JP2009128125A - Liquid analyzer - Google Patents

Liquid analyzer Download PDF

Info

Publication number
JP2009128125A
JP2009128125A JP2007302102A JP2007302102A JP2009128125A JP 2009128125 A JP2009128125 A JP 2009128125A JP 2007302102 A JP2007302102 A JP 2007302102A JP 2007302102 A JP2007302102 A JP 2007302102A JP 2009128125 A JP2009128125 A JP 2009128125A
Authority
JP
Japan
Prior art keywords
light
reflecting mirror
scattered light
detector
liquid analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302102A
Other languages
Japanese (ja)
Other versions
JP5300249B2 (en
Inventor
Kunio Harada
邦男 原田
Sakuichiro Adachi
作一郎 足立
Masataka Shirai
正敬 白井
Isao Yamazaki
功夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007302102A priority Critical patent/JP5300249B2/en
Publication of JP2009128125A publication Critical patent/JP2009128125A/en
Application granted granted Critical
Publication of JP5300249B2 publication Critical patent/JP5300249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect efficiently scattered light or fluorescence by a small-sized device while coping with the reduction of the quantity of a sample solution. <P>SOLUTION: In consideration of each refractive index of a transparent container storing the sample solution and air, scattered light or fluorescence emitted within a Brewster angle from the container side having a large refractive index to the atmospheric air side having a small refractive index is condensed on the front side and on the rear side by each different rotating elliptic mirror, and is allowed to enter a detector at a smaller angle than a Brewster angle. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は,試料中に含まれる成分量を検出する分析装置に係わり,微少量の試料を安定に分析することが可能な液体分析装置に関する。   The present invention relates to an analyzer that detects the amount of a component contained in a sample, and relates to a liquid analyzer that can stably analyze a very small amount of sample.

試料中に含まれる成分量を検出する分析装置として,ハロゲンランプ等からの白色光を試料溶液に照射し,試料溶液を透過してきた光を回折格子で分光して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定する分光分析装置や,照射光により励起されて発する蛍光量を割り出すことで目的の成分量を測定する蛍光光度計が広く用いられている。   As an analyzer for detecting the amount of components contained in a sample, the sample solution is irradiated with white light from a halogen lamp, etc., and the light transmitted through the sample solution is dispersed by a diffraction grating to extract the necessary wavelength component. A spectroscopic analyzer that measures the amount of a target component by determining the absorbance and a fluorometer that measures the amount of the target component by determining the amount of fluorescence that is excited by irradiation light are widely used.

これらの分析装置により散乱光や蛍光を測定する場合,まず,分光分析装置により散乱光を測定する場合は,試料溶液に白色光を照射して試料溶液を透過した光を回折格子等で分光し,特定の波長の光量を測定することで散乱により減衰した分を算出し,散乱光量を導き出していた。次に,蛍光分光光度計により蛍光を測定する場合は,ハロゲンランプ等からの白色光を回折格子で分光して特定の波長の光を励起光として試料に照射し,それによって励起された蛍光を励起光の照射方向とは別の角度から検出し,蛍光波長の分析精度を向上する場合は蛍光を回折格子で分光するなどして測定していた。また,蛍光測定の場合は,蛍光を発する時間を考慮し,照射光の照射タイミングと蛍光の検出タイミングとをチョッパ等で切り替え,蛍光のみを検出する方法もある。   When measuring scattered light or fluorescence with these analyzers, first, when measuring scattered light with a spectroscopic analyzer, the sample solution is irradiated with white light and the light transmitted through the sample solution is dispersed with a diffraction grating or the like. The amount of light attenuated by scattering was calculated by measuring the amount of light at a specific wavelength, and the amount of scattered light was derived. Next, when measuring fluorescence with a fluorescence spectrophotometer, white light from a halogen lamp or the like is split by a diffraction grating, light of a specific wavelength is irradiated as excitation light, and the fluorescence excited thereby is emitted. Detection was performed from an angle different from the irradiation direction of the excitation light, and in order to improve the analysis accuracy of the fluorescence wavelength, the fluorescence was measured with a diffraction grating. In the case of fluorescence measurement, there is a method in which only the fluorescence is detected by switching the irradiation timing of the irradiation light and the detection timing of the fluorescence with a chopper in consideration of the time for emitting the fluorescence.

これらの分析装置においては,プラスチックやガラス製の容器内に試料溶液を分注し,試料溶液に光を照射して成分量を測定することが多い。また,使用する試料溶液も数十から数百マイクロリットルと多く,ハロゲンランプ等の光をレンズで集光して照射するような光学系を用いており,大抵の光学系はランプから試料溶液,試料溶液から回折格子,回折格子から検出器それぞれが100mm程度の長さを持つ大きさがある。   In these analyzers, a sample solution is often dispensed into a plastic or glass container, and the amount of components is measured by irradiating the sample solution with light. In addition, the sample solution to be used is many tens to hundreds of microliters, and an optical system that collects and irradiates light such as a halogen lamp with a lens is used. Each of the sample solution and the diffraction grating and the detector from the diffraction grating has a length of about 100 mm.

しかし近年,試薬コストの削減や,環境への負荷低減のため,分析に用いる試料溶液の微少量化が求められており,微少量化するほど液体に光を絞り込んで照射することが困難になることや,微小領域から発せられる散乱光や蛍光を効率よく検出することが難しい等の問題があった。散乱光の検出に関しては,透過光量から散乱光により減衰した分を算出する方法では,試料溶液に光を絞り込むことができれば検出可能であるが,先に述べたようなハロゲンランプや回折格子を用いた光学系は寸法が大きく,試料溶液の微少量化に伴い求められる装置の小型化に対応することは困難であった。   However, in recent years, in order to reduce reagent costs and reduce the burden on the environment, there has been a demand for a minute amount of sample solution used for analysis, and the smaller the amount, the more difficult it is to squeeze light into the liquid. There is a problem that it is difficult to efficiently detect scattered light and fluorescence emitted from a minute region. Regarding the detection of scattered light, the method of calculating the amount attenuated by the scattered light from the amount of transmitted light can be detected if the light can be narrowed down to the sample solution, but a halogen lamp or diffraction grating as described above is used. The optical system had a large size, and it was difficult to cope with the downsizing of the device required as the sample solution became smaller.

そこで,光学系を小型化し,しかも散乱光や蛍光を効率良く検出する方法として,まず,光源の小型化が考えられる。小型で輝度の高い光源として発光ダイオードが上げられ,発光ダイオードを光源に用いた計測方法も特許文献1,特許文献2,特許文献3等に報告されている。但し,これらは透過光を検出するものであり,透過光と違い,照射光の照射方向と同じ方向と,照射光の照射方向と逆の方向に特定の散乱角度で発せられる散乱光や,照射光が照射された領域からほぼ全方位に発せられる蛍光を検出するのに適した光学系ではない。   Therefore, as a method of downsizing the optical system and detecting scattered light and fluorescence efficiently, first, downsizing of the light source can be considered. Light emitting diodes have been raised as compact and high-luminance light sources, and measurement methods using light emitting diodes as light sources have also been reported in Patent Document 1, Patent Document 2, Patent Document 3, and the like. However, these are used to detect transmitted light, and unlike transmitted light, scattered light emitted at a specific scattering angle in the same direction as the irradiation direction of irradiation light and in a direction opposite to the irradiation direction of irradiation light, or irradiation It is not an optical system suitable for detecting fluorescence emitted in almost all directions from a region irradiated with light.

次に,光を集光する方法としてレンズや鏡が考えられるが,透過光と違い,散乱光は照射光の照射方向と同じ方向と,照射光の照射方向と逆の方向に特定の散乱角度で発せられる。また,蛍光は照射光が照射された領域からほぼ全方位に発せられる。そのため,微少量の試料溶液から発する散乱光や蛍光を効率よく集光して検出するには,反射と集光を同時に行う凹面鏡を用い,一ヶ所の検出器に集光して検出するのが適していると考えられる。凹面鏡を用いて光を集光する方法として,特許文献4,特許文献5等に報告がある。しかし,試料中に含まれる成分量を検出する分析装置においては,透明なガラスやプラスチックなどの容器内部に入っている試料に励起光を照射し,散乱光,蛍光と励起光を分離することが必要であり,励起光,透過光,及び,透過光を吸収する部材等の部分を避け,発散する散乱光や蛍光のみを捕捉することが必要となる。透明なガラスやプラスチックなどの容器側から大気中に,もしくは,大気中から透明なガラスやプラスチックなどの容器側に光が進行する際の光の進路は,スネルの法則やフレネルの式などから求められる。   Next, lenses and mirrors are conceivable as methods for condensing light. Unlike transmitted light, scattered light has a specific scattering angle in the same direction as the irradiation direction of irradiation light and in the direction opposite to the irradiation direction of irradiation light. It is emitted at. In addition, fluorescence is emitted almost in all directions from the region irradiated with the irradiation light. Therefore, in order to efficiently collect and detect scattered light and fluorescence emitted from a very small amount of sample solution, it is necessary to use a concave mirror that simultaneously reflects and collects light, and collects and detects it on one detector. It is considered suitable. There are reports in Patent Literature 4, Patent Literature 5 and the like as methods for condensing light using a concave mirror. However, in an analyzer that detects the amount of components contained in a sample, the sample contained in a transparent glass or plastic container is irradiated with excitation light to separate scattered light, fluorescence, and excitation light. It is necessary, and it is necessary to capture only scattered light and fluorescence that diverges, avoiding portions such as excitation light, transmitted light, and members that absorb transmitted light. The path of light when light travels from the transparent glass or plastic container side to the atmosphere or from the air to the transparent glass or plastic container side is obtained from Snell's Law or Fresnel's formula. It is done.

それに対し,特許文献4,特許文献5の例では,一点から発散する光をその光源も含めて,他の物体を避けることなく別の一点に集光する例であるため,試料に励起光を照射して試料中に含まれる成分量を検出する分析装置に適用するには課題が多い。   On the other hand, in the examples of Patent Document 4 and Patent Document 5, since light that diverges from one point, including its light source, is condensed to another point without avoiding other objects, excitation light is applied to the sample. There are many problems to apply to an analyzer that irradiates and detects the amount of components contained in a sample.

特願平11−340964Japanese Patent Application No. 11-340964 特願2001−146695Japanese Patent Application 2001-146695 特願2004−151177Japanese Patent Application No. 2004-151177 特開2006−108521JP 2006-108521 A 特開2006−126013JP 2006-126013 A

上記従来技術では,試料溶液の微少量化への対応や,装置あるいは光学系の小型化への対応が困難であること,透過光の検出のみで,散乱光や蛍光の計測には適さないこと,透明なガラスやプラスチックなどの容器内部に入っている試料に励起光を照射し,散乱光,蛍光と励起光を分離して検出する構造になっていないため,散乱光や蛍光のみを効率よく検出するのに適さない等の問題があった。   In the above-mentioned conventional technology, it is difficult to cope with the minute amount of the sample solution and the miniaturization of the apparatus or the optical system, and it is not suitable for measurement of scattered light or fluorescence only by detecting transmitted light. Because it is not structured to irradiate a sample contained in a transparent glass or plastic container with excitation light and to detect scattered light, fluorescence and excitation light separately, only scattered light and fluorescence can be detected efficiently. There was a problem that it was not suitable to do.

上記問題を解決するため,本発明では,試料溶液を収めた透明なガラスやプラスチックなどの容器と空気との屈折率を考慮し,ガラスやプラスチックなどの容器側からブリュースタ角度以内で出射する散乱光や蛍光等の光を,励起光の照射方向側である前方と,励起光の照射方向と逆側である後方とに出射する光を別々の回転楕円鏡で集光し,検出器にブリュースタ角より小さな角度で入射する構成を採用した。   In order to solve the above problems, the present invention takes into account the refractive index of a transparent glass or plastic container containing the sample solution and the air, and the scattering emitted from the glass or plastic container side within the Brewster angle. Light emitted from the front side, which is the irradiation direction side of the excitation light, and the rear side, which is opposite to the irradiation direction of the excitation light, are collected by separate spheroid mirrors, and the light is emitted to the detector. A configuration in which the incident light is smaller than the star angle is adopted.

本発明によれば,試料溶液の微量化や装置の小型化に合わせ検出光学系を小型化する際,試料から発せられる蛍光や散乱光を効率よく集光して検出することができ,微少量の試料での安定分析が可能になる。   According to the present invention, when the detection optical system is downsized in accordance with the miniaturization of the sample solution or downsizing of the apparatus, the fluorescence or scattered light emitted from the sample can be efficiently collected and detected. It is possible to perform a stable analysis on the samples.

以下,図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例での液体分析方法について説明する。初めに散乱光を利用する場合について説明する。試料溶液に光を照射し,試料溶液中の散乱粒子により散乱した光量を測定することで試料溶液中に含まれる特定成分量を測定する方法に,ラテックス凝集反応による免疫比濁法等がある。この方法は,試料溶液中の試薬成分である抗体を付けたラテックスと,血液成分等からなる検体中の抗原が反応することによりラテックスが凝集し,ラテックスの凝集度合いにより,試料溶液に照射した光の散乱度合いが変化することを利用し,検体中の抗原の量を測定するものである。   A liquid analysis method in this embodiment will be described. First, a case where scattered light is used will be described. Examples of a method for measuring the amount of a specific component contained in a sample solution by irradiating the sample solution with light and measuring the amount of light scattered by scattering particles in the sample solution include an immunoturbidimetric method using latex agglutination. In this method, latex is agglomerated by reaction of latex with antibody, which is a reagent component in the sample solution, and antigen in the specimen consisting of blood components, etc., and the light irradiated to the sample solution depends on the degree of latex aggregation. The amount of antigen in the sample is measured by utilizing the change in the degree of scattering of the sample.

本実施例による散乱光の計測による液体分析の方法は,この原理に基づき,容器に入れた試料溶液に光を照射し,照射した光が試料溶液と容器を屈折して透過した量を除き,光を照射した方向と同方向側に散乱する前方散乱光を反射鏡で検出器に集光し,抗原の量等を計測するものである。   Based on this principle, the liquid analysis method by measuring scattered light according to this example irradiates the sample solution in the container with light, except for the amount of the irradiated light refracted and transmitted through the sample solution and the container. Forward scattered light scattered in the same direction as the direction of light irradiation is collected on a detector with a reflecting mirror, and the amount of antigen and the like are measured.

次に蛍光を利用する場合について説明する。試料溶液に励起光を照射し,試料内部の蛍光体を励起することで発する蛍光を計測する蛍光計測法がある。単に蛍光体の量を計測する場合もあるが,蛍光体を付けた抗体と血液成分等からなる検体中の抗原とを反応させ,未反応成分を除去した後励起光を照射し,その蛍光量を測定することで検体中の抗原の量を測定するものである。   Next, a case where fluorescence is used will be described. There is a fluorescence measurement method for measuring fluorescence emitted by irradiating a sample solution with excitation light and exciting a phosphor inside the sample. In some cases, the amount of phosphor is simply measured, but the antibody to which the phosphor is attached reacts with the antigen in the sample consisting of blood components, etc., and after removing the unreacted components, the excitation light is irradiated and the amount of fluorescence Is used to measure the amount of antigen in the specimen.

本実施例による蛍光の計測による液体分析の方法は,この原理に基づき,容器に入れた試料溶液に励起光を照射し,照射した励起光が試料溶液と容器を屈折して透過した量を除き,光を照射した方向と同方向側に出射する蛍光を反射鏡で検出器に集光し,抗原の量等を計測するものである。   Based on this principle, the liquid analysis method by fluorescence measurement according to the present embodiment irradiates the sample solution placed in the container with excitation light, except for the amount of the irradiated excitation light refracted and transmitted through the sample solution and the container. The fluorescence emitted in the same direction as the direction of light irradiation is collected on the detector by a reflecting mirror, and the amount of antigen and the like are measured.

本実施例の光学系は,散乱光を用いる場合にも蛍光を用いる場合にも,どちらにでも対応可能な構造となっており,目的に応じて使用する試薬と照射する光の波長等を選択すれば良い。   The optical system of this embodiment has a structure that can handle both the case of using scattered light and the case of using fluorescence, and selects the reagent to be used and the wavelength of light to be irradiated according to the purpose. Just do it.

図1に,本発明による液体分析装置の計測部を示す。検体と試薬からなる試料溶液1は透明な容器2の中に入れられている。図1では,試料溶液1と容器を断面で表しているが,図面を煩雑にし,理解を妨げることになるのを避けるためにハッチングせずに示す。容器2の図中左側には光源3,光源3から出射した光4を試料溶液1に絞り込むためのレンズ5が配置されている。容器2の右側には,レンズ5により試料溶液1に絞り込まれ,試料溶液1を透過した光を吸収して捉える透過光吸収体6,光4が試料溶液1に含まれる成分により散乱し,試料溶液1の右側すなわち光4の照射方向と同方向である前方に出射する散乱光7,あるいは,光4により励起され,同じく前方に出射する蛍光7’を反射集光する第1の反射鏡8,反射集光された光を検出し電気信号に変換する検出器9が配置されている。これらはそれぞれ光軸10上に配置され保持部材で保持されているが,図面を煩雑にし,理解を妨げることになるのを避けるために,保持部材は図面上から割愛する。   FIG. 1 shows a measuring unit of a liquid analyzer according to the present invention. A sample solution 1 consisting of a specimen and a reagent is placed in a transparent container 2. In FIG. 1, the sample solution 1 and the container are shown in cross section, but are shown without hatching to avoid complicating the drawing and hindering understanding. A lens 5 for narrowing the light 4 emitted from the light source 3 and the light source 3 to the sample solution 1 is arranged on the left side of the container 2 in the figure. On the right side of the container 2, the transmitted light absorber 6 and the light 4, which are narrowed down to the sample solution 1 by the lens 5 and absorb and capture the light transmitted through the sample solution 1, are scattered by the components contained in the sample solution 1. The first reflecting mirror 8 that reflects and collects the scattered light 7 emitted forward, which is the right direction of the solution 1, that is, the same direction as the irradiation direction of the light 4, or the fluorescence 7 ′ that is excited by the light 4 and emitted forward. A detector 9 for detecting the reflected and condensed light and converting it into an electrical signal is disposed. These are arranged on the optical axis 10 and are held by holding members, but the holding members are omitted from the drawings in order to avoid making the drawing complicated and obstructing the understanding.

続いて,本実施例による液体分析時の,光の進路や装置の構成について説明する。液体分析時には,まず,図1のように試料溶液1を容器2に入れ,光軸上にセットする。容器2は,光4を低損失で透過するガラスやプラスチック等の材質で構成される。この状態で光源3に通電する等して光源3から光4を出射する。光4はレンズ5により絞り込まれ,試料溶液1に照射される。   Next, the path of light and the configuration of the apparatus at the time of liquid analysis according to this embodiment will be described. At the time of liquid analysis, first, the sample solution 1 is put in the container 2 and set on the optical axis as shown in FIG. The container 2 is made of a material such as glass or plastic that transmits light 4 with low loss. In this state, light 4 is emitted from the light source 3 by energizing the light source 3 or the like. The light 4 is narrowed down by the lens 5 and irradiated to the sample solution 1.

その時,散乱光測定による場合は,試料溶液中の検体に含まれる抗体の量により,試料溶液中の試薬に含まれるラテックスの凝集度合いが異なり,その凝集度合いに応じて散乱光7が散乱するため,散乱光7を第1の反射鏡8により集光し検出器9で光量を計測することで液体成分を分析することができる。散乱光7は光4の一部が散乱するものであり,光4の散乱しなかった部分は試料溶液1を透過し,透過光吸収体6により吸収される。この場合の散乱の方向は,試料溶液1の右側すなわち光4の照射方向と同方向である前方に出射する散乱光である。   At that time, in the case of the scattered light measurement, the degree of aggregation of the latex contained in the reagent in the sample solution differs depending on the amount of antibody contained in the sample in the sample solution, and the scattered light 7 is scattered according to the degree of aggregation. The liquid component can be analyzed by condensing the scattered light 7 by the first reflecting mirror 8 and measuring the amount of light by the detector 9. The scattered light 7 scatters a part of the light 4, and the unscattered part of the light 4 passes through the sample solution 1 and is absorbed by the transmitted light absorber 6. In this case, the scattering direction is scattered light emitted to the right side of the sample solution 1, that is, in the same direction as the irradiation direction of the light 4.

また,蛍光測定による場合は,単に蛍光体の量を計測する場合は試料溶液中の蛍光体量に応じた蛍光が発せられるのでその蛍光量を計測する。また,検体中の抗原の量等を測定する場合は,検体中の抗原に反応して結合した抗体の蛍光体の量に応じて蛍光が発せられるため,蛍光を第1の反射鏡8により集光し検出器9で光量を計測することで液体成分を分析することができる。この場合,光4は励起光として用いられ,励起に用いられなかった部分は試料溶液1を透過し透過光吸収体6により吸収される。   In the case of fluorescence measurement, when the amount of phosphor is simply measured, fluorescence corresponding to the amount of phosphor in the sample solution is emitted, and the amount of fluorescence is measured. Further, when measuring the amount of antigen in the sample, etc., fluorescence is emitted according to the amount of antibody phosphor bound in response to the antigen in the sample, so that the fluorescence is collected by the first reflector 8. The liquid component can be analyzed by measuring the amount of light with the light detector 9. In this case, the light 4 is used as excitation light, and the portion not used for excitation passes through the sample solution 1 and is absorbed by the transmitted light absorber 6.

透過光吸収体6は光軸を中心軸とした円筒状のカップ形をした物で,図1の左側が開口しており,内部を低反射率になるよう処理し,開口部から入った光4を吸収し熱に変える。また,透過光吸収体6を透過光検出器に代え,透過光量と散乱光もしくは蛍光の量とを比較することにより,透過光,散乱光もしくは蛍光以外に失った光の量等を算出することが可能になり,より制度の良い分析を可能にすることができる。   The transmitted light absorber 6 has a cylindrical cup shape with the optical axis as the central axis. The left side of FIG. 1 has an opening on the left side. 4 is absorbed and converted into heat. Further, by replacing the transmitted light absorber 6 with a transmitted light detector and comparing the amount of transmitted light with the amount of scattered light or fluorescence, the amount of light lost to transmitted light, scattered light or other than fluorescence is calculated. Can be made, and a more institutional analysis can be made possible.

先に述べたように,本実施例においては,散乱光を用いる場合にも蛍光を用いる場合にも,どちらにでも対応可能な構造となっているため,以下では蛍光も含めて単に散乱光7として説明する。   As described above, the present embodiment has a structure that can handle both the case where scattered light is used and the case where fluorescence is used. Will be described.

試料溶液1から出射した散乱光7は,容器2から大気中に出射する。本実施例では大気中への出射であるが,試料溶液1等を一定温度に保ち易くするために,計測部全体あるいは一部が恒温水の中等にあっても良い。また,本実施例では簡略のため,大気の屈折率を1.0,液体である試料溶液1,容器2及び検出器9の受光部の屈折率を1.5程度として説明し,図面上で光の屈折を表す場合もそのように作図して示す。   Scattered light 7 emitted from the sample solution 1 is emitted from the container 2 into the atmosphere. In this embodiment, the light is emitted into the atmosphere. However, in order to easily maintain the sample solution 1 or the like at a constant temperature, the entire measurement unit or a part thereof may be in constant temperature water or the like. In this embodiment, for the sake of simplicity, the refractive index of the atmosphere is assumed to be 1.0, the refractive index of the liquid sample solution 1, the container 2, and the light receiving portion of the detector 9 is assumed to be about 1.5. This is also shown in the case of representing the refraction of light.

散乱光7が容器2から大気中に出射するときには,容器2と大気の境界面で反射光と透過光に分かれ,屈折して透過光となる散乱光のみ大気中に出射する。反射光と透過光の割合を図2,図3,及び,図4,図5で説明する。   When the scattered light 7 is emitted from the container 2 into the atmosphere, it is divided into reflected light and transmitted light at the interface between the container 2 and the atmosphere, and only the scattered light that is refracted and becomes transmitted light is emitted into the atmosphere. The ratio of reflected light and transmitted light will be described with reference to FIGS.

図2は容器2側から大気側に散乱光7が進む状態を簡略化して示す。図2において,散乱光7が容器2と大気の境界面に入射光として入射する時の入射角度をφとし,φを0°から90°まで可変したときのp偏光,s偏光成分それぞれの反射光と透過光の反射率,透過率を図3に示す。図3は,スネルの法則及びフレネルの式等から求められる式に図2に示す屈折率の値を入れて計算した結果であり,一般的なものである。   FIG. 2 shows a simplified state in which scattered light 7 travels from the container 2 side to the atmosphere side. In FIG. 2, the incident angle when the scattered light 7 is incident on the boundary surface between the container 2 and the atmosphere as φ is φ, and the reflection of the p-polarized light and the s-polarized component when φ is varied from 0 ° to 90 °. FIG. 3 shows the reflectance and transmittance of light and transmitted light. FIG. 3 shows a result obtained by adding the value of the refractive index shown in FIG. 2 to an expression obtained from Snell's law and Fresnel's expression, and is a general result.

図4は,大気側から容器2側に散乱光7が進む状態を簡略化して示す。図4において,散乱光7が大気と容器2の境界面に入射光として入射する時の入射角度をφとし,φを0°から90°まで可変したときのp偏光,s偏光成分それぞれの反射光と透過光の反射率,透過率を図5に示す。図5も図3同様にスネルの法則及びフレネルの式等から求められる式に図4に示す屈折率の値を入れて計算した結果であり,一般的なものである。   FIG. 4 shows a simplified state in which the scattered light 7 travels from the atmosphere side to the container 2 side. In FIG. 4, the incident angle when the scattered light 7 is incident on the boundary surface between the atmosphere and the container 2 is φ, and the reflection of the p-polarized light and the s-polarized light component when φ is varied from 0 ° to 90 °. FIG. 5 shows the reflectance and transmittance of light and transmitted light. FIG. 5 is a general result obtained by adding the refractive index value shown in FIG. 4 to an expression obtained from Snell's law and Fresnel's expression as in FIG.

図3及び図5共に,入射角がある値を超えると急激に透過率が減り反射率が大きくなる。特にp偏光成分は反射率が0%で透過率が100%になる入射角度があり,その角度より入射角度が大きくなると急激に透過率が減り反射率が大きくなる。その角度はブリュースタ角φbと呼ばれ,次式(1)で表すことができる。n1は大気側の屈折率,n2は容器側の屈折率である。 In both FIG. 3 and FIG. 5, when the incident angle exceeds a certain value, the transmittance rapidly decreases and the reflectance increases. In particular, the p-polarized component has an incident angle at which the reflectance is 0% and the transmittance is 100%. When the incident angle is larger than that angle, the transmittance is rapidly decreased and the reflectance is increased. The angle is called the Brewster angle φ b and can be expressed by the following equation (1). n 1 is the refractive index on the atmosphere side, and n 2 is the refractive index on the container side.

Figure 2009128125
Figure 2009128125

すなわち,ブリュースタ角より小さい角度で入射する散乱光を集めることが効率の良い検出の方法といえる。因みに,先に定義した本実施例での各部の屈折率を上式(1)に代入した場合,散乱光が容器2側から大気側に進むときのブリュースタ角は次式(2)のように約33.7°,散乱光が大気側から検出器9側に進むときのブリュースタ角は次式(3)のように約56.3°となる。   In other words, collecting scattered light incident at an angle smaller than the Brewster angle is an efficient detection method. Incidentally, when the refractive index of each part in the present embodiment defined above is substituted into the above equation (1), the Brewster angle when the scattered light travels from the container 2 side to the atmosphere side is as shown in the following equation (2). The Brewster angle when the scattered light travels from the atmosphere side to the detector 9 side is about 56.3 ° as shown in the following equation (3).

Figure 2009128125
Figure 2009128125

そこで本発明では,散乱光7が容器2側から大気側に進む場合,また,大気側から検出器9側に進む場合に,境界面をブリュースタ角より小さい入射角で透過する領域を効率よく集光するのに適した光学系とし,以下に述べるような定義による第1の反射鏡を採用した。   Therefore, in the present invention, when the scattered light 7 travels from the container 2 side to the atmosphere side, or travels from the atmosphere side to the detector 9 side, a region that transmits through the boundary surface at an incident angle smaller than the Brewster angle is efficiently obtained. An optical system suitable for condensing was used, and the first reflecting mirror defined as follows was adopted.

第1の反射鏡8の詳細を図1,図6,図7,図8を用いて説明する。図6は,図1の散乱光7の出射中心付近から検出器9の中心付近までの部分拡大図を,図7は,図1の散乱光7の出射中心周辺の拡大図を,図8は,図1の検出器9の付近の部分拡大図を示す。図6,図7,図8では光線同士の交差位置等を分かり易くするため,光を表すハッチングを除いて示す。   Details of the first reflecting mirror 8 will be described with reference to FIGS. 1, 6, 7, and 8. 6 is a partially enlarged view from the vicinity of the emission center of the scattered light 7 in FIG. 1 to the vicinity of the center of the detector 9, FIG. 7 is an enlarged view of the vicinity of the emission center of the scattered light 7 in FIG. 1 shows a partially enlarged view of the vicinity of the detector 9 in FIG. 6, 7, and 8, in order to make it easy to understand the intersection position of the light beams, the hatching representing the light is omitted.

図6に示すように第1の反射鏡8は,光軸10を回転中心とした回転楕円体の一部からなるものである。その形状は,楕円11を定義する2つの焦点12,13及び通過点14を次のようにして決定している。すなわち図6及び図7,図8の部分拡大図に示すように,散乱光7の出射中心15からブリュースタ角で出射した光が容器2と大気の境界で屈折し透過した光線16を進行方向とは逆方向に延長し,光軸10と交差する位置を焦点12とし,検出器9にブリュースタ角で入射し屈折して検出面中心17に達する光線が検出器9の表面で屈折する前の光線18を進行方向に延長し,光軸10と交差する位置を焦点13とする。散乱光7の出射中心15に焦点12を,及び,検出面中心17に焦点13を持ってこないのは,容器2と大気の屈折,及び,大気と検出器9表面の屈折を考慮したためである。ここで検出器9にブリュースタ角より小さな角度で入射することが必要な理由は,ホトダイオード等の半導体製検出器の受光面がシリコン酸化物等の透明な絶縁膜で覆われており,同様に反射,屈折,透過を考慮することが必要であるためであり,さらに透明な樹脂やガラスで保護されている場合も同様である。また,半導体検出器ではなく光電子増倍管などであっても,受光部の光入射口はガラスである。   As shown in FIG. 6, the first reflecting mirror 8 is composed of a part of a spheroid with the optical axis 10 as the center of rotation. The shape determines the two focal points 12 and 13 and the passing point 14 which define the ellipse 11 as follows. That is, as shown in the partial enlarged views of FIGS. 6, 7, and 8, the light 16 that is refracted at the Brewster angle from the emission center 15 of the scattered light 7 is refracted and transmitted at the boundary between the container 2 and the atmosphere. Before the light beam which is incident on the detector 9 at the Brewster angle and is refracted and reaches the detection surface center 17 is refracted on the surface of the detector 9. The light beam 18 is extended in the traveling direction, and the position intersecting the optical axis 10 is defined as the focal point 13. The reason why the focal point 12 is not provided at the emission center 15 of the scattered light 7 and the focal point 13 is not provided at the detection surface center 17 is that the refraction of the container 2 and the atmosphere and the refraction of the atmosphere and the surface of the detector 9 are taken into consideration. . Here, the reason why it is necessary to enter the detector 9 at an angle smaller than the Brewster angle is that the light receiving surface of a semiconductor detector such as a photodiode is covered with a transparent insulating film such as silicon oxide. This is because reflection, refraction, and transmission need to be taken into consideration, and the same applies to the case where it is protected with a transparent resin or glass. Moreover, even if it is not a semiconductor detector but a photomultiplier tube, the light incident port of a light-receiving part is glass.

次に通過点14の定義を,散乱光7の出射中心15から出射した光が容器2と大気の境界で屈折して透過し,透過光吸収体6に当たらずに出射できる光の内,光軸10との角度が最小の光線19,あるいは,試料溶液1及び容器2を透過して出射する前記光4の内,光軸10との角度が最大の光線19’と,前記光線18を光軸10とは逆の方向に延長して交差する位置として楕円11を定義し,反射鏡8は楕円11が光軸10を中心に回転した回転楕円体の一部からなる。   Next, the passing point 14 is defined as light out of light that can be radiated from the emission center 15 of the scattered light 7 and refracted at the boundary between the container 2 and the atmosphere and transmitted without hitting the transmitted light absorber 6. The light beam 19 having the smallest angle with the axis 10, or the light beam 19 ′ having the largest angle with the optical axis 10 out of the light 4 transmitted through the sample solution 1 and the container 2, and the light beam 18. An ellipse 11 is defined as a position extending in the direction opposite to the axis 10 and intersecting, and the reflecting mirror 8 is composed of a part of a spheroid in which the ellipse 11 is rotated about the optical axis 10.

さらに,回転楕円体の一部とは,前記光線16を進行方向に延長し楕円11と交わる位置を開始位置20とし,前記光線18を進行方向とは逆方向に延長し楕円11と交わる位置を終了位置21とし,光軸10に直角な面で回転楕円体を開始位置20と終了位置21で3つに切断した中間部分である。反射鏡8の光軸方向の長さが少なくともこの範囲以上であれば,前方に出射する散乱光7の内,光4の領域を除き,ブリュースタ角より小さい入射角で容器2から大気側に出射する領域を全て集光することが可能であり,また,検出器9にブリュースタ角度よりも小さな入射角度で入射できるため,集光した散乱光7を効率よく検出することができる。以上の定義による反射鏡8は,焦点12,焦点13の間に位置するため,反射鏡8に入射する散乱光7も反射鏡8により検出器9に反射される散乱光7も,光軸方向を基準とする向きが反転することが無い。すなわち,検出器9の検出面は散乱光7の出射中心15の方を向いていれば良く,逆方向からの光を検出するための検出面は不要であり,1個の検出器で済むという効果がある。   Further, a part of the spheroid means a position where the light beam 16 extends in the traveling direction and intersects the ellipse 11 as a start position 20, and a position where the light beam 18 extends in the direction opposite to the traveling direction and intersects the ellipse 11. An end portion 21 is an intermediate portion obtained by cutting the spheroid in a plane perpendicular to the optical axis 10 into three at a start position 20 and an end position 21. If the length of the reflecting mirror 8 in the direction of the optical axis is at least within this range, except for the area of the light 4 out of the scattered light 7 emitted forward, the incident angle is smaller than the Brewster angle from the container 2 to the atmosphere side. It is possible to condense all the exiting regions, and to enter the detector 9 at an incident angle smaller than the Brewster angle, so that the collected scattered light 7 can be detected efficiently. Since the reflecting mirror 8 defined above is located between the focal point 12 and the focal point 13, both the scattered light 7 incident on the reflecting mirror 8 and the scattered light 7 reflected by the reflecting mirror 8 on the detector 9 are both in the optical axis direction. The direction with reference to is not reversed. That is, the detection surface of the detector 9 only needs to face the emission center 15 of the scattered light 7, and no detection surface for detecting light from the opposite direction is necessary, and only one detector is required. effective.

上記定義による反射鏡の効率が良いことを説明するために,焦点12と焦点13の位置は同じでより大きな回転楕円体からなる場合と,同じく焦点12と焦点13の位置は同じでより小さな回転楕円体からなる場合について図9と図10により説明する。   In order to explain the efficiency of the reflector according to the above definition, the positions of the focal point 12 and the focal point 13 are the same and are made of a larger spheroid, and the focal point 12 and the focal point 13 are also the same and the rotation is smaller. The case of an ellipsoid will be described with reference to FIGS.

まず,焦点12と焦点13の位置は同じで,より大きな回転楕円体からなる場合について図9により説明する。図9は,図6と焦点12,13の位置は第1の反射鏡8と同じで,反射鏡を第1の反射鏡8より大きな楕円11’に基づく回転楕円体からなる第1の反射鏡8’に置き換えた場合の光の進路等を示す。容器2からブリュースタ角で出射した光が容器2と大気の境界で屈折し透過する光線16は,図6上での反射鏡8の場合に比べ右側で反射し,検出器9に入射することが可能である。しかし,第1の反射鏡8’が大きくなるに従い,容器2から出射した散乱光7は光軸10に近い内側から検出器9に入射不可能になり検出できなくなっていく。その理由は,検出器9にブリュースタ角で入射する光線18の延長線が楕円11’と交わる交点22と,散乱光7の出射中心15から出射した光が容器2と大気の境界で屈折して透過し,透過光吸収体6に当たらずに出射できる光の内,光軸10との角度が最小の光線19,あるいは,試料溶液1及び容器2を透過して出射する前記光4の内,光軸10との角度が最大の光線19’が楕円11’ と交わる交点23との間で反射し検出器9に向かう光24(図9上でハッチングして示す領域)は,検出器9にブリュースタ角よりも大きな角度で入射するため,検出器9の受光面で大部分が反射してしまい,検出器9に入射出来ないためである。よって,前述の楕円11で定義される第1の反射鏡8が,焦点12と焦点13の位置を固定した場合に効率よく散乱光7を集光できる最大の反射鏡といえる。   First, the case where the positions of the focal point 12 and the focal point 13 are the same and are made of a larger spheroid will be described with reference to FIG. 9 is the same as that of the first reflecting mirror 8 in the positions of the focal points 12 and 13 in FIG. 6, and the reflecting mirror is a first reflecting mirror made of a spheroid based on an ellipse 11 ′ larger than the first reflecting mirror 8. The path of light when replaced with 8 'is shown. A light beam 16 refracted and transmitted through the boundary between the container 2 and the atmosphere from the container 2 at the Brewster angle is reflected on the right side as compared with the case of the reflecting mirror 8 in FIG. Is possible. However, as the first reflecting mirror 8 ′ increases, the scattered light 7 emitted from the container 2 cannot enter the detector 9 from the inside near the optical axis 10 and cannot be detected. The reason for this is that light emitted from the emission center 15 of the scattered light 7 is refracted at the boundary between the container 2 and the atmosphere at the intersection 22 where the extended line of the light ray 18 incident on the detector 9 at the Brewster angle intersects the ellipse 11 ′. Of the light 4 that passes through the sample solution 1 and the container 2 and is emitted through the sample solution 1 and the container 2. , The light 24 (the area shown by hatching in FIG. 9) reflected from the intersection 23 where the light beam 19 ′ having the maximum angle with the optical axis 10 intersects the ellipse 11 ′ and directed to the detector 9 is detected by the detector 9 This is because most of the light is incident on the light receiving surface of the detector 9 and cannot enter the detector 9. Therefore, it can be said that the first reflecting mirror 8 defined by the ellipse 11 is the largest reflecting mirror that can efficiently collect the scattered light 7 when the positions of the focal point 12 and the focal point 13 are fixed.

次に,焦点12と焦点13の位置は同じで,より小さな回転楕円体からなる場合について図10により説明する。図10は,図6と焦点12,13の位置は第1の反射鏡8と同じで,反射鏡を第1の反射鏡8より小さな楕円11”に基づく回転楕円体からなる第1の反射鏡8”に置き換えた場合の光の進路等を示す。容器2からブリュースタ角で出射した光が容器2と大気の境界で屈折し透過する光線16は,図6上での反射鏡8の場合に比べ左側の,より容器2に近い部分で反射し,検出器9に入射することが可能である。また,前記光線19,あるいは,前記光線19’も,第1の反射鏡8”で反射後,検出器9にブリュースタ角より小さな角度で入射可能であるため,第1の反射鏡8”を定義する楕円11”は,焦点12と焦点13の位置が同じであれば,より小さくすることが可能である。小さくする限界は,検出器9の入射面で屈折し検出器9の中心に入射する光線の内,透過光吸収体6にかからず入射できる,光軸10との角度が最小の光線25と光線16との交点26が通過点14として定義される楕円11”から成る回転楕円体を用いた第1の反射鏡8”である。ただし,透過光吸収体6が十分小さい場合は,通過点14は容器2からブリュースタ角で出射した光が容器2の表面と交差する位置である。よって,前述の楕円11で定義される第1の反射鏡8が,焦点12と焦点13の位置を固定した場合に効率よく散乱光7を集光できる最大の反射鏡であり,前述の楕円11”で定義される第1の反射鏡8”が最小の反射鏡であると言える。   Next, the case where the positions of the focal point 12 and the focal point 13 are the same and are made of smaller spheroids will be described with reference to FIG. 10 is the same as the first reflecting mirror 8 in the positions of the focal points 12 and 13 in FIG. 6, and the reflecting mirror is a first reflecting mirror made of a spheroid based on an ellipse 11 ″ smaller than the first reflecting mirror 8. The path of light when replaced with 8 ″ is shown. A light beam 16 refracted and transmitted through the boundary between the container 2 and the atmosphere from the container 2 at the Brewster angle is reflected by a portion closer to the container 2 on the left side than the case of the reflecting mirror 8 in FIG. , Can enter the detector 9. Also, the light beam 19 or the light beam 19 ′ can be incident on the detector 9 at an angle smaller than the Brewster angle after being reflected by the first reflecting mirror 8 ″. The ellipse 11 ″ to be defined can be made smaller if the positions of the focal point 12 and the focal point 13 are the same. The limit of making the ellipse 11 ”is refracted at the incident surface of the detector 9 and incident on the center of the detector 9. Spheroid consisting of an ellipse 11 ″ that can be incident on the transmitted light absorber 6 without being incident on the transmitted light absorber 6 and defined as a passing point 14 at the intersection 26 of the light beam 25 and the light beam 16 having the smallest angle with the optical axis 10. This is the first reflecting mirror 8 ″ using a body. However, when the transmitted light absorber 6 is sufficiently small, the passing point 14 is a position where the light emitted from the container 2 at the Brewster angle intersects the surface of the container 2. Therefore, the first defined by the ellipse 11 described above is used. The reflector 8 is the largest reflector that can efficiently collect the scattered light 7 when the positions of the focal point 12 and the focal point 13 are fixed, and the first reflecting mirror 8 ″ defined by the ellipse 11 ″ described above is It can be said that it is the smallest reflector.

本実施例では,後述する実施例2以降で述べる第2の反射鏡と同時に使用することを考え,第1の反射鏡8を用いている。また,実際の光源は点光源ではなく直径1mm程度の大きさを持つため,これまで述べた光線位置からずれた光線も含まれるが,検出器9の検出面の大きさが光源の大きさよりも十分大きいため,光線位置からずれた光線は無視して説明している。   In the present embodiment, the first reflecting mirror 8 is used in consideration of the simultaneous use of the second reflecting mirror described in the second and later embodiments. Further, since the actual light source is not a point light source and has a diameter of about 1 mm, it includes a light beam deviated from the light beam position described so far, but the size of the detection surface of the detector 9 is larger than the size of the light source. Since it is sufficiently large, the light beam shifted from the light beam position is ignored.

本実施例での液体分析方法は実施例1とほぼ同様であり,実施例1との違いは,実施例1では,容器に入れた試料溶液に光を照射し,光を照射した方向と同方向側に散乱する散乱光や,光を照射した方向と同方向側に出射する蛍光を反射鏡で検出器に集光し,抗原の量等を計測するものであるのに対し,本実施例では,光を照射した方向と逆方向側に散乱する散乱光や,光を照射した方向と逆方向側に出射する蛍光を反射鏡で検出器に集光し,抗原の量等を計測するところにある。そのため本実施例では,液体分析の原理,光学的な法則に関する部分は省略して説明する。また,本実施例も,散乱光を用いる場合にも蛍光を用いる場合にも,どちらにでも対応可能な構造となっているため,以下では蛍光も含めて単に散乱光として説明する。   The liquid analysis method in this example is almost the same as in Example 1. The difference from Example 1 is that in Example 1, the sample solution placed in the container is irradiated with light, and the same direction as the direction of light irradiation. In this embodiment, scattered light scattered in the direction side and fluorescence emitted in the same direction as the direction of light irradiation are collected on the detector by a reflecting mirror and the amount of antigen is measured. Then, the scattered light scattered in the direction opposite to the direction of light irradiation or the fluorescence emitted in the direction opposite to the direction of light irradiation is condensed on the detector with a reflector to measure the amount of antigen, etc. It is in. For this reason, in this embodiment, the part relating to the principle of liquid analysis and the optical law will be omitted. In addition, since the present embodiment also has a structure that can handle both the case where scattered light is used and the case where fluorescence is used, the following description will be made simply as scattered light including fluorescence.

図11に本発明による液体分析装置の計測部を示す。検体と試薬からなる試料溶液1は透明な容器2の中に入れられている。図11では,試料溶液1と容器を断面で表しているが,図面を煩雑にし,理解を妨げることになるのを避けるためにハッチングせずに示す。容器2の図中左側には光源3,光源3から出射した光4を試料溶液1に絞り込むためのレンズ5が配置されている。容器2の右側には,レンズ5により試料溶液1に絞り込まれ,試料溶液1を透過した光を吸収して捉える透過光吸収体6,光4が試料溶液1に含まれる成分により散乱し,試料溶液1の左側すなわち光4の照射方向と逆方向である後方に出射する散乱光27を反射集光する第2の反射鏡28,第2の反射鏡28により集光された散乱光27を検出し電気信号に変換する検出器9が配置されている。これらはそれぞれ光軸10上に配置され保持部材で保持されているが,図面を煩雑にし,理解を妨げることになるのを避けるために,保持部材は図面上から割愛する。   FIG. 11 shows a measuring unit of the liquid analyzer according to the present invention. A sample solution 1 consisting of a specimen and a reagent is placed in a transparent container 2. In FIG. 11, the sample solution 1 and the container are shown in cross section, but are shown without hatching in order to avoid complicating the drawing and hindering understanding. A lens 5 for narrowing the light 4 emitted from the light source 3 and the light source 3 to the sample solution 1 is arranged on the left side of the container 2 in the figure. On the right side of the container 2, the transmitted light absorber 6 and the light 4, which are narrowed down to the sample solution 1 by the lens 5 and absorb and capture the light transmitted through the sample solution 1, are scattered by the components contained in the sample solution 1. The second reflecting mirror 28 that reflects and collects the scattered light 27 that is emitted to the left side of the solution 1, that is, the direction opposite to the irradiation direction of the light 4, and the scattered light 27 that is collected by the second reflecting mirror 28 are detected. A detector 9 for converting into an electric signal is arranged. These are arranged on the optical axis 10 and are held by holding members, but the holding members are omitted from the drawings in order to avoid making the drawing complicated and obstructing the understanding.

続いて,本実施例による液体分析時の,光の進路や装置の構成について説明する。液体分析時には,まず,図11のように試料溶液1を容器2に入れ,光軸上にセットする。容器2は光4を低損失で透過するガラスやプラスチック等の材質で構成される。この状態で光源3に通電する等して光源3から光4を出射する。光4はレンズ5により絞り込まれ,試料溶液1に照射される。これにより試料溶液1から出射する散乱光27を第2の反射鏡28で集光し,検出器9で光量を計測することで,実施例1と同様に液体成分を分析することができる。   Next, the path of light and the configuration of the apparatus at the time of liquid analysis according to this embodiment will be described. At the time of liquid analysis, first, the sample solution 1 is put in the container 2 and set on the optical axis as shown in FIG. The container 2 is made of a material such as glass or plastic that transmits light 4 with low loss. In this state, light 4 is emitted from the light source 3 by energizing the light source 3 or the like. The light 4 is narrowed down by the lens 5 and irradiated to the sample solution 1. As a result, the scattered light 27 emitted from the sample solution 1 is collected by the second reflecting mirror 28, and the amount of light is measured by the detector 9, whereby the liquid component can be analyzed in the same manner as in the first embodiment.

第2の反射鏡28の詳細を図11,図12を用いて説明する。図12は図11の散乱光27の出射中心付近から第2の反射鏡28にかけての拡大図である。図11,図12において,第2の反射鏡28は,光軸10を回転中心とした回転楕円体の一部からなるものである。その形状は,楕円29を定義する2つの焦点30,焦点31及び通過点32を次のようにして決定している。すなわち,図11,図12において,散乱光27の出射中心15からブリュースタ角で後方に出射した光が容器2と大気の境界で屈折し透過した光線33を進行方向とは逆方向に延長し,光軸10と交差する位置を焦点30とし,焦点31は実施例1と同じ位置で,検出器9にブリュースタ角で入射し屈折して検出面中心17に達する光線が検出器9の表面で屈折する前の光線18を進行方向に延長し,光軸10と交差する位置とする。   Details of the second reflecting mirror 28 will be described with reference to FIGS. FIG. 12 is an enlarged view from the vicinity of the emission center of the scattered light 27 in FIG. 11 to the second reflecting mirror 28. In FIG. 11 and FIG. 12, the second reflecting mirror 28 is composed of a part of a spheroid with the optical axis 10 as the center of rotation. As for the shape, two focal points 30, a focal point 31, and a passing point 32 that define an ellipse 29 are determined as follows. That is, in FIG. 11 and FIG. 12, the light 33 radiated backward from the emission center 15 of the scattered light 27 at the Brewster angle is refracted and transmitted at the boundary between the container 2 and the atmosphere, and extends in the direction opposite to the traveling direction. , The position intersecting the optical axis 10 is the focal point 30, and the focal point 31 is the same position as in the first embodiment, and the light beam incident on the detector 9 at the Brewster angle and refracted and reaches the detection surface center 17 is the surface of the detector 9. The light beam 18 before being refracted by is extended in the direction of travel and is set to a position intersecting the optical axis 10.

次に通過点32の定義を,検出器9入射し,屈折して検出面中心17に達する光線の内,第1の反射鏡8の内径に蹴られずに入射でき,光軸10との角度が最大の光線を第2の反射鏡28の方向に進行させた光線34と前記光線33との交差する位置として楕円29を定義し,第2の反射鏡28は,楕円29が光軸10を中心に回転した回転楕円体の一部からなる。   Next, the definition of the passing point 32 can be made without being kicked by the inner diameter of the first reflecting mirror 8 among the rays that enter the detector 9 and refract and reach the detection surface center 17. An ellipse 29 is defined as a position where the light ray 34 in which the maximum light ray has traveled in the direction of the second reflecting mirror 28 and the light ray 33 intersect. The second reflecting mirror 28 has the ellipse 29 centered on the optical axis 10. It consists of a part of a spheroid rotated in the direction of

さらに,回転楕円体の一部とは,第2の反射鏡の光軸を中心とした外径の半径が,光軸から通過点32の距離よりも大きい範囲である。さらに,光軸10を中心にした照射光4を通過する開口,もしくは,散乱光27の出射中心15に入射する光が,透過光吸収体に蹴られずに入射できる光軸との角度が最小の光線と楕円29との交点を光軸からの半径とする開口が設けられている。   Further, the part of the spheroid is a range in which the radius of the outer diameter around the optical axis of the second reflecting mirror is larger than the distance from the optical axis to the passing point 32. Further, the angle with the optical axis through which the light passing through the irradiation light 4 centered on the optical axis 10 or the light incident on the emission center 15 of the scattered light 27 can be incident without being kicked by the transmitted light absorber is minimized. An opening having a radius from the optical axis at the intersection of the light beam and the ellipse 29 is provided.

以上の定義による反射鏡28は,図11上で焦点30,焦点31の位置より左側に位置するため,反射鏡28に入射する散乱光27を一度だけ反射し,光軸方向を基準とする向きを反転する。すなわち,検出器9の検出面は散乱光27の出射中心15の方を向いていれば良く,後方に出射する散乱光27を検出するための検出器は不要であり,1個の検出器で済むという効果がある。   Since the reflecting mirror 28 according to the above definition is located on the left side of the positions of the focal point 30 and the focal point 31 in FIG. 11, the reflected light 27 incident on the reflecting mirror 28 is reflected only once, and the orientation is based on the optical axis direction. Invert. That is, the detection surface of the detector 9 only needs to be directed toward the emission center 15 of the scattered light 27, and a detector for detecting the scattered light 27 emitted backward is not necessary. It has the effect of being finished.

上記定義による反射鏡の効率が良いことを説明するために,焦点30と焦点31の位置は同じでより大きな回転楕円体からなる場合と,同じく焦点30と焦点31の位置は同じでより小さな回転楕円体からなる場合について図13と図14により説明する。   In order to explain the efficiency of the reflector according to the above definition, the positions of the focal point 30 and the focal point 31 are the same and are made of larger spheroids, and the focal point 30 and the focal point 31 are also at the same position and smaller in rotation. The case of an ellipsoid will be described with reference to FIGS.

まず,焦点30,31の位置は同じで,より大きな回転楕円体からなる場合について図13により説明する。図13は,焦点30,31の位置は第2の反射鏡28と同じで,反射鏡を第2の反射鏡28より大きな楕円29’に基づく回転楕円体からなる第2の反射鏡28’に置き換えた場合の光の進路等を示す。容器2から後方にブリュースタ角で出射した光が容器2と大気の境界で屈折し透過する光線33は,図11上での反射鏡28の場合に比べ外周側で反射するため,第2の反射鏡28’が大きくなるに従い,検出器9に入射する前に第1の反射鏡8で蹴られる領域が増えていく。図13の光線33及び光線34に沿ってハッチングした部分がその領域を示す。よって,前述の楕円29で定義される第2の反射鏡28が,焦点30と焦点31の位置を固定した場合に,後方に出射する散乱光27を効率よく集光できる最大の反射鏡といえる。   First, the case where the positions of the focal points 30 and 31 are the same and are formed of a larger spheroid will be described with reference to FIG. In FIG. 13, the positions of the focal points 30 and 31 are the same as those of the second reflecting mirror 28, and the reflecting mirror is changed to a second reflecting mirror 28 ′ composed of a spheroid based on an ellipse 29 ′ larger than the second reflecting mirror 28. The path of light when replaced is shown. A light beam 33 refracted and transmitted through the Brewster angle from the container 2 rearward at the boundary between the container 2 and the atmosphere is reflected on the outer peripheral side compared to the case of the reflecting mirror 28 in FIG. As the reflecting mirror 28 'increases, the area kicked by the first reflecting mirror 8 before entering the detector 9 increases. A hatched portion along the light beam 33 and the light beam 34 in FIG. 13 indicates the region. Therefore, the second reflecting mirror 28 defined by the ellipse 29 can be said to be the largest reflecting mirror that can efficiently collect the scattered light 27 emitted backward when the positions of the focal point 30 and the focal point 31 are fixed. .

次に,焦点30と焦点31の位置は同じで,より小さな回転楕円体からなる場合について図14により説明する。図14は,焦点30,31の位置は第2の反射鏡28と同じで,反射鏡を第2の反射鏡28より小さな楕円29”に基づく回転楕円体からなる第2の反射鏡28”に置き換えた場合の光の進路等を示す。容器2から後方に出射した光の内,光軸10を中心にした照射光4を通過する開口,もしくは,散乱光27の出射中心15に入射する光が,透過光吸収体に蹴られずに入射できる光軸との角度が最小の光線と楕円29との交点を光軸からの半径とする開口に当たっていた光35は,楕円29で定義される第2の反射鏡28に当たる場合に比べて,図14で示されるように第2の反射鏡28”では右側かつ光軸側で当たるようになる。そのため,楕円29”が小さくなるに従い,透過光吸収体6に蹴られて検出器9に届かない領域が増えていく。図14の,透過光吸収体6に蹴られずに検出器に向かう光線36に沿ってハッチングした部分がその領域を示す。   Next, the case where the positions of the focal point 30 and the focal point 31 are the same and are made of smaller spheroids will be described with reference to FIG. In FIG. 14, the positions of the focal points 30 and 31 are the same as those of the second reflecting mirror 28, and the reflecting mirror is changed to a second reflecting mirror 28 ″ composed of a spheroid based on an ellipse 29 ″ smaller than the second reflecting mirror 28. The path of light when replaced is shown. Of the light emitted backward from the container 2, the light that enters the irradiation light 4 centered on the optical axis 10 or the light incident on the emission center 15 of the scattered light 27 is not kicked by the transmitted light absorber. Compared with the case where the light 35 hitting the aperture whose radius from the optical axis is the intersection of the light beam having the smallest angle with the optical axis and the ellipse 29 hits the second reflecting mirror 28 defined by the ellipse 29, 14, the second reflecting mirror 28 ″ hits on the right side and the optical axis side. Therefore, as the ellipse 29 ″ becomes smaller, it is kicked by the transmitted light absorber 6 and does not reach the detector 9. The area will increase. In FIG. 14, a hatched portion along the light beam 36 that goes to the detector without being kicked by the transmitted light absorber 6 indicates the region.

ただし,透過光吸収体6が十分小さい場合は,この限りではないが,焦点30がブリュースタ角で出射する点を基準にしている関係で,楕円29”が小さくなるに従い,検出器9に入射する位置が光軸を横切ってずれていく。よって,前述の楕円29で定義される第2の反射鏡28が,焦点30と焦点31の位置を固定した場合に,後方に出射する散乱光27を効率よく集光できる最小の反射鏡といえるが,透過光吸収体の大きさによっては,楕円29”の方向に小さくすることも可能である。本実施例では,楕円29で定義される第2の反射鏡28を用いている。   However, when the transmitted light absorber 6 is sufficiently small, this is not limited to this, but the incident is incident on the detector 9 as the ellipse 29 ″ becomes smaller because the focal point 30 is output at the Brewster angle. Therefore, when the position of the focal point 30 and the focal point 31 is fixed by the second reflecting mirror 28 defined by the ellipse 29, the scattered light 27 is emitted backward. Can be said to be the smallest reflecting mirror that can efficiently collect the light, but depending on the size of the transmitted light absorber, it can be reduced in the direction of the ellipse 29 ″. In the present embodiment, the second reflecting mirror 28 defined by the ellipse 29 is used.

図15に本発明による液体分析装置の計測部を示す。本実施例では,実施例1に示す前方に出射する散乱光もしくは蛍光と,実施例2に示す後方に出射する散乱光もしくは蛍光を同時に検出する。分析の方法,光の検出方法等,実施例1及び実施例2と同じであるため,内容を改めて記載することは割愛する。   FIG. 15 shows a measuring unit of the liquid analyzer according to the present invention. In this embodiment, the scattered light or fluorescence emitted forward shown in the first embodiment and the scattered light or fluorescence emitted backward shown in the second embodiment are simultaneously detected. Since the analysis method, the light detection method, and the like are the same as those in the first and second embodiments, the description of the contents is omitted.

図16,図17,図18及び図19に,本発明による液体分析装置の計測部等を示す。図16は本実施例による液体分析装置の計測部であり,複数の計測部が並んで配置されている内の2ヶ所のみを示している。図17は,本実施例で用いているシャッタの一部分を表す平面図である。図18は,図16に示す計測部の内一ヶ所のみを,ハッチングで示す散乱光や蛍光と共に示している。図19は本実施例による液体分析装置の計測部の1部分を,第1の反射鏡8,第2の反射鏡28,及び透過光吸収体6を除いた立体図で示している。本実施例も,散乱光を用いる場合にも蛍光を用いる場合にも,どちらにでも対応可能な構造となっているため,以下では蛍光も含めて単に散乱光として説明する。   16, FIG. 17, FIG. 18 and FIG. 19 show the measuring unit and the like of the liquid analyzer according to the present invention. FIG. 16 shows a measuring unit of the liquid analyzer according to the present embodiment, and shows only two of a plurality of measuring units arranged side by side. FIG. 17 is a plan view showing a part of the shutter used in this embodiment. FIG. 18 shows only one of the measurement units shown in FIG. 16 together with scattered light and fluorescence indicated by hatching. FIG. 19 shows a part of the measurement unit of the liquid analyzer according to this embodiment in a three-dimensional view excluding the first reflecting mirror 8, the second reflecting mirror 28, and the transmitted light absorber 6. Since the present embodiment also has a structure that can handle both the case of using scattered light and the case of using fluorescence, the following description will be made simply as scattered light including fluorescence.

本実施例での試料溶液1は,図16,図18及び図19に示すように一定の隙間を保って平行に配置された第1の透明基板37と第2の透明基板38からなる容器に相当するデバイス39の中に保持されている。デバイス39は,実施例1,実施例2及び実施例3に示す容器2に相当するものであり,試料溶液1はデバイス39の内部で,デバイス39に設けられた複数の搬送電極40に印加する電圧を順次切り替えることにより静電力によって搬送され,複数の計測部で順次計測されていく。また,図16及び図18では光軸10が鉛直方向に配置されているが,これらの図を上から見た平面図とし,光軸が水平であっても良い。   The sample solution 1 in this example is placed in a container composed of a first transparent substrate 37 and a second transparent substrate 38 arranged in parallel with a certain gap as shown in FIGS. It is held in the corresponding device 39. The device 39 corresponds to the container 2 shown in Example 1, Example 2 and Example 3, and the sample solution 1 is applied to the plurality of transport electrodes 40 provided in the device 39 inside the device 39. By sequentially switching the voltage, it is conveyed by electrostatic force, and is sequentially measured by a plurality of measuring units. In FIGS. 16 and 18, the optical axis 10 is arranged in the vertical direction. However, these figures may be plan views as viewed from above, and the optical axis may be horizontal.

本実施例での液体分析方法等は実施例3と同じであり,前方に出射する散乱光と後方に出射する散乱光の両方を検出する。実施例3との違いは,図16,図17及び図18に示すシャッタ41により,前方に出射する散乱光や後方に出射する散乱光の両方を検出する場合と,前方もしくは後方に出射する散乱光のどちらか一方を検出する場合,もしくは,両方の散乱光を隠す場合とを切り替えるところにある。これは特に散乱光の検出のときにより詳細な検出データを得るのに有効な手段となる。その理由は,実施例1で詳細に述べたラテックス凝集反応による免疫比濁法等を用いる場合,使用するラテックス粒子の大きさにより,また,ラテックス粒子同士の凝集の度合により散乱の方向や散乱の角度などが変化するためである。   The liquid analysis method in this embodiment is the same as that in Embodiment 3, and both scattered light emitted forward and scattered light emitted backward are detected. The difference from the third embodiment is that both the scattered light emitted forward and the scattered light emitted backward are detected by the shutter 41 shown in FIGS. 16, 17 and 18, and the scattering emitted forward or backward is performed. There is a switch between detecting either one of the lights or hiding both scattered lights. This is an effective means for obtaining more detailed detection data especially when detecting scattered light. The reason for this is that when the immunoturbidimetric method using latex agglutination described in detail in Example 1 is used, depending on the size of latex particles used and the degree of aggregation between latex particles, This is because the angle changes.

本実施例で前方に出射する散乱光と後方に出射する散乱光の両方を検出する場合と,前方もしくは後方に出射する散乱光のどちらか一方を検出する場合,もしくは,両方の散乱光を隠す場合とを切り替える方法を説明する。この場合,前方に出射する散乱光とは,図18に示すような第1の反射鏡8により集光された散乱光7であり,後方に出射する散乱光とは第2の反射鏡28により集光された散乱光27である。   In this embodiment, when detecting both the scattered light emitted forward and the scattered light emitted backward, when detecting either the scattered light emitted forward or backward, or hiding both scattered lights A method for switching between cases will be described. In this case, the scattered light emitted forward is the scattered light 7 collected by the first reflecting mirror 8 as shown in FIG. 18, and the scattered light emitted backward is caused by the second reflecting mirror 28. This is the condensed scattered light 27.

図17に平面方向から見たシャッタ41の一部を示す。シャッタ41には,計測位置毎に3ヶ所の光学的な開口部42があり,図17のハッチングで示す部分は光を遮断し,それ以外の白抜きの部分は光を通過する。光学的な開口部42は,前方に出射する散乱光と後方に出射する散乱光の両方を透過する開口43,前方に出射する散乱光のみを透過する開口44,後方に出射する散乱光のみを透過する開口45の3ヶ所が一組になっている。但し,3ヶ所のうち必要でない開口がある場合は除外できるのは言うまでもない。開口44の中心部には後方に出射する散乱光のみを遮断するシャッタ46があり,開口44をリング状の開口としている。シャッタは,光を透過するガラスやプラスチック等の材質に光を遮断する材質を貼り付けるか蒸着する等して製作したものか,金属等の光を遮断する材質にエッチング等で開口を作成して製作すればよい。エッチング等で開口を作成する場合はシャッタ46になる部分を細いリブ状のブリッジで開口44の内径と接続しておく等すれば良い。シャッタ41により前方に出射する散乱光と後方に出射する散乱光の両方を検出する場合と,前方もしくは後方に出射する散乱光のどちらか一方を検出する場合,もしくは,両方の散乱光を隠す場合とを切り替える場合は,図16及び図18に示す矢印の方向にシャッタを移動し,光軸10に所望の開口の中心が来るようにすれば良い。開口部42の各開口の配列は,本実施例に従う必要はなく,任意で良い。ちなみに開口部42内の配列が90度変われば,図16及び図18に示す矢印の向きは紙面に垂直な方向となるし,90度以外の変更もありうる。また,本実施例でのシャッタ41の位置は第1の反射鏡8と検出器9との間であるが,配置場所に合わせて開口の大きさや配列を決定すれば,ほかの場所に配置することが可能である。   FIG. 17 shows a part of the shutter 41 viewed from the plane direction. The shutter 41 has three optical openings 42 for each measurement position. The hatched portions in FIG. 17 block light, and the other white portions pass light. The optical opening 42 includes an opening 43 that transmits both scattered light emitted forward and scattered light emitted backward, an opening 44 that transmits only scattered light emitted forward, and only scattered light emitted backward. Three places of the opening 45 which permeate | transmit are one set. However, it goes without saying that if there are unnecessary openings in the three places, they can be excluded. At the center of the opening 44 is a shutter 46 that blocks only scattered light emitted backward, and the opening 44 is a ring-shaped opening. The shutter is manufactured by pasting or vapor-depositing a light blocking material on a material such as glass or plastic that transmits light, or by creating an opening by etching or the like in a light blocking material such as metal. Just make it. When the opening is formed by etching or the like, the portion that becomes the shutter 46 may be connected to the inner diameter of the opening 44 by a thin rib-shaped bridge. When both the scattered light emitted forward and the scattered light emitted backward are detected by the shutter 41, when either the scattered light emitted forward or backward is detected, or when both scattered lights are hidden Is switched, the shutter is moved in the direction of the arrow shown in FIGS. 16 and 18 so that the center of the desired opening is positioned on the optical axis 10. The arrangement of the openings of the opening 42 need not be in accordance with the present embodiment, and may be arbitrary. Incidentally, if the arrangement in the openings 42 changes by 90 degrees, the direction of the arrows shown in FIGS. 16 and 18 becomes a direction perpendicular to the paper surface, and there may be changes other than 90 degrees. Further, the position of the shutter 41 in the present embodiment is between the first reflecting mirror 8 and the detector 9, but if the size and arrangement of the openings are determined according to the arrangement location, the shutter 41 is arranged at another location. It is possible.

本発明は,液体試料中に含まれる成分量を検出する分析装置に係わり,試料から発せられる蛍光や散乱光を小型にしてかつ効率よく集光して検出することができ,微少量の試料での安定分析を可能にする。そのため試料溶液の微量化のみならず装置の小型化に貢献することができる。   The present invention relates to an analyzer that detects the amount of a component contained in a liquid sample, and is capable of detecting fluorescent light and scattered light emitted from a sample in a small size and efficiently condensing and detecting a small amount of sample. Enables stable analysis. Therefore, it can contribute not only to the miniaturization of the sample solution but also to miniaturization of the apparatus.

液体分析装置の計測部を示す図。The figure which shows the measurement part of a liquid analyzer. 容器側から大気側に散乱光もしくは蛍光が進む状態の略図。Schematic of the state in which scattered light or fluorescence travels from the container side to the atmosphere side. 容器側から大気側に進む光の反射率と透過率を表すグラフ。The graph showing the reflectance and transmittance of light traveling from the container side to the atmosphere side. 大気側から容器側に散乱光もしくは蛍光が進む状態の略図。Schematic of a state in which scattered light or fluorescence travels from the atmosphere side to the container side. 大気側から容器側に進む光の反射率と透過率を表すグラフ。The graph showing the reflectance and transmittance | permeability of the light which progresses from the atmosphere side to the container side. 図1の部分拡大図。The elements on larger scale of FIG. 図6の部分拡大図。The elements on larger scale of FIG. 図6の部分拡大図。The elements on larger scale of FIG. 図6の反射鏡を大きくした例を示す図。The figure which shows the example which enlarged the reflective mirror of FIG. 図6の反射鏡を小さくした例を示す図。The figure which shows the example which made the reflective mirror of FIG. 6 small. 液体分析装置の計測部を示す図。The figure which shows the measurement part of a liquid analyzer. 図11の部分拡大図。The elements on larger scale of FIG. 図11の反射鏡を大きくした例を示す図。The figure which shows the example which enlarged the reflective mirror of FIG. 図11の反射鏡を小さくした例を示す図。The figure which shows the example which made the reflective mirror of FIG. 11 small. 液体分析装置の計測部を示す図。The figure which shows the measurement part of a liquid analyzer. 液体分析装置の計測部を示す図。The figure which shows the measurement part of a liquid analyzer. シャッタの平面図。The top view of a shutter. 図16の部分拡大図。The elements on larger scale of FIG. 液体分析装置の計測部の一部分の立体図。The three-dimensional figure of a part of measuring part of a liquid analyzer.

符号の説明Explanation of symbols

1…試料溶液,2…容器,3…光源,4…光,5…レンズ,6…透過光吸収体,7…散乱光,7’…蛍光,8…第1の反射鏡,8’…第1の反射鏡,8”…第1の反射鏡,9…検出器,10…光軸,11…楕円,11’…楕円,11”…楕円,12…焦点,13…焦点,14…通過点,15…出射中心,16…光線,17…検出面中心,18…光線,19…光線,19’…光線,20…開始位置,21…終了位置,22…交点,23…交点,24…光,25…光線,26…交点,27…散乱光,27’…蛍光,28…第2の反射鏡,28’…第2の反射鏡,28”…第2の反射鏡,29…楕円,29’…楕円,29”…楕円,30…焦点,31…焦点,32…通過点,33…光線,34…光線,35…光,36…光線,37…第1の透明基板,38…第2の透明基板,39…デバイス,40…搬送電極,41…シャッタ,42…開口部,43…開口,44…開口,45…開口,46…シャッタ。   DESCRIPTION OF SYMBOLS 1 ... Sample solution, 2 ... Container, 3 ... Light source, 4 ... Light, 5 ... Lens, 6 ... Transmitted light absorber, 7 ... Scattered light, 7 '... Fluorescence, 8 ... 1st reflective mirror, 8' ... 1st 1 reflecting mirror, 8 "... 1st reflecting mirror, 9 ... detector, 10 ... optical axis, 11 ... ellipse, 11 '... ellipse, 11" ... ellipse, 12 ... focus, 13 ... focus, 14 ... pass point , 15 ... emission center, 16 ... light beam, 17 ... detection surface center, 18 ... light beam, 19 ... light beam, 19 '... light beam, 20 ... start position, 21 ... end position, 22 ... intersection point, 23 ... intersection point, 24 ... light , 25 ... light rays, 26 ... intersections, 27 ... scattered light, 27 '... fluorescence, 28 ... second reflecting mirror, 28' ... second reflecting mirror, 28 "... second reflecting mirror, 29 ... ellipse, 29 '... ellipse, 29 "... ellipse, 30 ... focus, 31 ... focus, 32 ... pass point, 33 ... light, 34 ... light, 35 ... light, 36 ... light, 37 ... first transparent substrate 38 ... second transparent substrate, 39 ... device, 40 ... carrier electrode, 41 ... shutter, 42 ... opening, 43 ... opening, 44 ... opening, 45 ... opening, 46 ... shutter.

Claims (14)

試料溶液を保持する少なくとも2面の壁面を有する試料保持器と,
前記試料保持器中の試料溶液に光を照射する照射光学系と,
前記試料保持器中の試料溶液を透過した光を捕捉する透過光捕捉器と,
前記試料保持器中の試料溶液により光の照射方向側に散乱した前方散乱光を集光する第1の反射鏡と,
前記試料保持器中の試料溶液により光の照射方向と反対側に散乱した後方散乱光を集光する第2の反射鏡と,
第1の反射鏡と第2の反射鏡により集光した散乱光を検出する検出器と
を備えることを特徴とする液体分析装置。
A sample holder having at least two wall surfaces for holding the sample solution;
An irradiation optical system for irradiating the sample solution in the sample holder with light;
A transmitted light capturing device for capturing light transmitted through the sample solution in the sample holder;
A first reflecting mirror for condensing forward scattered light scattered on the light irradiation direction side by the sample solution in the sample holder;
A second reflecting mirror for condensing backscattered light scattered on the opposite side of the light irradiation direction by the sample solution in the sample holder;
A liquid analyzer comprising: a first reflecting mirror; and a detector that detects scattered light collected by the second reflecting mirror.
請求項1記載の液体分析装置において,前記第1の反射鏡及び前記第2の反射鏡は,回転楕円体の一部からなる回転楕円鏡であることを特徴とする液体分析装置。   2. The liquid analyzer according to claim 1, wherein the first reflecting mirror and the second reflecting mirror are spheroid mirrors made of a part of a spheroid. 請求項2記載の液体分析装置において,前記第2の反射鏡で集光した散乱光を前記第1の反射鏡の開口部を通して検出器に集光することを特徴とする液体分析装置。   3. The liquid analyzer according to claim 2, wherein the scattered light collected by the second reflecting mirror is collected on a detector through an opening of the first reflecting mirror. 請求項3記載の液体分析装置において,前記前方散乱光は前記第1の反射鏡に1回反射して前記検出器に集光され,前記後方散乱光は前記第2の反射鏡に1回反射して前記検出器に集光されることを特徴とする液体分析装置。   4. The liquid analyzer according to claim 3, wherein the forward scattered light is reflected once by the first reflecting mirror and collected by the detector, and the backward scattered light is reflected once by the second reflecting mirror. Then, the liquid analyzer is focused on the detector. 請求項3記載の液体分析装置において,前記第1の反射鏡は,反射によって前記前方散乱光の進行方向の光軸方向の成分を反転しないことを特徴とする液体分析装置。   The liquid analyzer according to claim 3, wherein the first reflecting mirror does not invert a component in an optical axis direction of a traveling direction of the forward scattered light by reflection. 請求項3記載の液体分析装置において,前記第1の反射鏡と前記第2の反射鏡の前記検出器側の焦点位置が同じであることを特徴とする液体分析装置。   4. The liquid analyzer according to claim 3, wherein focal positions of the first reflecting mirror and the second reflecting mirror on the detector side are the same. 請求項6記載の液体分析装置において,
前記第1の反射鏡の第1の焦点位置は,前記前方散乱光の出射中心から前記試料保持器の壁面をブリュースタ角で出射した光線の光路を進行方向と逆方向に延長したとき光軸と交差する点に一致し,
前記第2の反射鏡の第1の焦点位置は,前記後方散乱光の出射中心から前記試料保持器の壁面をブリュースタ角で出射した光線の光路を進行方向と逆方向に延長したとき光軸と交差する点に一致し,
前記第1の反射鏡及び前記第2の反射鏡の第2の焦点位置は,前記検出器にブリュースタ角で入射し前記検出器の検出面中心に達する光線の前記検出器に向かって進行している光路をそのまま進行方向に延長したとき光軸と交差する点に一致することを特徴とする液体分析装置。
The liquid analyzer according to claim 6,
The first focal position of the first reflecting mirror is an optical axis when the optical path of the light beam emitted from the emission center of the forward scattered light at the Brewster angle on the wall surface of the sample holder is extended in the direction opposite to the traveling direction. Matches the point where
The first focal position of the second reflecting mirror is an optical axis when the optical path of the light beam emitted from the emission center of the backscattered light on the wall surface of the sample holder at a Brewster angle is extended in the direction opposite to the traveling direction. Matches the point where
The second focal positions of the first reflecting mirror and the second reflecting mirror are incident on the detector at a Brewster angle and travel toward the detector at the detection surface center of the detector. A liquid analyzer characterized by being coincident with a point intersecting the optical axis when the optical path is extended in the traveling direction as it is.
請求項7記載の液体分析装置において,前記第1の反射鏡の反射面を定義する楕円は,
前記透過光捕捉器に当たらずに前記検出器の検出面中心に達することのできる光線のうち光軸との角度が最小の光線の光路と,前記前方散乱光の出射中心からブリュースタ角で出射した光線との交点を通過点として有する第1の楕円と,
前記前方散乱光の出射中心から出て前記透過光捕捉器に当たらずに進む前方散乱光のうち光軸との角度が最小の光線と,前記検出器にブリュースタ角で入射し前記検出器の検出面中心に達する光線の光路との交点を通過点として有する第2の楕円の範囲にあることを特徴とする液体分析装置。
8. The liquid analyzer according to claim 7, wherein an ellipse defining a reflecting surface of the first reflecting mirror is
Out of the light beams that can reach the detection surface center of the detector without hitting the transmitted light capture device, the light path of the light beam having the smallest angle with the optical axis, and the Brewster angle emitted from the emission center of the forward scattered light A first ellipse having a point of intersection with the reflected ray as a passing point;
Out of the forward scattered light that travels out from the emission center of the forward scattered light and travels without hitting the transmitted light capturing device, a light beam having a minimum angle with the optical axis is incident on the detector at a Brewster angle. A liquid analyzer characterized by being in the range of a second ellipse having an intersection with an optical path of a light beam reaching the center of the detection surface as a passing point.
請求項8記載の液体分析装置において,前記第1の反射鏡の反射面の光軸方向の長さの範囲は,少なくとも,前記前方散乱光の出射中心から前記試料保持器の壁面をブリュースタ角で出射した光線から,前記前方散乱光の出射中心から出て前記透過光捕捉器に当たらずに進む前方散乱光のうち光軸との角度が最小の光線までの前方散乱光を反射できる長さの範囲を有することを特徴とする液体分析装置。   9. The liquid analyzer according to claim 8, wherein the length of the reflecting surface of the first reflecting mirror in the optical axis direction is at least a Brewster angle from the emission center of the forward scattered light to the wall surface of the sample holder. The length of the forward scattered light that can be reflected from the light beam emitted from the step up to the light beam having the smallest angle with the optical axis out of the forward scattered light that travels from the emission center of the forward scattered light and does not hit the transmitted light capturing device. A liquid analyzer characterized by having a range of 請求項7記載の液体分析装置において,前記第2の反射鏡の反射面を定義する楕円は,前記後方散乱光の出射中心から前記試料保持器の壁面をブリュースタ角で出射した光線と,前記第1の反射鏡に蹴られることなくブリュースタ角より小さい角度で前記検出器の検出面中心に入射できる光線のうち光軸との角度が最大の光線の光路との交点を通過点として有する楕円であることを特徴とする液体分析装置。   8. The liquid analyzer according to claim 7, wherein an ellipse defining a reflection surface of the second reflecting mirror is a light beam emitted from the emission center of the backscattered light at a wall surface of the sample holder at a Brewster angle, and An ellipse having, as a passing point, an intersection with a light path of a light beam having a maximum angle with the optical axis among light beams that can enter the detection surface center of the detector at an angle smaller than the Brewster angle without being kicked by the first reflecting mirror. A liquid analyzer characterized by that. 請求項10記載の液体分析装置において,前記第2の反射鏡の光軸を中心とした外径は光軸から前記通過点までの距離よりも大きく,光軸を中心にした照射光を通過する開口,もしくは,前記第2の焦点位置に入射する光が,前記透過光捕捉器に蹴られずに入射できる光軸との角度が最小の光線と前記第2の反射鏡の反射面を定義する楕円との交点を光軸からの半径とする開口を有することを特徴とする液体分析装置。   11. The liquid analyzer according to claim 10, wherein an outer diameter centered on the optical axis of the second reflecting mirror is larger than a distance from the optical axis to the passing point, and passes irradiation light centered on the optical axis. An ellipse that defines a light ray having a minimum angle with an optical axis at which the light incident on the aperture or the second focal position can be incident without being kicked by the transmitted light capturing device and the reflecting surface of the second reflecting mirror A liquid analyzer having an opening having a radius from the optical axis as an intersection with the liquid crystal. 請求項1記載の液体分析装置において,試料溶液に励起光を照射し試料溶液により光の照射方向側に出射した蛍光と光の照射方向と反対側に出射した蛍光とを集光することを特徴とする液体分析装置。   2. The liquid analyzer according to claim 1, wherein the sample solution is irradiated with excitation light, and the fluorescence emitted from the sample solution to the light irradiation direction side and the fluorescence emitted to the opposite side of the light irradiation direction are condensed. A liquid analyzer. 請求項1記載の液体分析装置において,前記透過光捕捉器は,透過光量を検出する透過光検出器を兼ねることを特徴とする液体分析装置。   2. The liquid analyzer according to claim 1, wherein the transmitted light capturing device also serves as a transmitted light detector for detecting a transmitted light amount. 請求項7記載の液体分析装置において,前記第1の反射鏡によって集光された前方散乱光を遮断する第1のシャッタ及び前記第2の反射鏡によって集光された後方散乱光を遮断する第2のシャッタを有し,若しくは前記第1のシャッタ又は前記第2のシャッタのどちらか一方を有し,シャッタを切り替えることで前記前方散乱光と前記後方散乱光の両方,若しくは前記前方散乱光又は前記後方散乱光のどちらか一方のみを検出することを特徴とする液体分析装置。   8. The liquid analyzer according to claim 7, wherein a first shutter that blocks forward scattered light collected by the first reflecting mirror and a back scattered light collected by the second reflecting mirror are blocked. 2 shutters, or one of the first shutter and the second shutter, and by switching the shutter, both the forward scattered light and the back scattered light, or the forward scattered light or A liquid analyzer that detects only one of the backscattered light.
JP2007302102A 2007-11-21 2007-11-21 Liquid analyzer Expired - Fee Related JP5300249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302102A JP5300249B2 (en) 2007-11-21 2007-11-21 Liquid analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302102A JP5300249B2 (en) 2007-11-21 2007-11-21 Liquid analyzer

Publications (2)

Publication Number Publication Date
JP2009128125A true JP2009128125A (en) 2009-06-11
JP5300249B2 JP5300249B2 (en) 2013-09-25

Family

ID=40819215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302102A Expired - Fee Related JP5300249B2 (en) 2007-11-21 2007-11-21 Liquid analyzer

Country Status (1)

Country Link
JP (1) JP5300249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185121A (en) * 2011-03-08 2012-09-27 National Institute Of Advanced Industrial & Technology Optical characteristic measurement device
JP2015515009A (en) * 2012-04-23 2015-05-21 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Biological assay sample analyzer
CN105527224A (en) * 2014-09-29 2016-04-27 安东帕有限公司 For symmetrizing geometrical shape of incident beam and scattered beam to adjust orientation of sample rack so as to compensate distortion related to refractive index

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107238A (en) * 1982-12-10 1984-06-21 Hitachi Ltd Particle measuring device using light scattering
JPS617426A (en) * 1984-06-21 1986-01-14 Shimadzu Corp Photometer
JP2000162126A (en) * 1998-11-25 2000-06-16 Fuji Photo Film Co Ltd Image information reader
JP2002267605A (en) * 2001-03-07 2002-09-18 Hitachi Kokusai Electric Inc Fluorescence reading instrument
WO2007112214A2 (en) * 2006-03-23 2007-10-04 Hach Company Dual function measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107238A (en) * 1982-12-10 1984-06-21 Hitachi Ltd Particle measuring device using light scattering
JPS617426A (en) * 1984-06-21 1986-01-14 Shimadzu Corp Photometer
JP2000162126A (en) * 1998-11-25 2000-06-16 Fuji Photo Film Co Ltd Image information reader
JP2002267605A (en) * 2001-03-07 2002-09-18 Hitachi Kokusai Electric Inc Fluorescence reading instrument
WO2007112214A2 (en) * 2006-03-23 2007-10-04 Hach Company Dual function measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185121A (en) * 2011-03-08 2012-09-27 National Institute Of Advanced Industrial & Technology Optical characteristic measurement device
JP2015515009A (en) * 2012-04-23 2015-05-21 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Biological assay sample analyzer
US9606067B2 (en) 2012-04-23 2017-03-28 Siemens Healthcare Diagnostics Inc. Biological assay sample analyzer
CN105527224A (en) * 2014-09-29 2016-04-27 安东帕有限公司 For symmetrizing geometrical shape of incident beam and scattered beam to adjust orientation of sample rack so as to compensate distortion related to refractive index
CN105527224B (en) * 2014-09-29 2019-02-22 安东帕有限公司 It is a kind of for analyzing the device and method of sample

Also Published As

Publication number Publication date
JP5300249B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4472024B2 (en) Fluorescence detection apparatus and fluorescence detection method
JP6691043B2 (en) Particle characterization device
US7750316B2 (en) Polymer biochip for detecting fluorescence
JP6369533B2 (en) Measuring method and measuring device
JP5366536B2 (en) Raman scattered light measurement system
JP5815123B2 (en) Apparatus and method for enhancing collection efficiency in capillary-based flow cytometry
JP4259762B2 (en) Optical configuration for detecting light
JP6635168B2 (en) Surface plasmon resonance fluorescence analysis method
US20200003688A1 (en) Surface Plasmon Resonance Fluorescence Analysis Device And Surface Plasmon Resonance Fluorescence Analysis Method
EP2726852B1 (en) Multiple examinations of a sample
JP6587024B2 (en) Detection method and detection apparatus
JP6856074B2 (en) Measuring method, measuring device and measuring system
JP6888548B2 (en) Measuring method
US10677732B2 (en) Detection chip, detection kit, detection system, and method for detecting detection target substance
WO2017057136A1 (en) Surface plasmon-field enhanced fluorescence spectroscopy and measurement kit
JP5300249B2 (en) Liquid analyzer
EP3159677B1 (en) Detection device
JP6848975B2 (en) Measuring method
JP5052318B2 (en) Fluorescence detection device
JP2020003215A (en) Flow cell
WO2021009995A1 (en) Detection device and detection method
JP6241163B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP5463960B2 (en) Measuring device
JP2010122146A (en) Measurement system
WO2013136891A1 (en) Spectroscopic device, spectroscopic lens and spectroscopic container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees