JP3530061B2 - Flow cell and particle measuring apparatus using the flow cell - Google Patents

Flow cell and particle measuring apparatus using the flow cell

Info

Publication number
JP3530061B2
JP3530061B2 JP07397999A JP7397999A JP3530061B2 JP 3530061 B2 JP3530061 B2 JP 3530061B2 JP 07397999 A JP07397999 A JP 07397999A JP 7397999 A JP7397999 A JP 7397999A JP 3530061 B2 JP3530061 B2 JP 3530061B2
Authority
JP
Japan
Prior art keywords
flow cell
wall surface
sample fluid
light
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07397999A
Other languages
Japanese (ja)
Other versions
JP2000266661A (en
Inventor
朋信 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP07397999A priority Critical patent/JP3530061B2/en
Priority to US09/528,146 priority patent/US6465802B1/en
Publication of JP2000266661A publication Critical patent/JP2000266661A/en
Application granted granted Critical
Publication of JP3530061B2 publication Critical patent/JP3530061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粒子検出部として
の照射領域を内部に形成するフローセル及びこのフロー
セルを用いて照射領域を通過する試料流体に含まれる粒
子の粒径等の粒子情報を得る粒子測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention obtains particle information such as a particle diameter of particles contained in a sample fluid passing through an irradiation region, using a flow cell having an irradiation region as a particle detection unit formed therein, and the flow cell. The present invention relates to a particle measuring device.

【0002】[0002]

【従来の技術】図6に示すように、従来のフローセル1
00は、透明部材から成り、断面形状を四角形状として
所定長さの直線流路を有して形成されている。そして、
レーザ光Laが透過するフローセル100を構成する壁
部101の外壁面101aと内壁面101bは平行に形
成されている。
2. Description of the Related Art As shown in FIG.
00 is made of a transparent member and has a rectangular cross section and a linear flow path of a predetermined length. And
The outer wall surface 101a and the inner wall surface 101b of the wall portion 101 that constitutes the flow cell 100 through which the laser light La is transmitted are formed in parallel.

【0003】また、フローセル100にレーザ光源から
レーザ光Laを照射する場合には、図7に示すように、
レーザ光Laを空気と外壁面101aとの境界面に所定
の入射角θ11(θ11≠0°)で入射させ、屈折角θ12
屈折させている。これは、レーザ光Laを入射角θ11
0°としてフローセル100の外壁面101aに垂直に
入射させると、レーザ光Laが外壁面101aで反射し
て反射光の一部がレーザ光源に戻り、帰還ノイズとして
レーザ光Laに重畳するのを防止するためである。
When the flow cell 100 is irradiated with laser light La from a laser light source, as shown in FIG.
The laser light La is incident on the boundary surface between the air and the outer wall surface 101a at a predetermined incident angle θ 1111 ≠ 0 °) and refracted at a refraction angle θ 12 . This is the incident angle θ 11 = of the laser light La.
When 0 ° is made to enter the outer wall surface 101a of the flow cell 100 vertically, it is prevented that the laser light La is reflected by the outer wall surface 101a and a part of the reflected light returns to the laser light source and is superimposed on the laser light La as feedback noise. This is because

【0004】[0004]

【発明が解決しようとする課題】しかし、フローセル1
00中を流れる試料流体(試料の溶媒)102の屈折率
によって、内壁面101bと試料流体102との境界面
におけるレーザ光Laの屈折角が異なるため、試料流体
102中を進むレーザ光はLa1(試料流体の屈折率が
2の場合)又はLa2(試料流体の屈折率がn3の場
合)となり、流路の中心に設けられる粒子検出部として
の照射領域Mが位置ずれを起こしてしまう。即ち、スネ
ルの法則により、内壁面101bと試料流体102との
境界面にレーザ光Laが入射角θ13(外壁面101aと
内壁面101bが平行に形成されているので、θ13=θ
12となる。)で入射すると、試料流体102の屈折率が
2の場合には、屈折角θ14となり、試料流体102の
屈折率がn3の場合には、屈折角θ15となるからであ
る。
However, the flow cell 1
Since the refraction angle of the laser light La at the boundary surface between the inner wall surface 101b and the sample fluid 102 is different depending on the refractive index of the sample fluid (solvent of the sample) 102 flowing in 00, the laser light traveling in the sample fluid 102 is La1 ( The refractive index of the sample fluid is n 2 ) or La 2 (when the refractive index of the sample fluid is n 3 ), and the irradiation region M as the particle detection unit provided at the center of the flow path is displaced. That is, according to Snell's law, the incident angle θ 13 of the laser beam La on the boundary surface between the inner wall surface 101b and the sample fluid 102 (since the outer wall surface 101a and the inner wall surface 101b are formed in parallel, θ 13 = θ
Twelve . ), The sample fluid 102 has a refraction angle θ 14 when the refractive index is n 2 , and the sample fluid 102 has a refraction angle θ 15 when the sample fluid 102 has a refractive index n 3 .

【0005】すると、屈折率n2の試料流体に対応した
照射領域Mの位置に合せて設定されている集光手段は、
屈折率n3の試料流体の場合には照射領域Mが位置ずれ
し、照射領域Mを通過する粒子による散乱光などを検出
することができない。従って、試料流体の違いにより、
粒径等の粒子情報を正確に検出することができないとい
う問題がある。
Then, the condensing means set in accordance with the position of the irradiation region M corresponding to the sample fluid having the refractive index n 2 is
In the case of the sample fluid having the refractive index n 3, the irradiation area M is displaced, and scattered light by particles passing through the irradiation area M cannot be detected. Therefore, due to the difference in sample fluid,
There is a problem that the particle information such as the particle diameter cannot be detected accurately.

【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、試料流体が相違しても照射領域が位置ずれを起
こさず、試料流体に含まれる粒子の粒径等の粒子情報を
得ることができるフローセル及びこのフローセルを用い
た粒子測定装置を提供しようとするものである。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to prevent the irradiation region from being displaced even if the sample fluids are different from each other. An object of the present invention is to provide a flow cell capable of obtaining particle information such as the particle diameter of particles contained in a fluid, and a particle measuring device using this flow cell.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、光を照射して粒子検出部としての
照射領域を内部に形成し、この照射領域を通過する試料
流体に含まれる粒子の粒径等の粒子情報を得るためのフ
ローセルにおいて、前記光がフローセルの外壁面に所定
の入射角θ(θ≠0°)で入射すると共に、フローセル
の内壁面から屈折角が0°で前記試料流体に出射するよ
うに壁部の形状を形成したものである。
In order to solve the above-mentioned problems, the invention according to claim 1 irradiates light to form an irradiation region as a particle detecting portion inside, and a sample fluid passing through this irradiation region is used. In a flow cell for obtaining particle information such as the particle size of particles contained, the light is incident on the outer wall surface of the flow cell at a predetermined incident angle θ (θ ≠ 0 °), and the refraction angle is 0 from the inner wall surface of the flow cell. The shape of the wall portion is formed so as to be emitted to the sample fluid at 0 °.

【0008】請求項2に係る発明は、請求項1記載のフ
ローセルと、このフローセルの流路に光を照射して照射
領域を形成する光源と、前記照射領域の粒子の散乱光、
透過光又は回折光を検出処理する光学的検出処理手段を
備えるものである。
According to a second aspect of the present invention, there is provided the flow cell according to the first aspect, a light source for irradiating the flow path of the flow cell with light to form an irradiation region, and scattered light of particles in the irradiation region.
An optical detection processing means for detecting transmitted light or diffracted light is provided.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
粒子測定装置の構成図、図2は本発明に係るフローセル
の断面図、図3はフローセルの壁部における光の透過経
路の説明図、図4及び図5はフローセルの他の実施の形
態の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a configuration diagram of a particle measuring apparatus according to the present invention, FIG. 2 is a cross-sectional view of a flow cell according to the present invention, FIG. 3 is an explanatory view of a light transmission path in a wall portion of the flow cell, and FIGS. FIG. 8 is a cross-sectional view of another embodiment of the flow cell.

【0010】本発明に係る粒子測定装置は、図1に示す
ように、フローセル1、レーザ光源2、集光光学系3、
光電変換素子4などを備えて成る。フローセル1は、透
明部材から成り、所定長さの直線流路1aを有し、全体
としてL型筒形状に屈曲している。直線流路1aの中心
軸は、X方向と一致している。
As shown in FIG. 1, the particle measuring apparatus according to the present invention comprises a flow cell 1, a laser light source 2, a condensing optical system 3,
The photoelectric conversion element 4 and the like are provided. The flow cell 1 is made of a transparent member, has a linear flow path 1a of a predetermined length, and is bent into an L-shaped tubular shape as a whole. The central axis of the straight flow path 1a coincides with the X direction.

【0011】また、フローセル1は、図2に示すよう
に、断面形状が四角形状の壁部5からなり、内側の断面
形状は正方形であり、外側の断面形状は平行四辺形であ
る。従って、レーザ光Laが入射する外壁面5aとレー
ザ光Laが出射する内壁面5bとは、平行ではなく、外
壁面5aは内壁面5bに対して所定の角度(傾斜)を有
している。同様に、レーザ光Laが入射する内壁面5c
とレーザ光Laが外部に出射する外壁面5dも平行では
なく、外壁面5dは内壁面5cに対して所定の角度(傾
斜)を有している。
As shown in FIG. 2, the flow cell 1 has a wall 5 having a quadrangular cross section, an inner cross section having a square shape, and an outer cross section having a parallelogram shape. Therefore, the outer wall surface 5a on which the laser light La enters and the inner wall surface 5b on which the laser light La emits are not parallel, and the outer wall surface 5a has a predetermined angle (inclination) with respect to the inner wall surface 5b. Similarly, the inner wall surface 5c on which the laser light La is incident
The outer wall surface 5d from which the laser light La is emitted to the outside is also not parallel, and the outer wall surface 5d has a predetermined angle (inclination) with respect to the inner wall surface 5c.

【0012】なお、所定長さの直線流路1aを設けた理
由は、フローセル1に試料流体6を流したとき、試料流
体6の流れを層流にするためである。層流を得るための
条件としては、試料流体6の粘度、直線流路の長さ、流
路の断面形状及び流速などが挙げられ、直線流路1aの
長さ及び流路の断面形状については、試料流体6の粘度
と流速を勘案して決定している。
The reason why the linear flow path 1a having a predetermined length is provided is that the flow of the sample fluid 6 is laminar when the sample fluid 6 is passed through the flow cell 1. The conditions for obtaining the laminar flow include the viscosity of the sample fluid 6, the length of the linear flow channel, the cross-sectional shape of the flow channel and the flow velocity, and the length of the linear flow channel 1a and the cross-sectional shape of the flow channel are as follows. , And is determined in consideration of the viscosity and flow velocity of the sample fluid 6.

【0013】レーザ光源2は、フローセル1の直線流路
1aの所定箇所にレーザ光Laを照射して照射領域Mを
形成する。ここで、レーザ光Laの光軸は、直線流路1
a内において直線流路1aの中心軸とほぼ直交してい
る。
The laser light source 2 irradiates a predetermined portion of the linear flow path 1a of the flow cell 1 with the laser light La to form an irradiation area M. Here, the optical axis of the laser light La is the linear flow path 1
Within a, it is substantially orthogonal to the central axis of the linear flow path 1a.

【0014】また、図2に示すように、レーザ光La
は、外壁面5aに対して入射角θ1で入射している。こ
れは、上述のようにレーザ光Laがフローセル1の外壁
面5aに反射して反射光の一部がレーザ光源2に戻るの
を防止するためである。反射光の一部がレーザ光源2に
戻ると、帰還ノイズがレーザ光Laに重畳するので好ま
しくないからである。
Further, as shown in FIG.
Is incident on the outer wall surface 5a at an incident angle θ 1 . This is to prevent the laser light La from being reflected by the outer wall surface 5a of the flow cell 1 and returning part of the reflected light to the laser light source 2 as described above. This is because, when a part of the reflected light returns to the laser light source 2, the feedback noise is superimposed on the laser light La, which is not preferable.

【0015】集光光学系3は、フローセル1の直線流路
1aの中心軸と一致する光軸を有し、照射領域Mにおい
てレーザ光Laを受けた粒子が発する散乱光Lsを集光
する機能を備える。なお、集光光学系3は、必ずしもフ
ローセル1の直線流路1aの中心軸上に設ける必要はな
い。
The condensing optical system 3 has an optical axis that coincides with the central axis of the linear flow path 1a of the flow cell 1, and has a function of condensing the scattered light Ls emitted by the particles that have received the laser light La in the irradiation region M. Equipped with. The condensing optical system 3 does not necessarily have to be provided on the central axis of the linear flow path 1a of the flow cell 1.

【0016】光電変換素子4は、集光光学系3の光軸上
に設けられている。光電変換素子4は、粒子が照射領域
Mを通過する間に発する散乱光Lsを電圧に変換する。
なお、集光光学系3以降の手段を光学的検出処理手段と
いう。
The photoelectric conversion element 4 is provided on the optical axis of the condensing optical system 3. The photoelectric conversion element 4 converts the scattered light Ls emitted while the particles pass through the irradiation region M into a voltage.
In addition, the means after the condensing optical system 3 is referred to as an optical detection processing means.

【0017】以上のように構成した本発明に係るフロー
セル及びこのフローセルを用いた粒子測定装置の作用に
ついて説明する。ここで、空気の屈折率をn0、フロー
セル1の壁部5の屈折率をn1、試料流体6の屈折率を
2又はn3とする。
The operation of the flow cell according to the present invention configured as described above and the particle measuring apparatus using the flow cell will be described. Here, the refractive index of air is n 0 , the wall 5 of the flow cell 1 is n 1 , and the sample fluid 6 is n 2 or n 3 .

【0018】図3に示すように、レーザ光源2から出射
されたレーザ光Laが、空気と外壁面5aとの境界面に
入射して屈折するときには、スネルの法則に従う。スネ
ルの法則によれば、入射角θ1と屈折角θ2との間に、以
下に示す数式(1)が成り立つ。
As shown in FIG. 3, when the laser light La emitted from the laser light source 2 enters the interface between the air and the outer wall surface 5a and is refracted, it follows Snell's law. According to Snell's law, the following expression (1) is established between the incident angle θ 1 and the refraction angle θ 2 .

【0019】 n0・sinθ1=n1・sinθ2 (1)N 0 · sin θ 1 = n 1 · sin θ 2 (1)

【0020】次いで、レーザ光Laは、壁部5を直進す
る。そして、内壁面5bと試料流体6との境界面では、
同様にスネルの法則に従い、入射角θ3と屈折率n2の試
料流体6の屈折角θ4、又は入射角θ3と屈折率n3の試
料流体6の屈折角θ5との間に、以下に示す数式(2)
が成り立つ。
Then, the laser light La goes straight on the wall portion 5. Then, at the boundary surface between the inner wall surface 5b and the sample fluid 6,
Similarly, according to Snell's law, between the incident angle θ 3 and the refraction angle θ 4 of the sample fluid 6 having the refractive index n 2 , or between the incident angle θ 3 and the refraction angle θ 5 of the sample fluid 6 having the refractive index n 3 , Formula (2) shown below
Holds.

【0021】 n1・sinθ3=n2・sinθ4=n3・sinθ5 (2)N 1 · sin θ 3 = n 2 · sin θ 4 = n 3 · sin θ 5 (2)

【0022】従って、試料流体6の屈折率の値(n2
はn3)に影響されずに照射領域Mの位置を一定にする
には、屈折角をほぼ等しくすればよい。数式(2)か
ら、その条件を満足させるには、sinθ3=sinθ4
=sinθ5=0、即ちレーザ光Laを内壁面5bと試
料流体6との境界面に入射角θ3=0°で入射させれば
よい。
Therefore, in order to make the position of the irradiation region M constant without being affected by the value (n 2 or n 3 ) of the refractive index of the sample fluid 6, the refraction angles may be made substantially equal. From Expression (2), to satisfy the condition, sin θ 3 = sin θ 4
= Sin θ 5 = 0, that is, the laser beam La may be incident on the boundary surface between the inner wall surface 5b and the sample fluid 6 at an incident angle θ 3 = 0 °.

【0023】すると、屈折角θ4=屈折角θ5=0°とな
り、常に等しい屈折角(0°)でレーザ光Laは試料流
体6中を進むことになる。なお、θ3は厳密に0°であ
る必要はなく、照射領域Mの位置ずれが許容できる範囲
内であればよい。従って、θ3は、ほぼ0°であればよ
い。
Then, the refraction angle θ 4 = refraction angle θ 5 = 0 °, and the laser beam La always travels in the sample fluid 6 at the same refraction angle (0 °). Note that θ 3 does not have to be exactly 0 °, and may be within a range in which the displacement of the irradiation region M can be tolerated. Therefore, θ 3 may be approximately 0 °.

【0024】そこで、内壁面5bと試料流体6との境界
面に入射角θ3=0°でレーザ光Laを入射させるため
には、図3に示すように、外壁面5aと内壁面5bとの
なす角をθ 6 とすると、空気と外壁面5aとの境界面に
おける屈折角θ2θ 6 に等しくなる(θ2θ 6 )ように
すればよい。
Therefore, in order to cause the laser beam La to enter the boundary surface between the inner wall surface 5b and the sample fluid 6 at the incident angle θ 3 = 0 °, as shown in FIG. 3, the outer wall surface 5a and the inner wall surface 5b are connected to each other. If the angle formed by is θ 6 , the refraction angle θ 2 at the boundary surface between the air and the outer wall surface 5a may be equal to θ 6 2 = θ 6 ).

【0025】更に、数式(1)において、θ2θ 6 とし
て、どのくらいの入射角θ1で、レーザ光Laを空気と
外壁面5aとの境界面に入射させればよいかを求める。
入射角θ1は、空気の屈折率n0、フローセル1の壁部5
の屈折率n1、外壁面5aと内壁面5bとのなす角θ6
より決定され、以下に示す数式(3)になる。
Further, in equation (1), θ 2 = θ 6 , and at what incident angle θ 1 the laser beam La should be incident on the boundary surface between the air and the outer wall surface 5 a.
The incident angle θ 1 is the refractive index n 0 of air and the wall portion 5 of the flow cell 1.
Is determined by the refractive index n 1 and the angle θ 6 formed by the outer wall surface 5a and the inner wall surface 5b, and the following mathematical expression (3) is obtained.

【0026】 θ1=sin-1{(n1/n0)sinθ6} (3)Θ 1 = sin −1 {(n 1 / n 0 ) sin θ 6 } (3)

【0027】従って、数式(3)を満たす角度θ1で、
レーザ光Laを空気と外壁面5aとの境界面に入射させ
れば、試料流体6の屈折率の値に関係せずに照射領域M
の位置を一定に維持することができる。
Therefore, at the angle θ 1 which satisfies the equation (3),
When the laser light La is incident on the boundary surface between the air and the outer wall surface 5a, the irradiation area M is irrelevant to the value of the refractive index of the sample fluid 6.
The position of can be maintained constant.

【0028】このようなフローセル1に試料流体6を流
すと、照射領域Mを通過する粒子にレーザ光Laが照射
され、レーザ光Laを受けた粒子が発する散乱光Lsが
集光光学系3により集光される。
When the sample fluid 6 is flown through the flow cell 1 as described above, the laser light La is irradiated on the particles passing through the irradiation region M, and the scattered light Ls emitted by the particles receiving the laser light La is collected by the condensing optical system 3. Collected.

【0029】次いで、集光光学系3により集光した散乱
光Lsが、光電変換素子4により電圧に変換される。そ
して、光電変換素子4により変換された電圧のピークの
数により粒子の数が、電圧の値により粒子の粒径が測定
される。
Next, the scattered light Ls condensed by the condensing optical system 3 is converted into a voltage by the photoelectric conversion element 4. Then, the number of particles is measured by the number of peaks of the voltage converted by the photoelectric conversion element 4, and the particle size of the particles is measured by the value of the voltage.

【0030】また、本発明の実施の形態では、フローセ
ル1を一体で形成したが、図4に示すように、先ず外壁
面15aと内壁面15b及び内壁面15cと外壁面15
dを平行にした壁部15からなるフローセル10を形成
し、次いで同一の材質で形成した三角柱形状の部材20
を各外壁面15a,15dに接着して、図2に示すフロ
ーセル1と同様な形状にすることができる。
Further, in the embodiment of the present invention, the flow cell 1 is integrally formed, but as shown in FIG. 4, first, the outer wall surface 15a and the inner wall surface 15b and the inner wall surface 15c and the outer wall surface 15 are formed.
A triangular prism-shaped member 20 formed by forming a flow cell 10 including a wall portion 15 in which d is parallel and then formed of the same material.
Can be adhered to the outer wall surfaces 15a and 15d to have a shape similar to that of the flow cell 1 shown in FIG.

【0031】また、図5に示すように、フローセル10
の各外壁面15a,15dに同一の材質で形成した部材
21を接着して、レーザ光Laが通過する各外壁面15
a,15dの一部分のみを必要な形状に形成してもよ
い。
Further, as shown in FIG. 5, the flow cell 10
A member 21 formed of the same material is adhered to each outer wall surface 15a, 15d of each outer wall surface 15 through which the laser light La passes.
You may form only a part of a and 15d in a required shape.

【0032】また、本発明の実施の形態では、図2に示
すように、フローセル1の壁部5について、外壁面5a
と内壁面5bのなす角度と、外壁面5dと内壁面5cの
なす角度を等しくして対称に形成し、レーザ光Laが外
壁面5dと空気との境界面で反射して光路を逆戻りしな
いようにした。
Further, in the embodiment of the present invention, as shown in FIG. 2, with respect to the wall portion 5 of the flow cell 1, the outer wall surface 5a.
The angle formed by the inner wall surface 5b and the angle formed by the outer wall surface 5d and the inner wall surface 5c are made equal to each other and formed symmetrically so that the laser light La is not reflected by the boundary surface between the outer wall surface 5d and the air and does not return to the optical path. I chose

【0033】ところで、レーザ光Laがフローセル1か
ら出射する部位であるフローセル1の内壁面5cと外壁
面5dの角度等の形態は、本発明の実施の形態に限定さ
れるものではない。即ち、本発明はレーザ光Laがフロ
ーセル1内を流れる試料流体6に左右されることなく、
フローセル1の照射領域Mを確実に通過すれば足りるも
のである。従って、内壁面5cと内壁面5bが平行でな
くてもよく、外壁面5aと外壁面5dが平行でなくても
よい。
By the way, the form such as the angle between the inner wall surface 5c and the outer wall surface 5d of the flow cell 1 which is the portion where the laser light La is emitted from the flow cell 1 is not limited to the embodiment of the present invention. That is, according to the present invention, the laser light La is not affected by the sample fluid 6 flowing in the flow cell 1,
It is sufficient if the irradiation area M of the flow cell 1 is reliably passed. Therefore, the inner wall surface 5c and the inner wall surface 5b may not be parallel, and the outer wall surface 5a and the outer wall surface 5d may not be parallel.

【0034】なお、本発明の実施の形態においては、光
散乱式の粒子測定装置について説明したが、照射領域M
を通過する粒子の存在による透過光量の減少量を検出し
て粒子の数や粒径などを測定する光遮断式の粒子測定装
置、及び照射領域Mを通過する粒子の存在により生じる
回折光を検出する光回折式の粒子測定装置にも適用でき
る。
In the embodiment of the present invention, the light scattering type particle measuring device has been described.
Light-blocking type particle measuring device for measuring the number of particles or the particle size by detecting the amount of reduction of the amount of transmitted light due to the presence of particles passing through, and detecting the diffracted light generated by the presence of particles passing through the irradiation area M. It can also be applied to a light diffraction type particle measuring device.

【0035】[0035]

【発明の効果】以上説明したように本発明のフローセル
によれば、試料流体の屈折率の大きさに影響されずに、
粒子検出部としての照射領域の位置を一定にすることが
できる。
As described above, according to the flow cell of the present invention, the flow cell is not affected by the magnitude of the refractive index of the sample fluid,
The position of the irradiation area as the particle detection unit can be made constant.

【0036】本発明の粒子測定装置によれば、試料流体
の屈折率の大きさに影響されずに、試料流体に含まれる
粒子の数及び粒子の粒径を測定することができる。
According to the particle measuring apparatus of the present invention, the number of particles contained in the sample fluid and the particle size of the particles can be measured without being affected by the magnitude of the refractive index of the sample fluid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子測定装置の構成図FIG. 1 is a block diagram of a particle measuring apparatus according to the present invention.

【図2】本発明に係るフローセルの断面図FIG. 2 is a sectional view of a flow cell according to the present invention.

【図3】フローセルの壁部における光の透過経路の説明
FIG. 3 is an explanatory diagram of a light transmission path in a wall portion of a flow cell.

【図4】フローセルの他の実施の形態の断面図FIG. 4 is a sectional view of another embodiment of the flow cell.

【図5】フローセルの他の実施の形態の断面図FIG. 5 is a sectional view of another embodiment of the flow cell.

【図6】従来のフローセルの断面図FIG. 6 is a sectional view of a conventional flow cell.

【図7】従来のフローセルの壁部における光の透過経路
の説明図
FIG. 7 is an explanatory diagram of a light transmission path in a wall portion of a conventional flow cell.

【符号の説明】[Explanation of symbols]

1,10…フローセル、2…レーザ光源、3…集光光学
系、4…光電変換素子、5…壁部、5a,5d,15
a,15d…外壁面、5b,5c,15b,15c…内
壁面、6…試料流体、La…レーザ光、M…照射領域。
1, 10 ... Flow cell, 2 ... Laser light source, 3 ... Condensing optical system, 4 ... Photoelectric conversion element, 5 ... Wall part, 5a, 5d, 15
a, 15d ... Outer wall surface, 5b, 5c, 15b, 15c ... Inner wall surface, 6 ... Sample fluid, La ... Laser light, M ... Irradiation area.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光を照射して粒子検出部としての照射領
域を内部に形成し、この照射領域を通過する試料流体に
含まれる粒子の粒径等の粒子情報を得るためのフローセ
ルにおいて、前記光がフローセルの外壁面に所定の入射
角θ(θ≠0°)で入射すると共に、フローセルの内壁
面から屈折角が0°で前記試料流体に出射するように壁
部の形状を形成したことを特徴とするフローセル。
1. A flow cell for irradiating light to form an irradiation region as a particle detection unit therein and obtaining particle information such as a particle size of particles contained in a sample fluid passing through the irradiation region, The shape of the wall is formed so that light enters the outer wall surface of the flow cell at a predetermined incident angle θ (θ ≠ 0 °) and is emitted from the inner wall surface of the flow cell to the sample fluid with a refraction angle of 0 °. Flow cell characterized by.
【請求項2】 請求項記載のフローセルと、このフロ
ーセルの流路に光を照射して照射領域を形成する光源
と、前記照射領域の粒子の散乱光、透過光又は回折光を
検出処理する光学的検出処理手段を備えることを特徴と
する粒子測定装置。
2. The flow cell according to claim 1, a light source that irradiates light to a flow path of the flow cell to form an irradiation region, and a scattered light, a transmitted light, or a diffracted light of particles in the irradiation region is detected. A particle measuring device comprising an optical detection processing means.
JP07397999A 1999-03-18 1999-03-18 Flow cell and particle measuring apparatus using the flow cell Expired - Fee Related JP3530061B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07397999A JP3530061B2 (en) 1999-03-18 1999-03-18 Flow cell and particle measuring apparatus using the flow cell
US09/528,146 US6465802B1 (en) 1999-03-18 2000-03-17 Particle measurement apparatus flow cell useful for sample fluids having different refractive indexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07397999A JP3530061B2 (en) 1999-03-18 1999-03-18 Flow cell and particle measuring apparatus using the flow cell

Publications (2)

Publication Number Publication Date
JP2000266661A JP2000266661A (en) 2000-09-29
JP3530061B2 true JP3530061B2 (en) 2004-05-24

Family

ID=13533739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07397999A Expired - Fee Related JP3530061B2 (en) 1999-03-18 1999-03-18 Flow cell and particle measuring apparatus using the flow cell

Country Status (1)

Country Link
JP (1) JP3530061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975392B2 (en) * 2004-01-29 2005-12-13 Wyatt Technology Corporation Enhanced sensitivity differential refractometer measurement cell
EP2005141A2 (en) * 2006-04-11 2008-12-24 Guava Technologies, Inc. Asymmetric capillary for capillary-flow cytometers
JP7097175B2 (en) * 2017-12-04 2022-07-07 株式会社堀場製作所 A cell for measuring particle physical properties and a particle physical property measuring device using the cell.
WO2021048962A1 (en) * 2019-09-11 2021-03-18 株式会社島津製作所 Light-scattering detection device

Also Published As

Publication number Publication date
JP2000266661A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US5999256A (en) Particle measurement system
US7916293B2 (en) Non-orthogonal particle detection systems and methods
JPH0678982B2 (en) Fluorescence measuring device for substance concentration in sample
US11221289B2 (en) Optical particle detector
US20200018684A1 (en) Particle Detection Using Thin Lenses
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
JP5662742B2 (en) Particle size measuring apparatus and particle size measuring method
JP3530078B2 (en) Flow cell and particle measuring apparatus using the flow cell
JP4050748B2 (en) Particle measuring device
JP3530061B2 (en) Flow cell and particle measuring apparatus using the flow cell
US5859705A (en) Apparatus and method for using light scattering to determine the size of particles virtually independent of refractive index
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
US6465802B1 (en) Particle measurement apparatus flow cell useful for sample fluids having different refractive indexes
US6956230B1 (en) Integrated particles sensor formed on single substrate using fringes formed by diffractive elements
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
EP4062153B1 (en) Optical based particulate matter sensing
JP4563600B2 (en) Light scattering measurement probe
JP2008070383A (en) Apparatus for measuring particles
US20170248795A1 (en) Backscatter reductant anamorphic beam sampler
JPH0755490Y2 (en) Device for measuring fine particles in liquid
JP2009128125A (en) Liquid analyzer
JP3966851B2 (en) Light scattering particle counter
JP3063697B2 (en) Fluorescence detector
JPH04369464A (en) Light scattering type particle detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040226

R150 Certificate of patent or registration of utility model

Ref document number: 3530061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees