the photodetector 9 for detecting the angular components having scattering angles of 0 °, 20 °, 140 °, 120 ° and 100 ° for each refractive index of the solvent.
  • the direction of incident on the through hole is adjusted according to the refractive index of the solvent.
  • the directional shift ⁇ in due to the refraction of the laser beam as shown in Table 2 occurs at the interface on the lower left side according to the refractive index n0 of the solvent. Decrease by shift ⁇ in.
  • FIG. 17A is a diagram showing the relationship between the luminous flux width of the noise component reflected on the lower left side of the triangle and the solvent refractive index. For simplicity, FIG. 17A shows only forward-scattered signal light.
  • the azimuth ⁇ 1 When the azimuth ⁇ 1 is fixed and the azimuth ⁇ 0 (incident angle with respect to the upper left side) in the solvent is considered in a back-light tracking manner, the smaller (larger) the refractive index of the solvent, the larger (smaller) the azimuth ⁇ 0. Therefore, the passing region with respect to the upper left side of the signal light becomes wider (narrower), and the luminous flux width ratio of the noise component (luminous flux width of the noise component / luminous flux width of the signal light) becomes smaller.
  • the luminous flux width ratio of the noise component reflected at the right part of the upper left side of the triangle differs depending on the direction ⁇ noise of the scattered light that is the noise component.
  • ⁇ noise 60 °
  • the noise component reflected on the right part of the upper left side becomes perpendicular to the right side, but this is the boundary.
  • the azimuth angle ⁇ 1 of the signal light on which the noise component reflected by the right part of the upper left side of the triangle is superimposed is in the range of 30 ° to 0 ° and is a positive value. have.
  • FIG. 17B when 30 ° ⁇ noise ⁇ 60 °, the azimuth angle ⁇ 1 of the signal light on which the noise component reflected by the right part of the upper left side of the triangle is superimposed is in the range of 30 ° to 0 ° and is a positive value. have.
  • FIG. 17B when 30 ° ⁇ noise ⁇ 60 °, the azimuth angle ⁇ 1 of the signal
  • the azimuth angle ⁇ 1 of the signal light on which the noise component reflected by the right part of the upper left side of the triangle is superimposed is in the range of 0 ° to -30 °. Has a negative value.
  • the luminous flux width ratio of the noise component depends on the refractive index of the solvent. Therefore, if the slit width for removing the noise component with respect to each angle component of the scattered light is designed according to the refractive index of the solvent. good. Table 1 above shows the optimum value of the slit width for removing the noise component when the refractive index of the solvent is 1.56. When the refractive index of the solvent is 1.66, the noise light cannot be completely removed by the slits having the widths shown in Table 1, but the noise component that cannot be removed is small and the influence on the detection of the signal light is small. ..
  • FIG. 18A is an example in which a sample cell 17 is prepared by joining two semi-cylindrical materials 171 and 172 having a groove having a V-shaped cross section.
  • the two semi-cylindrical materials 171 and 172 can be produced by cutting a quartz cylinder in half.
  • FIG. 18B is an example in which a sample cell 17 is prepared by joining one semi-cylindrical material 173 having a V-shaped cross section and one semi-cylindrical material 174 having no groove.
  • the sample cell is produced by the method shown in FIG. 18B, there is no joint portion on each plane constituting the side surface of the through hole, and no step is generated. Therefore, the light (signal light) generated in the scattering region can be emitted into the sample cell 17 from the solvent / cell interface through a path avoiding the joint surface.
  • the sample cell 17 having a regular triangular cross-sectional shape has been described.
  • a sample having a through hole having a cross-sectional shape as shown in FIG. A cell can be used.
  • the light scattering detection device is It is for detecting fine particles in a liquid sample.
  • a sample cell having a circular outer cross-sectional shape and having a flow path for holding a liquid sample,
  • a light source that irradiates a laser beam from a direction perpendicular to the axis of the sample cell toward the flow path,
  • a plurality of photodetectors arranged on a predetermined circumference outside the sample cell centered on the axis in a plane perpendicular to the axis are provided.
  • the side surface facing at least one of the plurality of photodetectors is a flat surface.
  • the side surface of the flow path facing at least one of the plurality of detectors is a plane
  • this side surface (plane side surface) of the scattered light generated in the flow path is refracted on the plane side surface, it goes toward the interface between the sample cell and the external space as parallel light while maintaining the wave plane of the plane wave.
  • the refractive index of the sample cell is larger than the refractive index of the external space (air), and in this light scattering detection device, the external cross-sectional shape of the sample cell is circular, so that the sample cell and the external space The interface of is convergent.
  • the angular component of the scattered light that has passed through the plane side surface of the flow path and is directed toward the interface between the sample cell and the external space as parallel light is focused on a predetermined circumference centered on the axis of the sample cell. .. Since a plurality of photodetectors are arranged on the predetermined circumference, the light that faces the angular component of the scattered light that has passed through the plane side surface regardless of the refractive index of the solvent of the liquid sample. It can be detected by a detector.
  • the angular component in the direction perpendicular to the axis of the sample cell (normal direction) is the plane. Can be passed through the sides.
  • the cross-sectional shape of the flow path is a closed curve having at least a part of a straight line.
  • the degree of freedom in arranging the light source and the photodetector is widened.
  • the light scattering detection device of the fourth item facilitates the preparation of a sample cell.
  • a light scattering detection device having a triangular cross-sectional shape of the flow path In the light scattering detection device of item 4, A light scattering detection device having a triangular cross-sectional shape of the flow path.
  • the number of plane side surfaces in which individual angular components of scattered light generated in the flow path are involved can be reduced.

Abstract

The present invention provides a light-scattering detection device 100 for detecting fine particles in a liquid sample, comprising: a sample cell 17 that has a flow path for holding the liquid sample and an external cross-sectional shape that is circular; a light source 1 for emitting laser light toward the flow path from a direction perpendicular to the axis of the sample cell 17; and a plurality of photodetectors 9 that are arranged along a prescribed circle E that is within a plane perpendicular to the axis, is centered on the axis, and is outside the sample cell 17. Of the lateral surfaces of the flow path, a lateral surface facing at least one of the plurality of photodetectors 9 is a flat surface.

Description

光散乱検出装置Light scattering detector
 本発明は、光散乱検出装置に関する。 The present invention relates to a light scattering detection device.
 液体試料中に分散しているタンパク質やポリマー等の比較的大きな分子量の微粒子を分離する手法として、サイズ排除クロマトグラフィ(SEC)、ゲルろ過クロマトグラフィ(GPC)が知られている。これらの手法により分離された微粒子の検出器の一つに多角度光散乱検出装置(以下、MALS検出装置という)がある。 Size exclusion chromatography (SEC) and gel filtration chromatography (GPC) are known as methods for separating fine particles having a relatively large molecular weight such as proteins and polymers dispersed in a liquid sample. One of the detectors for fine particles separated by these methods is a multi-angle light scattering detector (hereinafter referred to as a MALS detector).
 MALS検出装置は、SEC、GPC等の液体クロマトグラフから導入される液体試料を保持するセルと、該セルに保持された液体試料にレーザ光を照射する光源と、複数の検出器を備えている。MALS検出装置では通常、円筒形のセルが用いられ、該セルに保持された液体試料に対して、該セルの中心軸と垂直な方向から光源からの光が照射される。光源からの光が液体試料を通過することにより、その通過経路において該光が、液体試料に含まれる微粒子に依存する散乱断面積を以て輻射され、セルから出てくる。この、液体試料(セル)から複数の方位に出てくる光を同時に検出することができるように、セルの中心を取り囲むように複数の検出器が配置される。そして、複数の検出器によって得られた散乱光の強度から、散乱角と散乱断面積との関係が求められ、この関係から液体試料中の未知物質の分子量やサイズ(回転半径)が算出される。 The MALS detector includes a cell that holds a liquid sample introduced from a liquid chromatograph such as SEC or GPC, a light source that irradiates the liquid sample held in the cell with a laser beam, and a plurality of detectors. .. A cylindrical cell is usually used in a MALS detector, and a liquid sample held in the cell is irradiated with light from a light source from a direction perpendicular to the central axis of the cell. When the light from the light source passes through the liquid sample, the light is radiated with a scattering cross section depending on the fine particles contained in the liquid sample in the passage path, and exits from the cell. A plurality of detectors are arranged so as to surround the center of the cell so that the light emitted from the liquid sample (cell) in a plurality of directions can be detected at the same time. Then, the relationship between the scattering angle and the scattering cross section is obtained from the intensity of the scattered light obtained by the plurality of detectors, and the molecular weight and size (turning radius) of the unknown substance in the liquid sample are calculated from this relationship. ..
 MALS検出装置で用いられるセルには大きく分けて2つのタイプがある。第1のタイプのセルは、液体試料を保持するための貫通孔が円柱形のセルの直径方向に形成されており、光源からの光は、該貫通孔の一方の端部から他方の端部に向かって貫通孔内を通過するようにセルに照射される(特許文献1参照)。一方、第2のタイプのセルは、液体試料を保持するための貫通孔が円筒状のセルの中心軸方向に形成されており、光源からの光は、該貫通孔を横切るように、セルに照射される(特許文献2参照)。 There are roughly two types of cells used in the MALS detector. In the first type of cell, a through hole for holding a liquid sample is formed in the radial direction of the cylindrical cell, and the light from the light source is emitted from one end to the other end of the through hole. The cell is irradiated so as to pass through the through hole toward the (see Patent Document 1). On the other hand, in the second type cell, a through hole for holding a liquid sample is formed in the direction of the central axis of the cylindrical cell, and the light from the light source is formed in the cell so as to cross the through hole. It is irradiated (see Patent Document 2).
 第1タイプのセルは、照射光の経路において液体試料(に含まれる微粒子)で散乱された光に対してシリンドリカルレンズとして機能する。したがって、このセルを用いたMALS検出装置では、散乱光の様々な角度方向の成分(角度成分)はセルによって集光される。各角度成分の集光位置に検出器が配置されているため、各角度成分の強度は、それに対応する検出器によって検出することができる。 The first type cell functions as a cylindrical lens with respect to the light scattered by the liquid sample (fine particles contained in the liquid sample) in the path of the irradiation light. Therefore, in the MALS detection device using this cell, various angular components (angle components) of the scattered light are collected by the cell. Since the detector is arranged at the condensing position of each angle component, the intensity of each angle component can be detected by the corresponding detector.
 しかしながら、第1タイプのセルは、貫通孔に沿って光源からの光を通過させるため、クロマトグラフから貫通孔に液体試料を導入する流路が光源と空間的に干渉しないように、また該貫通孔から液体試料を排出する流路からの散乱光が不要なノイズ光とならないように、該貫通孔の両端部付近で直角に折れ曲がる屈曲部位を導入流路及び排出流路に設ける必要がある。屈曲部位では流路を流れる液体試料のコンダクタンスが大きな変調を受ける。このようなコンダクタンスの変調はクロマトグラフの測定精度の低減を招く。 However, since the first type cell allows light from the light source to pass along the through hole, the flow path for introducing the liquid sample from the chromatograph into the through hole does not interfere spatially with the light source, and the penetration thereof. In order to prevent the scattered light from the flow path for discharging the liquid sample from the hole from becoming unnecessary noise light, it is necessary to provide a bending portion that bends at a right angle in the vicinity of both ends of the through hole in the introduction flow path and the discharge flow path. At the bending site, the conductance of the liquid sample flowing through the flow path is greatly modulated. Such conductance modulation reduces the measurement accuracy of the chromatograph.
 また、第1タイプのセルでは、散乱光の発生領域が該セルの直径に相当するため、球面収差が大きい。収差が大きい角度成分の散乱光がノイズとしてその近傍の角度成分の散乱光に加わると、角度分解能が低減するという問題がある。 Further, in the first type cell, since the scattered light generation region corresponds to the diameter of the cell, the spherical aberration is large. When the scattered light of the angular component having a large aberration is added to the scattered light of the angular component in the vicinity as noise, there is a problem that the angular resolution is reduced.
 これに対して、第2タイプのセルを用いたMALS検出装置では、光源からの光が、貫通孔を横切るようにセルに照射されるため、セルの貫通孔の両端側に設けられる導入流路及び排出流路が光源からの光と干渉することはない。また、第2タイプのセルは、外周および内周(つまり貫通孔の側面)断面形状が円形であり、貫通孔を流れる液体試料とセルとの界面、およびセルと空気との界面は光学的にシリンドリカルレンズとして機能することは第1タイプと同様である。しかし、発光領域がセルの中心近傍の狭い領域に限定されるため、第2タイプのセルを用いた場合には、球面収差の問題が遥かに小さい。したがって、第2タイプのセルを用いたMALS検出器は、クロマトグラフィで分離された微粒子の検出器として有用である。 On the other hand, in the MALS detection device using the second type cell, the light from the light source irradiates the cell so as to cross the through hole, so that the introduction flow paths provided on both ends of the through hole of the cell are provided. And the discharge channel does not interfere with the light from the light source. The second type cell has a circular outer and inner circumference (that is, the side surface of the through hole), and the interface between the liquid sample flowing through the through hole and the cell and the interface between the cell and air are optically formed. The function as a cylindrical lens is the same as that of the first type. However, since the light emitting region is limited to a narrow region near the center of the cell, the problem of spherical aberration is much smaller when the second type cell is used. Therefore, a MALS detector using a second type cell is useful as a detector for chromatographically separated fine particles.
特開平07-072068号公報Japanese Patent Application Laid-Open No. 07-072068 特開2008-032548号公報Japanese Unexamined Patent Publication No. 2008-032548
 通常、セルの材料には光学部材の一般的な材料である石英ガラスが用いられる。石英ガラスの屈折率(1.46)は空気の屈折率(1.0)よりも大きいため、セルと空気の界面は常に収束作用を有する。一方、クロマトグラフィでは様々な種類の溶媒が移動相として用いられるため、クロマトグラフから導入される液体試料の溶媒の屈折率は広範囲にわたる。したがって、液体試料(溶媒)の屈折率とセルの屈折率との大小関係によって、液体試料とセルの界面は、収束作用を有する高屈折率/低屈折率界面、発散作用を示す低屈折率/高屈折率界面のいずれにも成り得る。つまり、液体試料とセルの界面が収束作用、分散作用のいずれを有するかは、液体試料の溶媒の屈折率に依存する。 Normally, quartz glass, which is a general material for optical members, is used as the cell material. Since the refractive index (1.46) of quartz glass is larger than the refractive index (1.0) of air, the interface between the cell and air always has a converging action. On the other hand, since various kinds of solvents are used as mobile phases in chromatography, the refractive index of the solvent of the liquid sample introduced from the chromatograph is wide. Therefore, depending on the magnitude relationship between the refractive index of the liquid sample (solvent) and the refractive index of the cell, the interface between the liquid sample and the cell has a high refractive index / low refractive index interface having a converging action and a low refractive index / having a divergent action. It can be any of the high index interfaces. That is, whether the interface between the liquid sample and the cell has a converging action or a dispersing action depends on the refractive index of the solvent of the liquid sample.
 液体試料とセルの界面が発散作用を有する場合は、セルと空気の界面の収束作用と相殺することにより、液体試料で生じた散乱光を平行光としてセルから取り出すことができる。一方、液体試料とセルの界面が収束作用を有する場合は、セルと空気の界面の収束作用と重畳されることにより散乱光はより強く収束され、セルのごく近傍に焦点を形成する。焦点を通過した後の散乱光は発散の一途を辿るため、平行光化することができない。試料セルと検出器の間にレンズや回折素子、曲面鏡等の結像素子を配置すれば発散する光をある程度集光することができるが、溶媒とセルの屈折率差が大きくなると、結像素子によっても所望の位置に集光することが困難となる。 When the interface between the liquid sample and the cell has a divergent action, the scattered light generated in the liquid sample can be taken out from the cell as parallel light by canceling the convergence action at the interface between the cell and the air. On the other hand, when the interface between the liquid sample and the cell has a converging action, the scattered light is more strongly converged by being superimposed on the converging action of the interface between the cell and the air, and a focal point is formed in the immediate vicinity of the cell. Since the scattered light after passing through the focal point continues to diverge, it cannot be made into parallel light. If an imaging element such as a lens, a diffractive element, or a curved mirror is placed between the sample cell and the detector, the emitted light can be condensed to some extent, but if the difference in refractive index between the solvent and the cell becomes large, the imaging element It becomes difficult for some children to collect light at a desired position.
 本発明が解決しようとする課題は、光散乱検出装置において、液体試料の溶媒の屈折率に関係なく、該液体試料で生じた散乱光の強度を検出できるようにすることである。 An object to be solved by the present invention is to enable a light scattering detection device to detect the intensity of scattered light generated in a liquid sample regardless of the refractive index of the solvent of the liquid sample.
 上記課題を解決するために成された本発明は、
 液体試料中の微粒子を検出するための光散乱検出装置であって、
 液体試料を保持するための流路を有する、外形の断面形状が円形の試料セルと、
 前記試料セルの軸に垂直な方向から前記流路に向けてレーザ光を照射する光源と、
 前記軸に垂直な面内の前記軸を中心とする前記試料セル外の所定の円周上に配置された複数の光検出器とを備え、
 前記流路の側面のうち前記複数の光検出器の少なくとも一つに面する側面が平面である、光散乱検出装置に関する。
The present invention made to solve the above problems
A light scattering detector for detecting fine particles in a liquid sample.
A sample cell having a circular outer cross-sectional shape and having a flow path for holding a liquid sample,
A light source that irradiates a laser beam from a direction perpendicular to the axis of the sample cell toward the flow path,
A plurality of photodetectors arranged on a predetermined circumference outside the sample cell centered on the axis in a plane perpendicular to the axis are provided.
The present invention relates to a light scattering detection device in which a side surface of the flow path facing at least one of the plurality of photodetectors is a flat surface.
 本発明に係る光散乱検出装置では、光源からのレーザ光が試料セル内の流路に向けて照射されると、該流路内の液体試料に含まれる微粒子によって該レーザ光は様々な方位に散乱され、試料セルから輻射される。流路内で発生した散乱光の様々な角度方向の成分(角度成分)は試料セルから出てくるまでの間に液体試料の溶媒と試料セルの界面、および試料セルと該試料セルの外部空間との界面を通過する。 In the light scattering detection device according to the present invention, when the laser light from the light source is irradiated toward the flow path in the sample cell, the laser light is oriented in various directions due to the fine particles contained in the liquid sample in the flow path. It is scattered and radiated from the sample cell. The various angular components (angle components) of the scattered light generated in the flow path are the interface between the solvent of the liquid sample and the sample cell, and the external space between the sample cell and the sample cell before coming out of the sample cell. Pass through the interface with.
 本発明では流路の側面のうち複数の検出器の少なくとも一つに面する側面が平面であるため、流路内で発生した散乱光のうちこの側面(平面側面)を通過する角度成分は、該平面側面で屈折するものの、平面波の波面を保持したまま平行光として試料セルと外部空間との界面に向かう。一般的に試料セルの屈折率は外部空間(空気)の屈折率よりも大きく、また、本発明では、試料セルの外形の断面形状が円形であるため、該試料セルと外部空間との界面は収束作用を持つ。このため、流路の平面側面を通過し、平行光として試料セルと外部空間との界面に向かった散乱光の角度成分は、液体試料の溶媒の屈折率によらず、試料セルの軸を中心とする所定の円周上に焦点を結ぶ。前記所定の円周上には複数の光検出器が配置されているため、液体試料の溶媒の屈折率によらず、前記平面側面を通過した散乱光の角度成分を該平面側面と面する光検出器によって検出することができる。 In the present invention, since the side surface of the flow path facing at least one of the plurality of detectors is a plane, the angular component of the scattered light generated in the flow path that passes through this side surface (plane side surface) is determined. Although it is refracted on the plane side surface, it heads toward the interface between the sample cell and the external space as parallel light while maintaining the wave plane of the plane wave. Generally, the refractive index of the sample cell is larger than the refractive index of the external space (air), and in the present invention, the cross-sectional shape of the outer shape of the sample cell is circular, so that the interface between the sample cell and the external space is Has a convergence effect. Therefore, the angular component of the scattered light that has passed through the plane side surface of the flow path and directed toward the interface between the sample cell and the external space as parallel light is centered on the axis of the sample cell regardless of the refractive index of the liquid sample solvent. Focus on a predetermined circumference. Since a plurality of photodetectors are arranged on the predetermined circumference, the light that faces the angular component of the scattered light that has passed through the plane side surface regardless of the refractive index of the solvent of the liquid sample. It can be detected by a detector.
 なお、平面側面が「複数の光検出器の少なくとも一つに面する」とは、該平面側面と光検出器が対向している場合に限らず、複数の光検出器の少なくとも一つと、流路内の散乱光の発生領域との間に、平面側面が検出器への検出に寄与する位置にあることをいう。つまり、複数の光検出器の少なくとも一つが、流路内の散乱光の発生領域で生じ、平面側面を通過した散乱光の角度成分を検出可能な箇所に配置されていれば良い。 In addition, "the plane side surface faces at least one of a plurality of photodetectors" is not limited to the case where the plane side surface and the photodetector face each other, and the flow with at least one of the plurality of photodetectors. It means that the plane side surface is in a position that contributes to the detection by the detector between the scattered light generation region in the road. That is, it is sufficient that at least one of the plurality of photodetectors is arranged at a position where the angular component of the scattered light generated in the scattered light generation region in the flow path and passed through the plane side surface can be detected.
従来の光散乱検出装置の一形態である多角度光散乱検出装置の概略的な全体構成図。A schematic overall configuration diagram of a multi-angle light scattering detection device, which is a form of a conventional light scattering detection device. 従来の多角度光散乱検出装置におけるビームスプリッタ、試料セル、結像光学系、及び検出器の位置関係を示す図。The figure which shows the positional relationship of a beam splitter, a sample cell, an imaging optical system, and a detector in a conventional multi-angle light scattering detection apparatus. 液体試料に平行光が入射したときの散乱光の発生領域の説明図。Explanatory drawing of the generation area of scattered light when parallel light is incident on a liquid sample. 散乱光の発生領域から出射する散乱光の平行成分の説明図。Explanatory drawing of the parallel component of the scattered light emitted from the generation area of scattered light. 溶媒の屈折率n0が(a)1.26、(b)1.36、(c)1.46、(d)1.56、(e)1.66である液体試料の散乱光の各発生領域から法線方位に出射した散乱光の光線図。Scattered light emitted in the normal direction from each generation region of scattered light of a liquid sample in which the refractive index n0 of the solvent is (a) 1.26, (b) 1.36, (c) 1.46, (d) 1.56, and (e) 1.66. Ray diagram. 本発明の一実施形態である多角度光散乱検出装置の概略的な全体構成図。The schematic whole block diagram of the multi-angle light scattering detection apparatus which is one Embodiment of this invention. 貫通孔の断面形状が、(a)長方形である試料セルにレーザ光を照射したときの散乱光の各角度成分の光線図、(b)正方形である試料セルにレーザ光を照射したときの散乱光の各角度成分の光線図。The cross-sectional shape of the through hole is (a) a ray diagram of each angle component of scattered light when a sample cell having a rectangular shape is irradiated with laser light, and (b) scattering when a sample cell having a square shape is irradiated with laser light. A ray diagram of each angle component of light. 貫通孔の断面形状が二等辺三角形である試料セルにレーザ光を照射したときの、(c)前方散乱光の各角度成分の光線図、(d)後方散乱光の各角度成分の光線図。(C) A ray diagram of each angle component of the forward scattered light and (d) a ray diagram of each angle component of the back scattered light when a sample cell having an isosceles triangle cross-sectional shape is irradiated with laser light. 断面形状が正三角形である貫通孔の3個の平面を通過する散乱光の角度成分を示す図。The figure which shows the angular component of the scattered light passing through three planes of a through hole whose cross-sectional shape is an equilateral triangle. 貫通孔の断面形状が正三角形である試料セルにレーザ光を照射したときの各角度成分の光線図(溶媒屈折率1.33)。A ray diagram of each angle component when a sample cell having an equilateral triangular cross-sectional shape of the through hole is irradiated with laser light (solvent refractive index 1.33). 図9に示す、散乱角度が90°の角度成分を光検出器で検出したときの該光検出器の角度分解能を評価するためのスポット図。FIG. 9 is a spot diagram for evaluating the angular resolution of the photodetector when an angular component having a scattering angle of 90 °, which is shown in FIG. 9, is detected by the photodetector. 貫通孔の断面形状が正三角形である試料セルにレーザ光を照射したときに生じるノイズ成分を示す光線図(溶媒屈折率1.66)。A ray diagram (solvent refractive index 1.66) showing a noise component generated when a sample cell having an equilateral triangular cross-sectional shape of the through hole is irradiated with a laser beam. 貫通孔の断面形状が正三角形であるときの溶媒/セル界面における散乱光の角度成分の挙動を説明する際に使用する該界面の名称を示す図。The figure which shows the name of the interface used when explaining the behavior of the angular component of the scattered light at the solvent / cell interface when the cross-sectional shape of a through hole is an equilateral triangle. 正三角形の左上辺及び左下辺の中点をレーザ光が通過するときに発光領域で発生する散乱光の光路を示す図。The figure which shows the optical path of the scattered light generated in the light emitting region when a laser beam passes through the midpoint of the upper left side and the lower left side of an equilateral triangle. 正三角形の右辺付近をレーザ光が通過するときに発光領域で発生する散乱光の光路を示す図。The figure which shows the optical path of the scattered light generated in the light emitting region when a laser beam passes near the right side of an equilateral triangle. 正三角形の左上辺及び左下辺の中点をレーザ光が通過するときのノイズ成分の寄与率を示す図。The figure which shows the contribution ratio of the noise component when a laser beam passes through the midpoint of the upper left side and the lower left side of an equilateral triangle. 正三角形の重心をレーザ光が通過するときのノイズ成分の寄与率を示す図。The figure which shows the contribution ratio of the noise component when a laser beam passes through the center of gravity of an equilateral triangle. 本明細書で使用する角度計量の図(a)及び一般的な角度計量図(b)。The angle measurement diagram (a) and the general angle measurement diagram (b) used in the present specification. 溶媒屈折率が1.66であるときに、試料セルと光検出器の適宜の箇所にスリットを設けることでノイズ成分が除去された様子を示す光線図。A ray diagram showing a state in which noise components are removed by providing slits at appropriate locations between the sample cell and the photodetector when the solvent refractive index is 1.66. 溶媒の屈折率が小さいとき(a)、大きいとき(b)に、断面形状が正三角形の貫通孔の左下辺で反射したノイズ成分と信号光の光束幅の比の説明図。Explanatory drawing of the ratio of the light flux width of the signal light and the noise component reflected by the lower left side of the through hole whose cross-sectional shape is an equilateral triangle when the refractive index of the solvent is small (a) and large (b). 溶媒の屈折率が小さいとき(a)、大きいとき(b)に、断面形状が正三角形の貫通孔の左上辺で前方へ反射したノイズ成分と信号光の光束幅の比の説明図。An explanatory diagram of the ratio of the noise component reflected forward at the upper left side of the through hole whose cross-sectional shape is an equilateral triangle and the luminous flux width of the signal light when the refractive index of the solvent is small (a) and large (b). 溶媒の屈折率が小さいとき(a)、大きいとき(b)に、断面形状が正三角形の貫通孔の左上辺で後方へ反射したノイズ成分と信号光の光束幅の比の説明図。Explanatory drawing of the ratio of the light flux width of the signal light and the noise component reflected rearward at the upper left side of the through hole whose cross-sectional shape is an equilateral triangle when the refractive index of the solvent is small (a) and large (b). 試料セルの作製例。Example of preparation of sample cell. 試料セルの作製例。Example of preparation of sample cell. 貫通孔の断面形状が異なる貫通孔を有する試料セルの例(a)~(c)。Examples (a) to (c) of sample cells having through holes having different cross-sectional shapes of the through holes.
 まず、本発明に係る光散乱検出装置の従来構成について、光散乱検出装置の一形態である多角度光散乱検出装置(MALS検出装置)を例に挙げて説明する。 First, the conventional configuration of the light scattering detection device according to the present invention will be described by taking as an example a multi-angle light scattering detection device (MALS detection device), which is a form of the light scattering detection device.
<1.従来のMALS検出装置>
<1.1 全体構成>
 図1は、MALS検出装置の従来一般的な概略構成を示している。このMALS検出装置100Pは、液体試料71が収容される、円筒状の透明な試料セル7と、該試料セル7を中心にした円周E上に、該試料セル7を取り囲んで所定角度θに配置された複数の光検出器8、9と、試料セル7に光を照射する、レーザ光源1とインコヒーレント光源2とを備えている。レーザ光源1からはコヒーレント光であるレーザ光が出射され、インコヒーレント光源2からはインコヒーレント光又は部分コヒーレント光が出射される。
<1. Conventional MALS detector>
<1.1 Overall configuration>
FIG. 1 shows a conventional general schematic configuration of a MALS detection device. The MALS detection device 100P surrounds the sample cell 7 at a predetermined angle θ on the cylindrical transparent sample cell 7 in which the liquid sample 71 is housed and the circumference E centered on the sample cell 7. It includes a plurality of arranged light detectors 8 and 9, and a laser light source 1 and an incoherent light source 2 that irradiate the sample cell 7 with light. Laser light, which is coherent light, is emitted from the laser light source 1, and incoherent light or partial coherent light is emitted from the incoherent light source 2.
 レーザ光源1から出射され光路L1に沿って進むレーザ光と、インコヒーレント光源2から出射されて光路L2に沿って進むインコヒーレント光とは、セクタ鏡3により交互に選択されて、試料セル7に向かう同一光軸を有する光路L3へと送られる。セクタ鏡3は、例えば反射部と透過部とが交互に配置された回転板から成る。回転板はモータ等の駆動機構4により所定速度で同一方向に回転駆動され、光路L1とL2の交差部に透過部が来るタイミングではレーザ光が光路L3に送られ、反射部が来るタイミングではインコヒーレント光が光路L3に送られる。レーザ光とインコヒーレント光とは共に、光検出器8、9が配置されている同一平面に垂直な方向が電気ベクトルの偏光方位である。 The laser light emitted from the laser light source 1 and traveling along the optical path L1 and the incoherent light emitted from the incoherent light source 2 and traveling along the optical path L2 are alternately selected by the sector mirror 3 in the sample cell 7. It is sent to an optical path L3 having the same optical axis toward it. The sector mirror 3 is composed of, for example, a rotating plate in which reflecting portions and transmitting portions are alternately arranged. The rotating plate is rotationally driven in the same direction at a predetermined speed by a drive mechanism 4 such as a motor, and laser light is sent to the optical path L3 at the timing when the transmitting portion comes at the intersection of the optical paths L1 and L2, and in at the timing when the reflecting portion comes. Coherent light is sent to the optical path L3. In both the laser light and the incoherent light, the direction perpendicular to the same plane in which the photodetectors 8 and 9 are arranged is the polarization direction of the electric vector.
 光路L3上にはビームスプリッタ5が配置され、試料セル7に照射される光の一部がビームスプリッタ5で分割・反射されて強度モニタ用検出器6に導入される。この強度モニタ用検出器6の検出信号はデータ処理部11に入力され、光源1、2の発光強度の変動を補正するために利用される。 A beam splitter 5 is arranged on the optical path L3, and a part of the light radiated to the sample cell 7 is split and reflected by the beam splitter 5 and introduced into the intensity monitor detector 6. The detection signal of the intensity monitor detector 6 is input to the data processing unit 11 and used to correct fluctuations in the emission intensity of the light sources 1 and 2.
 円周E上に配置された複数の光検出器のうち、平面視で光路L3の延長上に配置された光検出器8は透過吸光度測定用検出器であり、そのほかの光検出器9は全て多角度散乱測定用検出器である。光検出器8による検出信号はデータ処理部11に機能として含まれる濃度算出部13に入力され、一方、複数の光検出器9による検出信号はデータ処理部11に機能として含まれる粒子情報演算部12に入力される。 Of the plurality of photodetectors arranged on the circumference E, the photodetector 8 arranged on the extension of the optical path L3 in a plan view is a detector for measuring the transmitted absorbance, and all the other photodetectors 9 are. It is a detector for multi-angle scattering measurement. The detection signal by the photodetector 8 is input to the concentration calculation unit 13 included as a function in the data processing unit 11, while the detection signal by the plurality of photodetectors 9 is a particle information calculation unit included as a function in the data processing unit 11. It is input to 12.
<1.2 MALS検出装置の動作>
 上記構成のMALS検出装置100Pにおいては、光源1から出射されるレーザ光は光路L1に沿って進み、光源2から出射されるインコヒーレント光は光路L2に沿って進む。これらの光束はセクタ鏡3により周期的に交互に選択されて光路L3に送られるため、試料セル7内の液体試料71にはレーザ光とインコヒーレント光が交互に照射される。セクタ鏡3を駆動する駆動機構4は制御部10により制御される。制御部10は、セクタ鏡3の回転位置に同期して、レーザ光、インコヒーレント光のいずれが試料71に照射されている期間であるのかを示すタイミング制御信号をデータ処理部11に送る。
<1.2 Operation of MALS detector>
In the MALS detection device 100P having the above configuration, the laser light emitted from the light source 1 travels along the optical path L1, and the incoherent light emitted from the light source 2 travels along the optical path L2. Since these light fluxes are periodically and alternately selected by the sector mirror 3 and sent to the optical path L3, the liquid sample 71 in the sample cell 7 is alternately irradiated with the laser beam and the incoherent light. The drive mechanism 4 that drives the sector mirror 3 is controlled by the control unit 10. The control unit 10 sends a timing control signal indicating which of the laser beam and the incoherent light is the period during which the sample 71 is irradiated to the data processing unit 11 in synchronization with the rotation position of the sector mirror 3.
 試料セル7にインコヒーレント光が照射された場合、その透過光の強度は試料71による吸光を反映したものとなる。そこで、データ処理部11では、インコヒーレント光が照射される期間において光検出器8の検出信号を読み込む。濃度算出部13は、この検出信号に基づいて試料71による吸光度を算出し、試料71中の微粒子の濃度を計算する。算出された濃度値は粒子情報演算部12に送られる。 When the sample cell 7 is irradiated with incoherent light, the intensity of the transmitted light reflects the absorption by the sample 71. Therefore, the data processing unit 11 reads the detection signal of the photodetector 8 during the period in which the incoherent light is irradiated. The concentration calculation unit 13 calculates the absorbance of the sample 71 based on this detection signal, and calculates the concentration of the fine particles in the sample 71. The calculated concentration value is sent to the particle information calculation unit 12.
 一方、試料セル7にレーザ光が照射された場合、そのレーザ光が液体試料71を通過する際に該液体試料71に含まれる微粒子により異なる角度分布を以て散乱され、試料セル7から出てくる。そこで、データ処理部11は、試料71にレーザ光が照射されている期間において複数の光検出器9の検出信号を同時に読み込む。粒子情報演算部12は、これらの検出信号に基づき各角度位置での散乱光強度を計算する。粒子情報演算部12では、各角度位置での散乱光強度と試料中の微粒子の濃度値に基づいて、試料71に含まれる微粒子の分子量や回転半径などを計算する。 On the other hand, when the sample cell 7 is irradiated with the laser beam, when the laser beam passes through the liquid sample 71, it is scattered by the fine particles contained in the liquid sample 71 with different angular distributions and comes out of the sample cell 7. Therefore, the data processing unit 11 simultaneously reads the detection signals of the plurality of photodetectors 9 during the period in which the sample 71 is irradiated with the laser beam. The particle information calculation unit 12 calculates the scattered light intensity at each angular position based on these detection signals. The particle information calculation unit 12 calculates the molecular weight, turning radius, and the like of the fine particles contained in the sample 71 based on the scattered light intensity at each angular position and the concentration value of the fine particles in the sample.
<1.3 ビームスプリッタと試料セルと光検出器の位置関係>
 図2は、上記MALS検出装置100Pにおけるビームスプリッタ5と試料セル7と光検出器9の位置関係を示す概略図である。図2では、側面図であるため、光路L3の延長上に光検出器9が位置しているように見えるが、実際は、複数の検出器9はいずれも光路L3の延長線上から外れた位置にある。
<1.3 Positional relationship between beam splitter, sample cell and photodetector>
FIG. 2 is a schematic view showing the positional relationship between the beam splitter 5, the sample cell 7, and the photodetector 9 in the MALS detector 100P. In FIG. 2, since it is a side view, it seems that the photodetector 9 is located on the extension of the optical path L3, but in reality, all of the plurality of detectors 9 are located outside the extension of the optical path L3. is there.
 図2に示すように、試料セル7と光検出器9の間には、散乱光制限用のスリットを有するスリット板21および平凸レンズ22から成る結像光学系20が配置されている。スリット板21のスリットは、水平方向の散乱角を制限し、且つ、鉛直方向の光束を多く取り込むために、縦長の長方形状を有している。 As shown in FIG. 2, an imaging optical system 20 composed of a slit plate 21 having a slit for limiting scattered light and a plano-convex lens 22 is arranged between the sample cell 7 and the photodetector 9. The slit of the slit plate 21 has a vertically long rectangular shape in order to limit the scattering angle in the horizontal direction and to take in a large amount of light flux in the vertical direction.
 MALS検出装置100Pでは、試料セル7から様々な角度方向に出射する散乱光の成分(角度成分)が、対応する光検出器9の受光面に集光するように、試料セル7、結像光学系20、及び光検出器9の配置が設定されている。試料セル7から出射された散乱光の各角度成分が結像光学系20を通過した後、光検出器9の受光面に集光するためには、各角度成分はできるだけ平行光に近い状態で結像光学系20に入射することが望ましい。 In the MALS detection device 100P, the sample cell 7 and the imaging optics so that the components (angle components) of the scattered light emitted from the sample cell 7 in various angular directions are focused on the light receiving surface of the corresponding photodetector 9. The arrangement of the system 20 and the photodetector 9 is set. In order for each angle component of the scattered light emitted from the sample cell 7 to be focused on the light receiving surface of the photodetector 9 after passing through the imaging optical system 20, each angle component should be as close to parallel light as possible. It is desirable that the light is incident on the imaging optical system 20.
 試料セル7は、その中心軸に沿って形成された断面円形状の貫通孔を内部に有しており、該貫通孔に液体試料71が収容されている。したがって、貫通孔が本発明の流路に相当する。試料セル7に照射されたレーザ光は、貫通孔を横切る際に液体試料71に含まれる微粒子により散乱され、液体試料71(溶媒)と試料セル7との界面、及び試料セル7とその外部(一般的には空気)との界面を通過した後、試料セル7から出射する。液体試料71中で発生した散乱光の各角度成分が平行光として試料セル7から出射するか否かは、これら界面の光学的な機能に依る。従来のMALS検出装置100Pにおける、試料セル7の界面の光学的な機能は以下の通りとなる。 The sample cell 7 has a through hole having a circular cross section formed along the central axis thereof, and the liquid sample 71 is housed in the through hole. Therefore, the through hole corresponds to the flow path of the present invention. The laser beam emitted to the sample cell 7 is scattered by the fine particles contained in the liquid sample 71 when crossing the through hole, and is scattered at the interface between the liquid sample 71 (solvent) and the sample cell 7, and the sample cell 7 and its outside ( Generally, after passing through the interface with air), the sample cell 7 emits light. Whether or not each angular component of the scattered light generated in the liquid sample 71 is emitted from the sample cell 7 as parallel light depends on the optical function of these interfaces. The optical function of the interface of the sample cell 7 in the conventional MALS detection device 100P is as follows.
<1.4 試料セルの界面の光学的な機能>
 図3は、外径が8mm、内径が1.6mmの合成石英(屈折率n1=1.46)製の円筒状の試料セル7に対して、半導体レーザ光源から波長が660nmで且つ、幅が50μmのレーザ光(平行光)を、該試料セル7の中心を貫くように入射させたときの光線図である。図3の左側の試料セル7には溶媒の屈折率n0が1.26の液体試料71が保持されており、右側の試料セル7には溶媒の屈折率n0が1.66の液体試料71が保持されている。
<1.4 Optical function of the interface of the sample cell>
FIG. 3 shows a laser having a wavelength of 660 nm and a width of 50 μm from a semiconductor laser light source for a cylindrical sample cell 7 made of synthetic quartz (refractive index n1 = 1.46) having an outer diameter of 8 mm and an inner diameter of 1.6 mm. FIG. 5 is a light ray diagram when light (parallel light) is incident so as to penetrate the center of the sample cell 7. The sample cell 7 on the left side of FIG. 3 holds a liquid sample 71 having a solvent refractive index n0 of 1.26, and the sample cell 7 on the right side holds a liquid sample 71 having a solvent refractive index n0 of 1.66. ..
 図3より、溶媒の屈折率n0が試料セル7の屈折率n1よりも小さい場合(左側)、大きい場合(右側)のいずれであっても、試料セル7から液体試料71に入射した光線は大きく収束されることも発散されることもなく、ほぼ平行性を保った状態で液体試料71中を通過することが分かる。光線の幅と、試料セル7の内径と外径の比とから、また、レーザ光と散乱光の強度比とからボルン近似が成立し、多重散乱の影響は除外することができる。そのため、試料セル8の内径に相当する長さを持った幅のない線分を、試料セル7の貫通孔に収容されている液体試料71にレーザ光が入射したときの散乱光の発生領域(発光領域)として近似できる。 From FIG. 3, the light beam incident on the liquid sample 71 from the sample cell 7 is large regardless of whether the refractive index n0 of the solvent is smaller than the refractive index n1 of the sample cell 7 (left side) or larger (right side). It can be seen that the sample passes through the liquid sample 71 in a state of being substantially parallel without being converged or diverged. Born approximation is established from the width of the light beam and the ratio of the inner diameter to the outer diameter of the sample cell 7 and from the intensity ratio of the laser light and the scattered light, and the influence of multiple scattering can be excluded. Therefore, a region in which scattered light is generated when a laser beam is incident on the liquid sample 71 housed in the through hole of the sample cell 7 is formed by a line segment having a length corresponding to the inner diameter of the sample cell 8 and having no width. It can be approximated as a light emitting region).
<1.5 試料セルの内外の界面における収束および発散>
 上述した発光領域からは様々な方向に散乱光が出射するが、ここでは、図4に示すように、発光領域の片側から法線方位(試料セル7に入射するレーザ光の方位角を0°、散乱光の方位角をθ0と定義すると、θ0=90°となる方位)に等間隔で出射する平行な散乱光を考える。そして、このような散乱光が各界面を通過した後、試料セル7から出射されるまでの光路を追跡した。なお、以下の説明では、便宜上、法線方位に出射する散乱光の半分のみを扱うこととする。
<1.5 Convergence and divergence at the inner and outer interfaces of the sample cell>
Scattered light is emitted from the above-mentioned light emitting region in various directions. Here, as shown in FIG. 4, the azimuth of the laser light incident on the sample cell 7 is 0 ° from one side of the light emitting region. If the azimuth angle of scattered light is defined as θ0, consider parallel scattered light emitted at equal intervals (direction where θ0 = 90 °). Then, after such scattered light passed through each interface, the optical path until it was emitted from the sample cell 7 was traced. In the following description, for convenience, only half of the scattered light emitted in the normal direction will be dealt with.
 図5は、溶媒の屈折率n0が1.26((a)、例えば蛍光溶媒)、1.36((b)、例えばエタノール)、1.46((c)、例えばフルオロベンゼン)、1.56((d)、例えばニトロベンゼン)、1.66((e)、例えばキノリン)である液体試料71の発光領域から法線方位に出射した散乱光の光線図である。以下、特に断らない限り、試料セル7の外部空間には空気が存在し、その屈折率n2は1.0とする。液体試料71と試料セル7との界面(以下「溶媒/セル界面」という)では、n0<n1のとき(図5(a)、(b)のとき)は発散レンズとして機能し、n0>n1のとき((d)、(e)のとき)は収束レンズとして機能する。また、n0=n1のとき((c)のとき)は、溶媒/セル界面では光線は屈折せず直進する。 In FIG. 5, the refractive index n0 of the solvent is 1.26 ((a), for example, fluorescent solvent), 1.36 ((b), for example, ethanol), 1.46 ((c), for example, fluorobenzene), 1.56 ((d), for example, nitrobenzene). ), 1.66 ((e), for example, quinoline) is a ray diagram of scattered light emitted in the normal direction from the light emitting region of the liquid sample 71. Hereinafter, unless otherwise specified, air exists in the external space of the sample cell 7, and its refractive index n2 is 1.0. At the interface between the liquid sample 71 and the sample cell 7 (hereinafter referred to as the "solvent / cell interface"), when n0 <n1 (when FIGS. 5A and 5B), the lens functions as a divergent lens, and n0> n1. When ((d), (e)), it functions as a focusing lens. When n0 = n1 (when (c)), the light beam travels straight without being refracted at the solvent / cell interface.
 一方、試料セル7の屈折率n1と外部空間の屈折率n2との関係は常にn1>n2であるため、試料セル7と外部空間の界面(以下「セル/空気界面」という)は常に収束レンズとして機能する。そのため、図5に示すように、溶媒/セル界面が発散レンズとして機能する(a)および(b)の場合は発散と収束が相殺され、特に(b)の場合は、散乱光の平行成分の多くがほぼ平行な光線として試料セル7から出射する。 On the other hand, since the relationship between the refractive index n1 of the sample cell 7 and the refractive index n2 of the external space is always n1> n2, the interface between the sample cell 7 and the external space (hereinafter referred to as “cell / air interface”) is always a convergent lens. Functions as. Therefore, as shown in FIG. 5, in the cases (a) and (b) where the solvent / cell interface functions as a divergence lens, the divergence and convergence cancel each other out, and in the case of (b) in particular, the parallel components of the scattered light. Most of them are emitted from the sample cell 7 as substantially parallel rays.
 これに対して、溶媒/セル界面がレンズとして機能しない(c)の場合は、セル/空気界面の収束作用によって、また、溶媒/セル界面が収束レンズとして機能する(d)および(e)の場合は収束作用が重畳されることによって、試料セル7から出射する光は所定の焦点に集光する。ただし、収束作用の強い(e)の場合は、試料セル7のごく近傍で焦点を結び、その先は発散の一途を辿る。 On the other hand, when the solvent / cell interface does not function as a lens (c), the cell / air interface converges, and the solvent / cell interface functions as a condensing lens (d) and (e). In the case, the light emitted from the sample cell 7 is focused on a predetermined focal point by superimposing the convergence action. However, in the case of (e), which has a strong convergence effect, the focus is focused in the immediate vicinity of the sample cell 7, and the divergence continues after that.
 このように、試料セル7から出射する光線が発散光、平行光、収束光のいずれになるか、収束光の場合にその焦点がどこに位置するか、は溶媒の屈折率n0と試料セルの屈折率n1の大小関係によって決まる。 In this way, whether the light emitted from the sample cell 7 is divergent light, parallel light, or convergent light, and where the focal point is located in the case of convergent light, depends on the refractive index n0 of the solvent and the refraction of the sample cell. It depends on the magnitude relationship of the rate n1.
 このことは、従来のMALS検出装置では、測定対象となる液体試料の溶媒の屈折率によっては、散乱光強度を正確に測定できない、もしくは全く測定できないことを意味する。溶媒の屈折率に関係なく散乱光強度を測定できるようにするために、液体試料の溶媒の屈折率に応じて、屈折率の異なる試料セルに交換したり、光検出器の受光面の位置を変更したり、或いは試料セルと検出器の間に適宜の構成の集光光学系を配置したりすることが考えられる。しかし、クロマトグラフから導入される液体試料のように、溶媒の屈折率が広範囲にわたる液体試料を測定対象とするMALS検出装置では、溶媒の屈折率に応じて試料セルを交換したり、検出器の配置や集光光学系の構成を変更したりすることは、およそ現実的ではない。 This means that the conventional MALS detector cannot accurately measure the scattered light intensity or cannot measure it at all depending on the refractive index of the solvent of the liquid sample to be measured. In order to be able to measure the scattered light intensity regardless of the refractive index of the solvent, the sample cells with different refractive indexes are replaced according to the refractive index of the solvent of the liquid sample, or the position of the light receiving surface of the light detector is changed. It is conceivable to change or arrange a condensing optical system having an appropriate configuration between the sample cell and the detector. However, in a MALS detector for measuring a liquid sample having a wide range of refractive index of a solvent, such as a liquid sample introduced from a chromatograph, the sample cell may be replaced according to the refractive index of the solvent, or the detector may be replaced. It is almost impractical to change the arrangement or the configuration of the condensing optical system.
 発光領域で生じた散乱光が試料セルから出射するまでに通過する界面のうち、溶媒の屈折率が寄与するのは、溶媒/セル界面だけである。つまり、試料セルから出射する散乱光が、発散光になったり、平行光になったり、或いは収束光になったりする理由は、液体試料の溶媒の屈折率によって、散乱光が溶媒/セル界面を通過するときの挙動が異なるからである。 Of the interfaces through which scattered light generated in the light emitting region passes before exiting from the sample cell, the refractive index of the solvent contributes only to the solvent / cell interface. In other words, the reason why the scattered light emitted from the sample cell becomes divergent light, parallel light, or convergent light is that the scattered light crosses the solvent / cell interface depending on the refractive index of the solvent of the liquid sample. This is because the behavior when passing is different.
 発光領域で生じた散乱光の角度成分は平面波の波面を持つ。平面波の光線が平面状の界面を通過するとき、該光線は界面で屈折するが、その波面は保持される。つまり、溶媒/セル界面を平面にすれば、散乱光の角度成分は全て平行光として溶媒/セル界面からセル/空気界面に向かう。セル/空気界面は収束作用を持つため、溶媒の屈折率に依らず、散乱光の個々の角度成分は試料セル7の軸を中心とする円周上に焦点を結ぶことが期待される。本発明は、このような知見のもと成されたものである。
 以下、本発明に係る光散乱検出器について、その一実施形態である多角度光散乱検出装置(MALS検出装置)を例に挙げて説明する。
The angular component of the scattered light generated in the light emitting region has a plane wave surface. When a plane wave ray passes through a planar interface, the ray is refracted at the interface, but its wave surface is retained. That is, if the solvent / cell interface is made flat, all the angular components of the scattered light are parallel light and go from the solvent / cell interface to the cell / air interface. Since the cell / air interface has a converging effect, it is expected that the individual angular components of the scattered light will be focused on the circumference centered on the axis of the sample cell 7, regardless of the refractive index of the solvent. The present invention has been made based on such findings.
Hereinafter, the light scattering detector according to the present invention will be described by taking as an example a multi-angle light scattering detection device (MALS detection device) which is an embodiment thereof.
[実施形態]
<1.MALS検出装置の構成>
 図6は、本実施形態のMALS検出装置100の概略的な全体構成図である。このMALS検出装置100は、図1に示した従来のMALS検出装置100Pとほぼ同じ構成を有している。したがって、MALS検出装置100の構成のうちMALS検出装置100Pと同一又は対応する部分には同一符号を付してその説明を省略し、異なる部分を中心に説明する。
[Embodiment]
<1. Configuration of MALS detector>
FIG. 6 is a schematic overall configuration diagram of the MALS detection device 100 of the present embodiment. The MALS detection device 100 has substantially the same configuration as the conventional MALS detection device 100P shown in FIG. Therefore, in the configuration of the MALS detection device 100, the same or corresponding parts as the MALS detection device 100P are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be mainly described.
 本実施形態のMALS検出装置100は、試料セル17の貫通孔の構成が前記試料セル7と異なる。具体的には、前記試料セル17は、その貫通孔の側面のうち前記光検出器9の少なくとも一つに面する側面が平面から成る。このような平面の側面(平面側面)は、例えば試料セルの内部に断面形状が円形の貫通孔を形成し、その側面の一部を加工することにより得ることができるが、少なくとも一部が直線である閉曲線からなる貫通孔を試料セル17の内部に形成しても良い。この構成では、試料セル17の軸方向全体に平面の側面が形成されることになる。閉曲線の例として、多角形、扇形、端点が同じ弦と円弧で囲まれた形状等が挙げられるが、これらに限られない。ただし、断面形状が円形状であり、側面の全てが曲面から成る、従来の試料セル7の貫通孔は除かれる。断面形状が多角形である場合は、貫通孔の側面の全てが複数の平面側面から構成されることになる。また、MALS検出装置100は、従来のMALS検出装置100Pにおいて試料セル7と光検出器9の間に配置されていた結像光学系を備えていない。 The MALS detection device 100 of the present embodiment has a different configuration of through holes in the sample cell 17 from the sample cell 7. Specifically, the sample cell 17 has a flat side surface facing at least one of the photodetectors 9 among the side surfaces of the through hole. Such a flat side surface (flat side surface) can be obtained, for example, by forming a through hole having a circular cross-sectional shape inside the sample cell and processing a part of the side surface, but at least a part of the side surface is straight. A through hole having a closed curve may be formed inside the sample cell 17. In this configuration, the side surface of the plane is formed in the entire axial direction of the sample cell 17. Examples of closed curves include, but are not limited to, polygons, sectors, and shapes surrounded by strings and arcs with the same end points. However, the through hole of the conventional sample cell 7 having a circular cross-sectional shape and all the side surfaces having a curved surface is excluded. When the cross-sectional shape is polygonal, all the side surfaces of the through hole are composed of a plurality of plane side surfaces. Further, the MALS detection device 100 does not include an imaging optical system arranged between the sample cell 7 and the photodetector 9 in the conventional MALS detection device 100P.
<2.貫通孔の断面形状が多角形である試料セルにおける散乱光の挙動>
 説明を簡単にするために、試料セル17の貫通孔の断面形状が多角形である試料セル17にレーザ光を照射したときの、散乱光の個々の角度成分の挙動について説明する。図7A、7Bは、試料セル17の素材を合成石英(屈折率n1=1.46)、溶媒を水(屈折率n0=1.333)とし、試料セル17の外径(半径)を4mm、貫通孔の断面形状を、半径0.8mmの円とほぼ等しい面積の長方形(a)、正方形(b)、及び二等辺三角形(c)、(d)とし、レーザ光が、紙面の下から上に向かって試料セル17の中心を貫くときの散乱光の角度成分の光線図である。
 なお、特に断らない限り、以下の説明では試料セル17の素材は合成石英(屈折率n1=1.46)であることとする。
<2. Behavior of scattered light in a sample cell with a polygonal cross-sectional shape of the through hole>
For the sake of simplicity, the behavior of individual angular components of scattered light when the sample cell 17 having a polygonal cross-sectional shape of the through hole of the sample cell 17 is irradiated with the laser beam will be described. In FIGS. 7A and 7B, the material of the sample cell 17 is synthetic quartz (refractive index n1 = 1.46), the solvent is water (refractive index n0 = 1.333), the outer diameter (radius) of the sample cell 17 is 4 mm, and the cross section of the through hole. The shape is a rectangle (a), a square (b), and an isosceles triangle (c), (d) with an area approximately equal to a circle with a radius of 0.8 mm, and the laser beam is emitted from the bottom to the top of the paper surface. It is a ray diagram of the angular component of the scattered light when penetrating the center of 17.
Unless otherwise specified, the material of the sample cell 17 is synthetic quartz (refractive index n1 = 1.46) in the following description.
 長方形、正方形はそれぞれ2回回転軸、4回回転軸を持つ対称性があるため、貫通孔の断面形状が長方形、正方形の試料セル17(図7Aの(a)、(b))では、右方前方散乱(散乱角は10°から90°まで10°間隔)の角度成分のみを示した。また、二等辺三角形はその対称性から、前方散乱と後方散乱の様態が異なるため、貫通孔の断面形状が二等辺三角形の試料セル17(図7Bの(c)、(d))においては、前方散乱及び後方散乱それぞれの右方散乱(散乱角は10°から170°まで10°間隔)の角度成分のみを示した。 Since the rectangle and the square have a symmetry having a two-fold rotation axis and a four-fold rotation axis, respectively, in the sample cell 17 having a rectangular and square cross-sectional shape of the through hole ((a) and (b) in FIG. 7A), the right side. Only the angular component of the forward scattering (scattering angle is 10 ° interval from 10 ° to 90 °) is shown. Further, since the isosceles triangle has different modes of forward scattering and backscatter due to its symmetry, in the sample cell 17 ((c), (d) of FIG. 7B) in which the cross-sectional shape of the through hole is an isosceles triangle, Only the angular components of the right scattering (scattering angles are 10 ° intervals from 10 ° to 170 °) of the forward scattering and the backscatter are shown.
 図7A、7Bに示されるように、貫通孔の断面形状が長方形、正方形、及び二等辺三角形のいずれの場合も、発光領域から様々な方向に出射した散乱光の角度成分は、全て平行光として溶媒/セル界面からセル/空気界面に向かう。そして、セル/空気界面の収束作用によって、試料セルの中心軸を中心とする円周上に焦点を結ぶ。試料セル17の外径(半径)が4mmのとき、円周の半径は12.7mmとなる。従って、図7A、7Bに示す例では、半径12.7mmの円周E上であって、散乱光の各角度成分が焦点を結ぶ箇所にそれぞれ光検出器9を配置することにより、各角度成分の光強度を求めることができる。 As shown in FIGS. 7A and 7B, regardless of whether the cross-sectional shape of the through hole is rectangular, square, or isosceles triangle, all the angular components of the scattered light emitted from the light emitting region in various directions are regarded as parallel light. From the solvent / cell interface to the cell / air interface. Then, the focusing action of the cell / air interface focuses on the circumference centered on the central axis of the sample cell. When the outer diameter (radius) of the sample cell 17 is 4 mm, the radius of the circumference is 12.7 mm. Therefore, in the examples shown in FIGS. 7A and 7B, by arranging the photodetector 9 at a position on the circumference E having a radius of 12.7 mm and where each angle component of the scattered light is focused, each angle component can be obtained. The light intensity can be determined.
 なお、貫通孔の断面形状が多角形の場合、溶媒/セル界面は複数の平面から構成されることになる。散乱光の角度成分によっては、貫通孔の溶媒/セル界面を構成する複数の平面に跨って入射し、該平面を透過する際に分裂する。図7Aの(a)、(b)、図7Bの(d)に示す例では、散乱光のいくつかの角度成分が、2個の平面を透過することで2方向に分裂する様子が確認される。この場合は、2個の平面に入射する特定の角度成分について、前記2個の平面における強度分配比を算定し、2個の平面のうち強度分配比が大きい角度成分だけを測定対象として光検出器9で検出し、検出結果に強度分配比の逆数を掛ける重み付け補正を行うと良い。以上の方法により、2個の平面に入射する角度成分全体の散乱光強度を求めることができる。以上の方法を用いれば、貫通孔の断面形状が、図7に示した三角形、四角形以外の多角形であっても、原理的には、散乱光の全ての角度成分の光強度を求めることができる。 When the cross-sectional shape of the through hole is polygonal, the solvent / cell interface is composed of a plurality of planes. Depending on the angular component of the scattered light, it is incident across a plurality of planes constituting the solvent / cell interface of the through hole, and splits when passing through the planes. In the examples shown in (a) and (b) of FIG. 7A and (d) of FIG. 7B, it was confirmed that some angular components of the scattered light were split in two directions by passing through the two planes. To. In this case, for a specific angle component incident on the two planes, the intensity distribution ratio in the two planes is calculated, and only the angle component having the larger intensity distribution ratio among the two planes is used as the measurement target for photodetection. It is preferable to perform weighting correction by detecting with the device 9 and multiplying the detection result by the inverse of the intensity distribution ratio. By the above method, the scattered light intensity of the entire angle component incident on the two planes can be obtained. By using the above method, even if the cross-sectional shape of the through hole is a polygon other than the triangle and the quadrangle shown in FIG. 7, in principle, the light intensity of all the angular components of the scattered light can be obtained. it can.
 ただし、散乱光の或る角度成分が入射する平面の数が多くなると、強度分配比が大きい角度成分であっても、その光強度が小さくなるため、SN比の劣化が懸念される。散乱光の個々の角度成分が関与する平面の数を減じるためには、貫通孔の断面形状として、多角形を構成する線分の数が最少となる三角形を選択すれば良い。例えば図8は、断面形状が正三角形の貫通孔の3個の平面側面を通過する散乱光の角度成分を示している。散乱光の角度成分の微分断面積(散乱強度)を「σ(θ)」(θは散乱角度)と定義すると、 σ(0)からσ(-θ1)、σ(θ1)からσ(θ2)、及びσ(-θ1)からσ(-π)の角度成分は、それぞれ三角形の左上辺、右辺及び左下辺に対応する、貫通孔の平面側面のみを透過する。σ(-θ)=σ(θ)であるため、散乱光の総ての角度成分を、分裂を避けて測定することが可能となる。 However, if the number of planes on which a certain angular component of scattered light is incident increases, even if the angular component has a large intensity distribution ratio, the light intensity becomes small, so that there is a concern that the SN ratio may deteriorate. In order to reduce the number of planes in which the individual angular components of the scattered light are involved, a triangle having the smallest number of line segments constituting the polygon may be selected as the cross-sectional shape of the through hole. For example, FIG. 8 shows an angular component of scattered light passing through three plane side surfaces of a through hole having an equilateral triangular cross section. If the differential cross-sectional area (scattering intensity) of the angular component of scattered light is defined as "σ (θ)" (θ is the scattering angle), σ (0) to σ (-θ1) and σ (θ1) to σ (θ2) , And the angular components from σ (-θ1) to σ (-π) pass only through the plane side of the through hole, which corresponds to the upper left, right and lower left sides of the triangle, respectively. Since σ (-θ) = σ (θ), it is possible to measure all the angular components of scattered light while avoiding splitting.
 図9は、貫通孔の断面形状が正三角形の試料セル17の該貫通孔に流す溶媒を水(屈折率=1.333)にしたときの散乱光の各角度成分の光線図である。図9より、0°から-60°の角度成分は、左上辺に対応する平面側面が担っており、60°から90°の角度成分は右辺に対応する平面側面が担っており、いずれの角度成分も分裂が生じていないことが認められる。なお、図9は前方散乱の光線図であり、これを上下反転させると後方散乱の光線図となる。 FIG. 9 is a ray diagram of each angle component of scattered light when the solvent flowing through the through hole of the sample cell 17 having an equilateral triangular cross-sectional shape is water (refractive index = 1.333). From FIG. 9, the angle component from 0 ° to -60 ° is borne by the plane side surface corresponding to the upper left side, and the angle component from 60 ° to 90 ° is borne by the plane side surface corresponding to the right side. It is recognized that the components are not divided. Note that FIG. 9 is a ray diagram of forward scattering, and when this is inverted upside down, a ray diagram of backscattering is obtained.
<3.角度分解能>
 図10は、二次元上で90°の角度成分の光線を追跡することにより得られた検出位置に依存する光線の強度分布である。図10の横軸は検出位置座標であり、それぞれのスペクトルは試料セル17からの出射角度をθ0とし、θ0を以下の式(1)で表したときの異なるΔθ0に対応している。
 θ0=90°-Δθ0  ・・・(1)
<3. Angle resolution>
FIG. 10 is a light intensity distribution depending on the detection position obtained by tracing a light ray having an angular component of 90 ° in two dimensions. The horizontal axis of FIG. 10 is the detection position coordinates, and each spectrum corresponds to a different Δθ0 when the emission angle from the sample cell 17 is θ0 and θ0 is expressed by the following equation (1).
θ0 = 90 ° -Δθ0 ・ ・ ・ (1)
 図10には、Δθ0として0°、0.02°及び0.04°の3個を選んだときのピークが示されている。図10から分かるように、Δθ0が0°、0.02°及び0.04°であるいずれのピークも明瞭に弁別できている。このことから、光検出器9の角度分解能を0.02°と見積もることができる。半径12.7mmの円周上において、0.02°の角度は4μmの長さに対応するため、仮に、ピクセル幅が4μmの1次元のフォトダイオードアレイ検出器を上記の円周E上に隙間なく全周に渡って配置することができれば、原理的には、散乱光のすべての角度成分を0.02°の角度分解能で測定することが可能となる。 FIG. 10 shows the peaks when three of 0 °, 0.02 °, and 0.04 ° are selected as Δθ0. As can be seen from FIG. 10, all the peaks in which Δθ0 is 0 °, 0.02 ° and 0.04 ° can be clearly discriminated. From this, the angular resolution of the photodetector 9 can be estimated to be 0.02 °. Since the angle of 0.02 ° corresponds to the length of 4 μm on the circumference with a radius of 12.7 mm, tentatively, a one-dimensional photodiode array detector with a pixel width of 4 μm is placed on the circumference E without any gap. In principle, all angular components of scattered light can be measured with an angular resolution of 0.02 ° if they can be arranged over the same.
 θ0=90°の散乱成分は光束幅が最も広いため、セル/空気界面における球面収差の影響が最も大きくなる。このため、θ0=90°以外の角度領域では、θ0=90°の散乱成分よりも球面収差が小さく、高分解能となるはずである。また、何れの角度領域においても分解能の溶媒屈折率依存性は極めて低い Since the scattering component of θ0 = 90 ° has the widest luminous flux width, the influence of spherical aberration at the cell / air interface is the largest. Therefore, in the angle region other than θ0 = 90 °, the spherical aberration is smaller than the scattering component of θ0 = 90 °, and the resolution should be high. Moreover, the solvent refractive index dependence of the resolution is extremely low in any angle region.
<4.ノイズ成分>
<4.1 ノイズ成分の発生>
 図11は、貫通孔の断面形状が正三角形の試料セル17の該貫通孔に流す液体試料の溶媒を、キノリン(Quinoline)としたときの散乱光の各角度成分の光線図である。水の屈折率(1.333)は試料セルの屈折率(1.46)よりも小さいのに対して、キノリンの屈折率は1.66であり、試料セルの屈折率(1.46)よりも大きい。
<4. Noise component>
<4.1 Noise component generation>
FIG. 11 is a ray diagram of each angle component of scattered light when the solvent of the liquid sample flowing through the through hole of the sample cell 17 having an equilateral triangular cross-sectional shape is quinoline. The index of refraction of water (1.333) is smaller than the index of refraction of the sample cell (1.46), whereas the index of refraction of quinoline is 1.66, which is larger than the index of refraction of the sample cell (1.46).
 図9の光線図との比較から分かるように、試料セル17の貫通孔に流す液体試料の溶媒を水からキノリンに変えると、或る2つの異なる角度成分の焦点が1箇所に集中するという現象がみられる。図11に3個の〇(丸)で囲んだ箇所が、それぞれ2つの異なる角度成分の焦点が集中する箇所を示している。このように、2つの異なる角度成分の焦点が1箇所に集中した場合、それら2つの角度成分を分離することができなければ、各角度成分の光強度を検出することができない。 As can be seen from the comparison with the ray diagram of FIG. 9, when the solvent of the liquid sample flowing through the through hole of the sample cell 17 is changed from water to quinoline, the focal points of two different angular components are concentrated in one place. Can be seen. In FIG. 11, the points circled by three circles indicate the points where the focal points of the two different angular components are concentrated. In this way, when the focal points of two different angular components are concentrated in one place, the light intensity of each angular component cannot be detected unless the two angular components can be separated.
 異なる方位の散乱光の焦点位置が一致するのは、溶媒と試料セル17の屈折率比(n1/n0)が大きいこと、貫通孔の断面形状が正三角形であることに起因する。その理由を、図12~図14Bを用いて説明する。図12に示すように、説明を簡単にするために、溶媒/セル界面を構成する貫通孔の3個の平面側面を、それぞれ、正三角形の辺の名称(右辺、左上辺、左下辺)で呼ぶこととする。また、レーザ光が左上辺及び左下辺を横切る位置を境界として、左上辺及び左下辺をそれぞれ右部と左部に分け、左上辺右部及び左上辺左部、左下辺右部及び左下辺左部と呼ぶこともある。 The focal positions of scattered light in different directions match because the refractive index ratio (n1 / n0) of the solvent and the sample cell 17 is large, and the cross-sectional shape of the through hole is an equilateral triangle. The reason will be described with reference to FIGS. 12 to 14B. As shown in FIG. 12, for the sake of simplicity, the three plane side surfaces of the through holes constituting the solvent / cell interface are designated by the names of the sides of the equilateral triangle (right side, upper left side, lower left side), respectively. I will call it. In addition, the upper left side and the lower left side are divided into a right part and a left part, respectively, with the position where the laser beam crosses the upper left side and the lower left side as a boundary. Sometimes called a club.
 一般に平坦な界面を挟む二つの媒体の屈折率比が大きい程、光の反射率が高く、特に高屈折率媒体から低屈折率媒体に光が入射するときは、ある入射角で全反射が生じ、その入射角(臨界入射角)は、屈折率比が大きい程、小さくなる。入射角は、界面の法線に対する入射光の傾斜角で定義されるから、臨界入射角が小さくなるということは、垂直入射に近づくことを意味する。 Generally, the larger the refractive index ratio of two media sandwiching a flat interface, the higher the reflectance of light. Especially when light is incident from a high refractive index medium to a low refractive index medium, total reflection occurs at a certain angle of incidence. , The incident angle (critical incident angle) becomes smaller as the refractive index ratio is larger. Since the angle of incidence is defined by the angle of inclination of the incident light with respect to the normal of the interface, a smaller critical angle of incidence means closer to vertical incidence.
 図13A及び13Bは、貫通孔内の散乱光の発生領域(発光領域)から或る方位に出射して左上辺又は右辺を直接通過する光束と、該光束とは別の方位に発光領域から出射し、正三角形のいずれかの辺で反射した後、左上辺又は右辺を通過する光束の経路を示している。この説明では、「反射」には全反射以外の反射も含まれることとする。図13A及び図13Bにおいて符号101で示す領域が発光領域である。また、図13Aでは、レーザ光は左上辺及び左下辺の各中点を通過することとし、図13Bでは、レーザ光は左上辺及び左下辺の各中点よりも右辺寄りを通過することとする。 13A and 13B show a luminous flux that is emitted from the scattered light generation region (light emitting region) in the through hole in a certain direction and directly passes through the upper left side or the right side, and is emitted from the light emitting region in a direction different from the light flux. Then, after reflecting on any side of the equilateral triangle, the path of the luminous flux passing through the upper left side or the right side is shown. In this description, "reflection" includes reflections other than total internal reflection. The region indicated by reference numeral 101 in FIGS. 13A and 13B is a light emitting region. Further, in FIG. 13A, the laser light passes through the midpoints of the upper left side and the lower left side, and in FIG. 13B, the laser light passes closer to the right side than the midpoints of the upper left side and the lower left side. ..
 図13A及び図13Bには、発光領域101から左側の或る方位に出射し、左上辺を直接通過する光束(直接光束110、実線で示す)と、該直接光束110とは別の左側の方位に発光領域101から出射し、左下辺左部で反射して、左上辺を通過する光束(間接光束120、二点鎖線で示す。)の、方向が同じになる様子が描かれている。また、図13Aには、発光領域101から右側の或る方位に出射し、右辺を直接通過する光束(直接光束111、実線で示す)と、該直接光束111とは別の右側の方位に発光領域101から出射し、左上辺右部で反射して右辺を通過する光束(間接光束121、破線で示す。)の、方向が同じになる様子が描かれている。また、図13Bには、発光領域101から右側の或る方位に出射し、右辺で反射して左上辺を通過する光束(間接光束122、破線で示す)と、上述した直接光束110の、方向が同じになる様子が描かれている。 In FIGS. 13A and 13B, a luminous flux (direct luminous flux 110, indicated by a solid line) that emits light from the light emitting region 101 in a certain direction on the left side and directly passes through the upper left side, and a direction on the left side different from the direct luminous flux 110. The light flux emitted from the light emitting region 101, reflected at the left portion of the lower left side, and passed through the upper left side (indirect luminous flux 120, indicated by a two-point chain line) is depicted in the same direction. Further, in FIG. 13A, a luminous flux (direct luminous flux 111, indicated by a solid line) that emits light from the light emitting region 101 in a certain direction on the right side and directly passes through the right side, and emits light in a direction on the right side different from the direct luminous flux 111. A state in which the directions of the luminous flux (indirect luminous flux 121, indicated by a broken line) emitted from the region 101, reflected at the right portion of the upper left side and passing through the right side is drawn. Further, in FIG. 13B, the directions of the light flux (indirect light flux 122, indicated by a broken line) that is emitted from the light emitting region 101 in a certain direction on the right side, is reflected on the right side and passes through the upper left side, and the above-mentioned direct light flux 110. Is drawn to be the same.
 これらの光束110,111,120,121、122のうち検出すべき光束は、直接光束110,111のみであり、光束110,111が信号光となる。間接光束120,121,122は信号光とは散乱角が異なるためノイズ成分となる。図13Aの左上辺及び右辺、図13Bの左上辺に、それぞれ太い矢印にて信号光が通過する領域310及びノイズ成分が通過する領域320、322を示す。 Of these luminous fluxes 110, 111, 120, 121, 122, the luminous flux to be detected is only the direct luminous flux 110, 111, and the luminous flux 110, 111 is the signal light. Since the indirect luminous fluxes 120, 121, and 122 have different scattering angles from the signal light, they become noise components. The upper left side and the right side of FIG. 13A and the upper left side of FIG. 13B show a region 310 through which signal light passes and a region 320 and 322 through which noise components pass, respectively, with thick arrows.
 図13A、13Bから分かるように、直接光束110と間接光束120、直接光束111と間接光束121は、いずれも方向が同じであるものの、左上辺、右辺を通過する領域が重複しない。つまり、信号光とノイズ成分は重畳することなく左上辺又は右辺を通過する。信号光とノイズ成分の弁別性は試料セルの外部でも保たれるため、試料セルと光検出器との間に適切な遮光板あるいはスリットを設けることでノイズ成分を完全に除去することができる。 As can be seen from FIGS. 13A and 13B, the direct luminous flux 110 and the indirect luminous flux 120, and the direct luminous flux 111 and the indirect luminous flux 121 all have the same direction, but the regions passing through the upper left side and the right side do not overlap. That is, the signal light and the noise component pass through the upper left side or the right side without overlapping. Since the discrimination between the signal light and the noise component is maintained outside the sample cell, the noise component can be completely removed by providing an appropriate light-shielding plate or slit between the sample cell and the photodetector.
 これに対して、図13Bに示すように、直接光束110と間接光束122は、左上辺を通過する領域が重複し、信号光とノイズ成分の間で空間的重畳が生じる。信号光と重畳しないノイズ成分は除去することができるが、重畳するノイズ成分は除去することができない。 On the other hand, as shown in FIG. 13B, in the direct luminous flux 110 and the indirect luminous flux 122, the regions passing through the upper left side overlap, and spatial superposition occurs between the signal light and the noise component. The noise component that does not overlap with the signal light can be removed, but the noise component that overlaps cannot be removed.
 除去不能なノイズ成分が発生するか否か、発光領域101から或る方位に出射した光に占める除去不能なノイズ成分の割合等の「度合い」は、溶媒と試料セルの屈折率比、貫通孔の断面形状(正三角形)、レーザ光が貫通孔内を通過する部位(例えば、正三角形の左上辺及び左下辺の中点を通過するのか、重心を通過するのか、あるいは右辺の近傍を通過するのか)に依存する。発光領域101が正三角形内の左方に位置するほど右辺に対する入射角度範囲が狭くなる。極端な例として、励起レーザが正三角形の左頂点を通過するときは、発光領域101の右側の法線方位を0°とすると、右辺に対する入射角度範囲は-30°から30°の範囲になる。逆に、正三角形の右辺すれすれをレーザ光が通過するときは、右辺に対する入射角度範囲は-90°から90°の範囲になる。つまり、発光領域101が右方に位置するほど入射角の範囲が広がるため、反射率の高い成分が増え、全反射が生じ易くなる。 The "degree" such as whether or not an irremovable noise component is generated and the ratio of the irremovable noise component to the light emitted from the light emitting region 101 in a certain direction is the refractive index ratio between the solvent and the sample cell and the through hole. Cross-sectional shape (equilateral triangle), the part where the laser light passes through the through hole (for example, the midpoint of the upper left and lower left sides of the equilateral triangle, the center of gravity, or the vicinity of the right side It depends on. The more the light emitting region 101 is located on the left side of the equilateral triangle, the narrower the incident angle range with respect to the right side. As an extreme example, when the excitation laser passes through the left apex of an equilateral triangle, the angle of incidence with respect to the right side is in the range of -30 ° to 30 °, assuming that the normal orientation on the right side of the light emitting region 101 is 0 °. .. On the contrary, when the laser beam passes by the right side of the equilateral triangle, the incident angle range with respect to the right side is in the range of −90 ° to 90 °. That is, since the range of the incident angle is widened as the light emitting region 101 is located to the right, the components having high reflectance increase and total reflection is likely to occur.
<4.2 ノイズ成分の光強度>
 次に、発光領域101から或る方位に出射した全ての散乱光(散乱光の或る角度成分)に占めるノイズ成分の割合を、光強度に換算して定量化した。ここでは、光強度に換算した割合を「ノイズ成分の寄与率」と呼ぶ。
<4.2 Light intensity of noise component>
Next, the ratio of the noise component to all the scattered light (a certain angle component of the scattered light) emitted from the light emitting region 101 in a certain direction was quantified by converting it into light intensity. Here, the ratio converted into light intensity is referred to as "contribution rate of noise component".
 ノイズ成分の光強度は二つの因子で決定される。一つは、図13A,13Bに符号220、221、222が付されたノイズ光発生領域の、発光領域101に対する割合である。散乱光の特定の角度成分が全てノイズ成分になるわけではなく、正三角形の辺(界面)で反射して信号光と重畳するのは、ノイズ光発生領域220、221、222から放射される光束に限定される。
 もう一つの因子は、ノイズ成分の界面での反射率である。
 以上より、「ノイズ光発生領域の長さ/発光領域の長さ」にノイズ光の界面での反射率を掛けた値がノイズ成分の光強度の指標となる。この指標を「規格化強度」と呼ぶ。特定の角度成分の光強度に規格化強度を掛けた値がノイズ成分の光強度である。よって、例えば規格化強度が0.4の場合、ノイズ光の方位の全散乱強度をInoiseとすると、Inoiseのうち0.4×Inoiseが検出すべき信号に加わる。
The light intensity of the noise component is determined by two factors. One is the ratio of the noise light generation region to which the reference numerals 220, 221 and 222 are attached to FIGS. 13A and 13B to the light emitting region 101. Not all specific angular components of scattered light become noise components, and it is the luminous flux emitted from the noise light generation regions 220, 221 and 222 that is reflected at the sides (interfaces) of the equilateral triangle and superimposed on the signal light. Limited to.
Another factor is the reflectance at the interface of the noise component.
From the above, the value obtained by multiplying "the length of the noise light generation region / the length of the light emitting region" by the reflectance at the interface of the noise light becomes an index of the light intensity of the noise component. This index is called "normalized strength". The value obtained by multiplying the light intensity of a specific angle component by the normalized intensity is the light intensity of the noise component. Therefore, for example, when the normalized intensity is 0.4 and the total scattering intensity in the direction of the noise light is Inoise, 0.4 × Inoise of Inoise is added to the signal to be detected.
 図14A、14Bに、ノイズ成分の規格化強度と散乱角度との関係を示す。ただし、図14A、14Bでは、理解を容易にするために、限定的に図15Aに示される角度計量を用いて散乱角度を表している。従来慣例的に散乱角の計量では図15Bに示す角度計量が用いられてきたが、この座標では、前方散乱と後方散乱の対称軸が90°、または-90°の軸であり、右方と左方で符号が反転する。これを避けるために、ここでは、図15Aに示す角度計量を用いた。 Figures 14A and 14B show the relationship between the normalized intensity of the noise component and the scattering angle. However, in FIGS. 14A and 14B, in order to facilitate understanding, the scattering angle is limitedly represented by using the angle metric shown in FIG. 15A. Conventionally, the angle metric shown in FIG. 15B has been used for the measurement of the scattering angle, but at this coordinate, the axis of symmetry of the forward scattering and the backscatter is the axis of 90 ° or -90 °, and the right side. The sign is inverted on the left. In order to avoid this, the angle measurement shown in FIG. 15A is used here.
 図14A、14Bはそれぞれ、レーザ光が正三角形の左上下辺の中点を貫く場合、正三角形の重心を貫く場合に相当する。図14A、14Bの横軸は、溶媒中での散乱角度θ0[degree]であり、発光領域101から出射する方位を表す。図14A、14Bの縦軸は、散乱角度θ0で出射する信号光に追随するノイズ成分の規格化強度であり、図ではノイズ寄与率と記されている。ノイズ寄与率は溶媒の屈折率に依存するため、図14A、14Bには、屈折率が1.26(蛍光溶媒)、1.333(水)、1.492(toluene)、1.56(Nitrobenzene)及び1.66 (Quinoline)であるときのノイズ寄与率が示されている。 14A and 14B correspond to the case where the laser beam penetrates the midpoint of the upper left lower side of the equilateral triangle and the case where it penetrates the center of gravity of the equilateral triangle, respectively. The horizontal axis of FIGS. 14A and 14B is the scattering angle θ0 [degree] in the solvent, and represents the direction of emission from the light emitting region 101. The vertical axis of FIGS. 14A and 14B is the normalized intensity of the noise component that follows the signal light emitted at the scattering angle θ0, and is indicated as the noise contribution rate in the figure. Since the noise contribution rate depends on the refractive index of the solvent, the refractive indexes shown in FIGS. 14A and 14B are 1.26 (fluorescent solvent), 1.333 (water), 1.492 (toluene), 1.56 (Nitrobenzene) and 1.66 (Quinoline). The noise contribution rate at the time is shown.
 また、図14A、14Bにおいて、横方向の矢印とともに示す数値は、その矢印に対応する横軸に示された散乱角度θの信号光に追随するノイズ成分の散乱角度を局所座標として示している。例えば、散乱角度θ0=2°の信号光に追随するノイズ成分の散乱角度は58°となる。また、散乱角度θ0=125°の信号光に追随するノイズ成分の散乱角度は175°となる。さらにまた、右辺で反射されるノイズ成分の寄与率を表す曲線は、他のノイズ寄与率の曲線との重なりを避けるためにゼロ点を0.5にベースアップして表示されている。 Further, in FIGS. 14A and 14B, the numerical values shown together with the horizontal arrows indicate the scattering angles of the noise components following the signal light of the scattering angle θ shown on the horizontal axis corresponding to the arrows as local coordinates. For example, the scattering angle of the noise component that follows the signal light with a scattering angle θ0 = 2 ° is 58 °. Further, the scattering angle of the noise component that follows the signal light with the scattering angle θ0 = 125 ° is 175 °. Furthermore, the curve representing the contribution rate of the noise component reflected on the right side is displayed with the zero point based up to 0.5 in order to avoid overlapping with other noise contribution rate curves.
 図14Aより、溶媒の屈折率が1.66であり、散乱角度θ0=2°のときのノイズ寄与率は約0.89となる。これは散乱角度θ0=2°の信号光に対し、散乱角度θ0=58°の角度成分が左上辺右部(正三角形上の赤の線分で示される領域)で反射され、散乱角度θ0=2°の信号光に追随・混入する成分の光強度が、散乱角度θ0=58°の角度成分全体の光強度の約89%であることを意味する。 From FIG. 14A, the refractive index of the solvent is 1.66, and the noise contribution rate when the scattering angle θ0 = 2 ° is about 0.89. This is because the angular component of the scattering angle θ0 = 58 ° is reflected in the right part of the upper left side (the area indicated by the red line on the equilateral triangle) with respect to the signal light with the scattering angle θ0 = 2 °, and the scattering angle θ0 = This means that the light intensity of the component that follows / mixes with the 2 ° signal light is about 89% of the light intensity of the entire angle component with a scattering angle of θ0 = 58 °.
 また、図14Bより、溶媒の屈折率が1.66であり、散乱角度θ0=118°のときのノイズ寄与率は約0.44となる。これは散乱角度θ0=118°の信号光に対し、θ0=62°の角度成分が右辺(正三角形上の赤の線分で示される領域)で反射され、散乱角度θ0=118°の信号光に追随・混入する成分が、散乱角度θ0=62°の角度成分全体の光強度の約44%であることを意味する。図14A、14Bには、前方散乱成分の信号光に追随する全てのノイズ成分が示されている。後方散乱成分の信号光に追随するノイズ成分は図14A、14Bを角度θ0=180°で左右反転し、矢印で示す局所座標の数値の符号をマイナスとしたプロファイルになる。 Also, from FIG. 14B, the refractive index of the solvent is 1.66, and the noise contribution rate when the scattering angle θ0 = 118 ° is about 0.44. This is because the angular component of θ0 = 62 ° is reflected on the right side (the area indicated by the red line on the equilateral triangle) with respect to the signal light with a scattering angle of θ0 = 118 °, and the signal light with a scattering angle of θ0 = 118 °. It means that the component that follows / mixes with is about 44% of the total light intensity of the angle component having a scattering angle of θ0 = 62 °. 14A and 14B show all noise components that follow the signal light of the forward scattering component. The noise component that follows the signal light of the backscattering component has a profile in which FIGS. 14A and 14B are horizontally inverted at an angle θ0 = 180 ° and the sign of the numerical value of the local coordinates indicated by the arrow is negative.
 上述したように左上辺及び左下辺で反射されるノイズ成分は全て信号光と弁別して除去することができる。一方、右辺で反射されるノイズ成分の一部は排除できるが、残りは排除できない。ただし、図14Aに示すように、レーザ光が正三角形の左上下辺の中点を貫く場合は、右辺で反射されるノイズ成分のノイズ寄与率は溶媒の屈折率に依らずほぼゼロであり、無視することができる。これに対して、図14Bに示すように、レーザ光が正三角形の重心を貫く場合は、溶媒が高屈折率のときに、110°~120°の角度範囲でノイズ寄与率が大きくなり、場合によっては無視することができない。このような場合は、上記の角度範囲に光検出器9を設置しなければよい。また、レーザ光が正三角形の左上下辺の中点を貫く場合、重心を貫く場合のいずれにおいても、溶媒が高屈折率のときはノイズ寄与率が顕著となるが、溶媒が低屈折率のときはノイズ寄与率が小さく、信号光の光強度の検出に及ぼす影響は少ないことが分かる。 As described above, all the noise components reflected on the upper left side and the lower left side can be discriminated from the signal light and removed. On the other hand, a part of the noise component reflected on the right side can be excluded, but the rest cannot be excluded. However, as shown in FIG. 14A, when the laser beam penetrates the midpoint of the lower left side of the equilateral triangle, the noise contribution rate of the noise component reflected on the right side is almost zero regardless of the refractive index of the solvent and is ignored. can do. On the other hand, as shown in FIG. 14B, when the laser beam penetrates the center of gravity of an equilateral triangle, the noise contribution rate increases in the angle range of 110 ° to 120 ° when the solvent has a high refractive index. Some cannot be ignored. In such a case, the photodetector 9 may not be installed in the above angle range. In addition, when the laser beam penetrates the midpoint of the lower left side of the equilateral triangle and when it penetrates the center of gravity, the noise contribution rate becomes remarkable when the solvent has a high refractive index, but when the solvent has a low refractive index. It can be seen that has a small noise contribution rate and has little effect on the detection of the light intensity of the signal light.
 幾何学的考察から、左上辺及び左下辺で反射されるノイズ成分を除去できることを図13A、13Bにて示した。これに対して、図16は、溶媒がキノリン(n0=1.66)のときに、試料セル17と光検出器9の間の適切な箇所にスリットを設けることでノイズ成分を除去できることを示す光線図である。図16では従来の角度計量で散乱角度を表している。散乱角度が70°の角度成分(ピンク色で示す)には散乱角度が50°の角度成分(水色で示す)が、散乱角度が-50°の角度成分(紫色で示す)には散乱角度が-70°の角度成分(緑色で示す)が、それぞれノイズ成分として追随する。図16より、これらのノイズ成分はスリットによって完全に除去されることは明らかであり、幾何学的考察を裏付ける結果となった。 From the geometrical consideration, it was shown in FIGS. 13A and 13B that the noise component reflected on the upper left side and the lower left side can be removed. On the other hand, FIG. 16 is a ray diagram showing that when the solvent is quinoline (n0 = 1.66), the noise component can be removed by providing a slit at an appropriate position between the sample cell 17 and the photodetector 9. Is. In FIG. 16, the scattering angle is represented by the conventional angle measurement. The angle component with a scattering angle of 70 ° (shown in pink) has an angle component with a scattering angle of 50 ° (shown in light blue), and the angle component with a scattering angle of -50 ° (shown in purple) has a scattering angle. The -70 ° angle component (shown in green) follows as a noise component. From FIG. 16, it is clear that these noise components are completely removed by the slits, which supports the geometrical consideration.
<4.3 溶媒の屈折率に依存する要素>
<4.3.1 光検出器の方位と散乱光の角度成分との関係>
 円周上に配置された光検出器9に到達する角度成分の散乱角度は溶媒の屈折率に依存する。したがって、実際の光学系を設計するときは特定の屈折率に合わせて検出したい角度成分を選ぶことになる。例えば、表1の上段は、溶媒が水(屈折率n0=1.333)のときの、角度成分の散乱角度と、その角度の角度成分を検出するために円周上に配置される光検出器の方位との関係を示している。表1において、角度成分及び検出位置の方位(degree)は、図15(a)に示す角度計量で表された角度である。参考として、図15(b)の従来慣例的な角度計量で表した散乱角度を、表1の上段(慣例的散乱角)に示す。
<4.3 Factors that depend on the refractive index of the solvent>
<4.3.1 Relationship between the orientation of the photodetector and the angular component of the scattered light>
The scattering angle of the angular component reaching the photodetector 9 arranged on the circumference depends on the refractive index of the solvent. Therefore, when designing an actual optical system, the angle component to be detected is selected according to a specific refractive index. For example, the upper part of Table 1 shows the scattering angle of the angular component when the solvent is water (refractive index n0 = 1.333) and the photodetector arranged on the circumference to detect the angular component of that angle. It shows the relationship with the orientation. In Table 1, the angle component and the direction (degree) of the detection position are angles represented by the angle measurement shown in FIG. 15 (a). For reference, the scattering angle represented by the conventional customary angle measurement of FIG. 15B is shown in the upper part (conventional scattering angle) of Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、散乱角度が0°、20°、140°、120°及び100°の角度成分を検出するための光検出器9の方位は、それぞれ0°、18.25°、138.25°、120°及び101.75°となる。角度が0°と120°の角度成分は界面に垂直入射するため屈折がない。したがって、散乱角度と光検出器9の方位が一致する。それ以外の角度成分は界面に対して斜め入射となるので、光検出器9の方位は溶媒の屈折率に依存する。つまり、測定対象となる散乱光の角度成分を検出するための光検出器9の方位は溶媒の屈折率に依って様々となるが、若干の違いがあるだけで、特に大きな問題ではない。表1に、散乱角度が0°、20°、140°、120°及び100°の角度成分を検出するための光検出器9の方位を、溶媒の屈折率毎に示す。 From Table 1, the orientations of the photodetector 9 for detecting the angular components with scattering angles of 0 °, 20 °, 140 °, 120 ° and 100 ° are 0 °, 18.25 °, 138.25 °, 120 ° and 120 °, respectively. It becomes 101.75 °. The angle components with angles of 0 ° and 120 ° are vertically incident on the interface, so there is no refraction. Therefore, the scattering angle and the orientation of the photodetector 9 match. Since the other angular components are obliquely incident on the interface, the orientation of the photodetector 9 depends on the refractive index of the solvent. That is, the orientation of the photodetector 9 for detecting the angular component of the scattered light to be measured varies depending on the refractive index of the solvent, but there is only a slight difference and it is not a particularly big problem. Table 1 shows the orientation of the photodetector 9 for detecting the angular components having scattering angles of 0 °, 20 °, 140 °, 120 ° and 100 ° for each refractive index of the solvent.
 また、レーザ光は、試料セル17と溶媒との界面で屈折するため、前記レーザ光が右辺に平行に流路を貫くためには、溶媒の屈折率に応じて貫通孔に入射する方位を調整しなければならない。例えば、溶媒が水(屈折率n0=1.333)のときは、左下辺に対し27.24°の角度(左下辺に対する法線方位をゼロとする)でレーザ光を入射させる必要がある。この条件では、溶媒の屈折率n0に応じて、表2に示すようなレーザ光の屈折による方位シフトΔθinが左下辺の界面で生じるため、上記の表1に示す検出角度成分の数値から、方位シフトΔθinだけ減じる。
Figure JPOXMLDOC01-appb-T000002
Further, since the laser light is refracted at the interface between the sample cell 17 and the solvent, in order for the laser light to penetrate the flow path parallel to the right side, the direction of incident on the through hole is adjusted according to the refractive index of the solvent. Must. For example, when the solvent is water (refractive index n0 = 1.333), it is necessary to inject the laser beam at an angle of 27.24 ° with respect to the lower left side (the normal direction with respect to the lower left side is zero). Under this condition, the directional shift Δθin due to the refraction of the laser beam as shown in Table 2 occurs at the interface on the lower left side according to the refractive index n0 of the solvent. Decrease by shift Δθin.
Figure JPOXMLDOC01-appb-T000002
<4.3.2 信号光とノイズ成分の光束幅の比>
 信号光とノイズ成分の光束幅の比も、溶媒屈折率に依存する。図17Aは、三角形の左下辺で反射したノイズ成分の光束幅と、溶媒屈折率との関係を示す図である。説明を簡単にするため、図17Aには、前方散乱の信号光のみを示す。
 溶媒を透過した後、試料セル17内を方位角θ1(左上辺に対する出射角)で進む信号光の光束を考える。方位角θ1を固定して、溶媒内の方位θ0(左上辺に対する入射角)を逆光線追跡的に考察すると、溶媒の屈折率が小さい(大きい)程、方位θ0が大きく(小さく)なる。このため、信号光の左上辺に対する通過領域が広く(狭く)なり、ノイズ成分の光束幅比(ノイズ成分の光束幅/信号光の光束幅)が小さくなる。
<4.3.2 Ratio of luminous flux width between signal light and noise component>
The ratio of the luminous flux width of the signal light to the noise component also depends on the solvent refractive index. FIG. 17A is a diagram showing the relationship between the luminous flux width of the noise component reflected on the lower left side of the triangle and the solvent refractive index. For simplicity, FIG. 17A shows only forward-scattered signal light.
Consider the luminous flux of the signal light that travels in the sample cell 17 at the azimuth angle θ1 (emission angle with respect to the upper left side) after passing through the solvent. When the azimuth θ1 is fixed and the azimuth θ0 (incident angle with respect to the upper left side) in the solvent is considered in a back-light tracking manner, the smaller (larger) the refractive index of the solvent, the larger (smaller) the azimuth θ0. Therefore, the passing region with respect to the upper left side of the signal light becomes wider (narrower), and the luminous flux width ratio of the noise component (luminous flux width of the noise component / luminous flux width of the signal light) becomes smaller.
 これに対して、三角形の左上辺右部で反射したノイズ成分の光束幅比は、該ノイズ成分となる散乱光の方位θnoiseによって様相が異なる。θnoise=60°のときに左上辺右部で反射したノイズ成分が右辺に対して垂直入射となるが、ここが境界となる。図17Bに示すように、30°<θnoise<60°のときに、三角形の左上辺右部で反射したノイズ成分が重畳する信号光の方位角θ1は30°から0°の範囲にあり正値を持つ。一方、図17Cに示すように、60°<θnoise<90°のときに、三角形の左上辺右部で反射したノイズ成分が重畳する信号光の方位角θ1は、0°から-30°の範囲にあり、負値を持つ。 On the other hand, the luminous flux width ratio of the noise component reflected at the right part of the upper left side of the triangle differs depending on the direction θnoise of the scattered light that is the noise component. When θnoise = 60 °, the noise component reflected on the right part of the upper left side becomes perpendicular to the right side, but this is the boundary. As shown in FIG. 17B, when 30 ° <θnoise <60 °, the azimuth angle θ1 of the signal light on which the noise component reflected by the right part of the upper left side of the triangle is superimposed is in the range of 30 ° to 0 ° and is a positive value. have. On the other hand, as shown in FIG. 17C, when 60 ° <θnoise <90 °, the azimuth angle θ1 of the signal light on which the noise component reflected by the right part of the upper left side of the triangle is superimposed is in the range of 0 ° to -30 °. Has a negative value.
 溶媒を透過した後、試料セル17内を方位角θ1(左上辺に対する出射角)で進む信号光の光束を考える。いずれの場合もθnoise が大きい程、ノイズ成分の光束幅が大きくなる。そして、30°<θnoise<60°のときは溶媒の屈折率が小さい程θnoise は小さくなるため、ノイズ成分の光束幅が小さくなる。一方、60°<θnoise<90°のときは溶媒の屈折率が小さい程θnoise は大きくなり、逆の相関を持つ。 Consider the luminous flux of the signal light that travels in the sample cell 17 at the azimuth angle θ1 (emission angle with respect to the upper left side) after passing through the solvent. In either case, the larger the θnoise, the larger the luminous flux width of the noise component. When 30 ° <θnoise <60 °, the smaller the refractive index of the solvent, the smaller the θnoise, and the smaller the luminous flux width of the noise component. On the other hand, when 60 ° <θnoise <90 °, the smaller the refractive index of the solvent, the larger θnoise, which has the opposite correlation.
 このように、ノイズ成分の光束幅比は溶媒の屈折率に依存することから、溶媒の屈折率に応じて、散乱光の個々の角度成分に対するノイズ成分を除去するためのスリット幅を設計すれば良い。上述した表1に、溶媒の屈折率が1.56のときにノイズ成分を除去するためのスリット幅の最適値を示している。溶媒の屈折率が1.66のときは、表1に示された幅のスリットではノイズ光を完全に除去できないことになるが、除去できないノイズ成分は僅かであり、信号光の検出に及ぼす影響は小さい。 In this way, the luminous flux width ratio of the noise component depends on the refractive index of the solvent. Therefore, if the slit width for removing the noise component with respect to each angle component of the scattered light is designed according to the refractive index of the solvent. good. Table 1 above shows the optimum value of the slit width for removing the noise component when the refractive index of the solvent is 1.56. When the refractive index of the solvent is 1.66, the noise light cannot be completely removed by the slits having the widths shown in Table 1, but the noise component that cannot be removed is small and the influence on the detection of the signal light is small. ..
<5.試料セルの作製>
 図18A、18Bに、貫通孔の断面形状が三角形である試料セル17の作製例を示す。図18Aは、断面V字状の溝をする、2個の半円柱状素材171、172を接合して試料セル17を作製した例である。2個の半円柱状素材171、172は石英製の円柱を半分に切断して作製することができる。
<5. Preparation of sample cell>
18A and 18B show a production example of the sample cell 17 having a triangular cross-sectional shape of the through hole. FIG. 18A is an example in which a sample cell 17 is prepared by joining two semi-cylindrical materials 171 and 172 having a groove having a V-shaped cross section. The two semi-cylindrical materials 171 and 172 can be produced by cutting a quartz cylinder in half.
 図18Bは、断面V字状の溝をする1個の半円柱状素材173と、溝を有しない1個の半円柱状素材174を接合して試料セル17を作製した例である。図18Bに示す方法で試料セルを作製すれば、貫通孔の側面を構成する各々の平面に接合部分がなく段差が生じない。このため、散乱領域で発生した光(信号光)が接合面を避ける経路を通って溶媒/セル界面から試料セル17内に出射することができる。 FIG. 18B is an example in which a sample cell 17 is prepared by joining one semi-cylindrical material 173 having a V-shaped cross section and one semi-cylindrical material 174 having no groove. When the sample cell is produced by the method shown in FIG. 18B, there is no joint portion on each plane constituting the side surface of the through hole, and no step is generated. Therefore, the light (signal light) generated in the scattering region can be emitted into the sample cell 17 from the solvent / cell interface through a path avoiding the joint surface.
 以上、貫通孔の断面形状が多角形である場合、特に断面形状が正三角形である試料セル17について説明したが、これ以外にも、例えば図19に示すような断面形状の貫通孔を有する試料セルを用いることができる。 In the above, when the cross-sectional shape of the through hole is polygonal, the sample cell 17 having a regular triangular cross-sectional shape has been described. In addition to this, for example, a sample having a through hole having a cross-sectional shape as shown in FIG. A cell can be used.
 以上、図面を参照して本発明における実施形態を詳細に説明したが、該実施形態は、以下の態様の具体例であることが当業者により理解される。 Although the embodiments of the present invention have been described in detail with reference to the drawings, those skilled in the art will understand that the embodiments are specific examples of the following embodiments.
(第1項)第1項に係る光散乱検出装置は、
 液体試料中の微粒子を検出するためのものであって、
 液体試料を保持するための流路を有する、外形の断面形状が円形の試料セルと、
 前記試料セルの軸に垂直な方向から前記流路に向けてレーザ光を照射する光源と、
 前記軸に垂直な面内の前記軸を中心とする前記試料セル外の所定の円周上に配置された複数の光検出器とを備え、
 前記流路の側面のうち前記複数の光検出器の少なくとも一つに面する側面が平面である。
(Item 1) The light scattering detection device according to item 1 is
It is for detecting fine particles in a liquid sample.
A sample cell having a circular outer cross-sectional shape and having a flow path for holding a liquid sample,
A light source that irradiates a laser beam from a direction perpendicular to the axis of the sample cell toward the flow path,
A plurality of photodetectors arranged on a predetermined circumference outside the sample cell centered on the axis in a plane perpendicular to the axis are provided.
Of the side surfaces of the flow path, the side surface facing at least one of the plurality of photodetectors is a flat surface.
 第1項の光散乱検出装置では、流路の側面のうち複数の検出器の少なくとも一つに面する側面が平面であるため、流路内で発生した散乱光のうちこの側面(平面側面)を通過する角度成分は、該平面側面で屈折するものの、平面波の波面を保持したまま平行光として試料セルと外部空間との界面に向かう。一般的に試料セルの屈折率は外部空間(空気)の屈折率よりも大きく、また、この光散乱検出装置では、試料セルの外形の断面形状が円形であるため、該試料セルと外部空間との界面は収束作用を持つ。このため、流路の平面側面を通過し、平行光として試料セルと外部空間との界面に向かった散乱光の角度成分は、試料セルの軸を中心とする所定の円周上に焦点を結ぶ。前記所定の円周上には複数の光検出器が配置されているため、液体試料の溶媒の屈折率によらず、前記平面側面を通過した散乱光の角度成分を該平面側面と面する光検出器によって検出することができる。 In the light scattering detection device of the first term, since the side surface of the flow path facing at least one of the plurality of detectors is a plane, this side surface (plane side surface) of the scattered light generated in the flow path. Although the angular component passing through the plane is refracted on the plane side surface, it goes toward the interface between the sample cell and the external space as parallel light while maintaining the wave plane of the plane wave. Generally, the refractive index of the sample cell is larger than the refractive index of the external space (air), and in this light scattering detection device, the external cross-sectional shape of the sample cell is circular, so that the sample cell and the external space The interface of is convergent. Therefore, the angular component of the scattered light that has passed through the plane side surface of the flow path and is directed toward the interface between the sample cell and the external space as parallel light is focused on a predetermined circumference centered on the axis of the sample cell. .. Since a plurality of photodetectors are arranged on the predetermined circumference, the light that faces the angular component of the scattered light that has passed through the plane side surface regardless of the refractive index of the solvent of the liquid sample. It can be detected by a detector.
(第2項)第1項の光散乱検出装置において、
 前記光源から照射されたレーザ光が、前記流路内のうち前記平面である側面と対向する領域を通過する。
(Item 2) In the light scattering detection device of item 1,
The laser beam emitted from the light source passes through a region of the flow path facing the plane side surface.
 第2項の光散乱検出装置によれば、レーザ光が液体試料を通過することにより生じる散乱光のうち、試料セルの軸に垂直な方向(法線方向)の角度成分を、前記平面である側面を通過させることができる。 According to the light scattering detection device of the second term, among the scattered light generated by the laser light passing through the liquid sample, the angular component in the direction perpendicular to the axis of the sample cell (normal direction) is the plane. Can be passed through the sides.
(第3項)第1項の光散乱検出装置において、
 前記流路の断面形状が、少なくとも一部が直線から成る閉曲線である。
(Item 3) In the light scattering detection device of item 1,
The cross-sectional shape of the flow path is a closed curve having at least a part of a straight line.
 第3項の光散乱検出装置では、試料セルの軸の方向全体に流路の平面側面が形成されるため、光源、光検出器の配置の自由度が広がる。 In the light scattering detection device of the third item, since the plane side surface of the flow path is formed in the entire axial direction of the sample cell, the degree of freedom in arranging the light source and the photodetector is widened.
(第4項)第3項の光散乱検出装置において、
  前記流路の断面形状が多角形である。
(Item 4) In the light scattering detection device of item 3,
The cross-sectional shape of the flow path is polygonal.
 第4項の光散乱検出装置では、試料セルの作製が容易になる。 The light scattering detection device of the fourth item facilitates the preparation of a sample cell.
(第5項)第4項の光散乱検出装置において、
 前記流路の断面形状が三角形である、光散乱検出装置。
(Item 5) In the light scattering detection device of item 4,
A light scattering detection device having a triangular cross-sectional shape of the flow path.
(第6項)第4項の光散乱検出装置において、
 前記流路の断面形状が正三角形である。
(Section 6) In the light scattering detection device of Section 4,
The cross-sectional shape of the flow path is an equilateral triangle.
 第5項及び第6項の光散乱検出装置では、流路内で生じた散乱光の個々の角度成分が関与する平面側面の数を少なくすることができる。 In the light scattering detection devices of the fifth and sixth paragraphs, the number of plane side surfaces in which individual angular components of scattered light generated in the flow path are involved can be reduced.
1…レーザ光源
2…インコヒーレント光源
8,9…光検出器
17…試料セル
100…MALS検出装置
1 ... Laser light source 2 ... Incoherent light source 8, 9 ... Photodetector 17 ... Sample cell 100 ... MALS detector

Claims (6)

  1.  液体試料中の微粒子を検出するための光散乱検出装置であって、
     液体試料を保持するための流路を有する、外形の断面形状が円形の試料セルと、
     前記試料セルの軸に垂直な方向から前記流路に向けてレーザ光を照射する光源と、
     前記軸に垂直な面内の前記軸を中心とする前記試料セル外の所定の円周上に配置された複数の光検出器とを備え、
     前記流路の側面のうち前記複数の光検出器の少なくとも一つに面する側面が平面である、光散乱検出装置。
    A light scattering detector for detecting fine particles in a liquid sample.
    A sample cell having a circular outer cross-sectional shape and having a flow path for holding a liquid sample,
    A light source that irradiates a laser beam from a direction perpendicular to the axis of the sample cell toward the flow path,
    A plurality of photodetectors arranged on a predetermined circumference outside the sample cell centered on the axis in a plane perpendicular to the axis are provided.
    A light scattering detection device in which a side surface of the flow path facing at least one of the plurality of photodetectors is a flat surface.
  2.  請求項1に記載の光散乱検出装置において、
     前記光源から照射されたレーザ光が、前記流路内のうち前記平面である側面と対向する領域を通過する、光散乱検出装置。
    In the light scattering detection device according to claim 1,
    A light scattering detection device in which a laser beam emitted from the light source passes through a region of the flow path facing the side surface, which is a plane.
  3.  請求項1に記載の光散乱検出装置において、
     前記流路の断面形状が、少なくとも一部が直線から成る閉曲線である、光散乱検出装置。
    In the light scattering detection device according to claim 1,
    A light scattering detection device in which the cross-sectional shape of the flow path is a closed curve having at least a part of a straight line.
  4.  請求項3に記載の光散乱検出装置において、
     前記流路の断面形状が多角形である、光散乱検出装置。
    In the light scattering detection device according to claim 3,
    A light scattering detection device having a polygonal cross-sectional shape of the flow path.
  5.  請求項4に記載の光散乱検出装置において、
     前記流路の断面形状が三角形である、光散乱検出装置。
    In the light scattering detection device according to claim 4,
    A light scattering detection device having a triangular cross-sectional shape of the flow path.
  6.  請求項4に記載の光散乱検出装置において、
     前記流路の断面形状が正三角形である、光散乱検出装置。
    In the light scattering detection device according to claim 4,
    A light scattering detection device in which the cross-sectional shape of the flow path is an equilateral triangle.
PCT/JP2019/035785 2019-09-11 2019-09-11 Light-scattering detection device WO2021048962A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/035785 WO2021048962A1 (en) 2019-09-11 2019-09-11 Light-scattering detection device
JP2021545039A JP7052925B2 (en) 2019-09-11 2019-09-11 Light scattering detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/035785 WO2021048962A1 (en) 2019-09-11 2019-09-11 Light-scattering detection device

Publications (1)

Publication Number Publication Date
WO2021048962A1 true WO2021048962A1 (en) 2021-03-18

Family

ID=74866297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035785 WO2021048962A1 (en) 2019-09-11 2019-09-11 Light-scattering detection device

Country Status (2)

Country Link
JP (1) JP7052925B2 (en)
WO (1) WO2021048962A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168033A (en) * 1986-01-18 1987-07-24 Canon Inc Particle analyzing device
JPH01502533A (en) * 1987-03-13 1989-08-31 クールター・エレクトロニクス・インコーポレーテッド Particle analyzer using scattered light
JPH01232235A (en) * 1988-03-11 1989-09-18 Sumitomo Chem Co Ltd Flow cell for fine-particle measuring instrument
JP2000266661A (en) * 1999-03-18 2000-09-29 Rion Co Ltd Flow cell and particle-measuring apparatus using the same
JP2001021480A (en) * 1999-07-06 2001-01-26 Rion Co Ltd Flow cell and particle measuring apparatus using the flow cell
JP2008039539A (en) * 2006-08-04 2008-02-21 Shimadzu Corp Light scattering detector
JP2009533687A (en) * 2006-04-11 2009-09-17 グアヴァ テクノロジーズ インコーポレイテッド Asymmetric capillary of capillary flow cytometer
US20100290041A1 (en) * 2008-11-14 2010-11-18 Beckman Coulter, Inc. Monolithic Optical Flow Cells and Method of Manufacture
JP2013024629A (en) * 2011-07-19 2013-02-04 Sysmex Corp Flow cytometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168033A (en) * 1986-01-18 1987-07-24 Canon Inc Particle analyzing device
JPH01502533A (en) * 1987-03-13 1989-08-31 クールター・エレクトロニクス・インコーポレーテッド Particle analyzer using scattered light
JPH01232235A (en) * 1988-03-11 1989-09-18 Sumitomo Chem Co Ltd Flow cell for fine-particle measuring instrument
JP2000266661A (en) * 1999-03-18 2000-09-29 Rion Co Ltd Flow cell and particle-measuring apparatus using the same
JP2001021480A (en) * 1999-07-06 2001-01-26 Rion Co Ltd Flow cell and particle measuring apparatus using the flow cell
JP2009533687A (en) * 2006-04-11 2009-09-17 グアヴァ テクノロジーズ インコーポレイテッド Asymmetric capillary of capillary flow cytometer
JP2008039539A (en) * 2006-08-04 2008-02-21 Shimadzu Corp Light scattering detector
US20100290041A1 (en) * 2008-11-14 2010-11-18 Beckman Coulter, Inc. Monolithic Optical Flow Cells and Method of Manufacture
JP2013024629A (en) * 2011-07-19 2013-02-04 Sysmex Corp Flow cytometer

Also Published As

Publication number Publication date
JP7052925B2 (en) 2022-04-12
JPWO2021048962A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP2825644B2 (en) Particle size analysis method and apparatus
JP6691043B2 (en) Particle characterization device
US20200292439A1 (en) Flow Cytometry Systems and Methods for Blocking Diffraction Patterns
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
EP2972205B1 (en) Sorting flow cytometer
JP2020510838A5 (en)
JP3186375B2 (en) Capillary detector cell and method for optimizing its performance
CN104360095B (en) A kind of method for measuring instantaneous rotation speed based on Beams, apparatus and system
KR20220159975A (en) Configuring an optical spectroscopy probe to focus light onto a portion of the sample
CA2748402A1 (en) Combined lens and reflector, and an optical apparatus using the same
JP7052925B2 (en) Light scattering detector
US20200408683A1 (en) Light scattering detection device and light scattering detection method
KR102400468B1 (en) Optical system for counting particles
JP7070797B2 (en) Light scattering detector
JP7078115B2 (en) Light scattering detector
JPH04184241A (en) Particle analyser
JP2004502927A (en) Method and apparatus for suppressing multiple scattering during inspection of turbid media by three-dimensional cross-correlation technique
JPS6244649A (en) Particle analyzing device
JP7140193B2 (en) light scattering detector
JP7187874B2 (en) light scattering detector
JPH01240839A (en) Particle analyser
JP2687539B2 (en) Particle size distribution analyzer
JPH07169071A (en) Optical pickup system for detection of focusing error
JP3798753B2 (en) Particle size distribution measuring device
JPH0136109Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944682

Country of ref document: EP

Kind code of ref document: A1