WO2013136891A1 - Spectroscopic device, spectroscopic lens and spectroscopic container - Google Patents

Spectroscopic device, spectroscopic lens and spectroscopic container Download PDF

Info

Publication number
WO2013136891A1
WO2013136891A1 PCT/JP2013/053236 JP2013053236W WO2013136891A1 WO 2013136891 A1 WO2013136891 A1 WO 2013136891A1 JP 2013053236 W JP2013053236 W JP 2013053236W WO 2013136891 A1 WO2013136891 A1 WO 2013136891A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
focal position
light
image side
objective lens
Prior art date
Application number
PCT/JP2013/053236
Other languages
French (fr)
Japanese (ja)
Inventor
山口 光城
田邊 哲也
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2013136891A1 publication Critical patent/WO2013136891A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0085Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with both a detector and a source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors

Definitions

  • the present invention relates to an optical analysis device, an optical analysis lens, and an optical analysis container.
  • FCS fluorescence correlation spectroscopy
  • the optical system used in this FCS uses an immersion objective lens provided in a laser confocal microscope for imaging fluorescence in a sample, most of the fluorescence emitted from fluorescent molecules cannot be used.
  • the SN ratio is low. That is, since the particles in the solution rotate at high speed, the emitted fluorescence is emitted uniformly and isotropically in all directions, but the angle of capture of the immersion objective lens of a normal laser confocal microscope is the light. Since the angle range is 70 ° on one side with the axis as the center, the fluorescence emitted in the direction corresponding to the angle range of 110 ° on the other side is discarded without being detected.
  • An object of the present invention is to provide an analyzer, a lens for optical analysis, and a container for optical analysis.
  • One embodiment of the present invention condenses excitation light emitted from a light source and irradiates a sample solution disposed at a focal position, and is dispersed in the sample solution and emitted from a light-emitting substance existing at the focal position.
  • An objective lens for condensing light, and a tip optical member of the objective lens has a concave portion recessed on the image side on the most distal surface, and the focal position is on the image surface side or on the most image side It is an optical analyzer arrange
  • the excitation light emitted from the light source is collected by the objective lens and irradiated to the sample solution arranged at the focal position. Since the luminescent substance is dispersed in the sample solution, the excitation light generates light such as fluorescence or phosphorescence by exciting the luminescent substance that passes through the focal position of the objective lens.
  • the light generated in the luminescent material at the focal point is emitted isotropically in all directions, but the focal point is located on the foremost surface of the objective lens or in the concave portion on the image side, so that the light Light emitted in a direction corresponding to an angle range of about 90 ° on one side about the axis (that is, about half of the generated light) can be taken into the objective lens from the inner surface constituting the recess and detected.
  • the SN ratio in the case of photocounting can be improved and highly accurate detection can be performed.
  • the tip optical member collects the light incident from the first surface and the first surface constituting the inner surface of the recess, on which the light emitted from the light emitting substance at the focal position is incident. And a second surface having a positive power.
  • the said 1st surface may be comprised by the inner spherical surface centering on the said focus position.
  • the light generated by exciting the fluorescent material by irradiating the excitation light at the focal position is emitted radially around the focal position, but the inner surface ( Spherical inner surface) makes it possible to enter the objective lens without refraction on the inner surface.
  • the second surface may be a spherical surface that is decentered toward the image side in the optical axis direction with respect to the first surface.
  • the second surface may be an ellipsoidal surface decentered toward the optical axis direction image side with respect to the first surface.
  • an outer surface having a shape complementary to the inner surface of the concave portion provided in the objective lens of any one of the above optical analyzers, and accommodating the sample solution therein.
  • the outer surface of the accommodating portion is brought into close contact with the inner surface of the concave portion.
  • a part of the sample solution accommodated in the accommodating portion is arranged at a position that matches the focal position of the objective lens, so that it is dispersed in the sample solution by irradiating excitation light through the objective lens.
  • the luminescent materials the luminescent materials that pass through the focal position are excited to generate light.
  • the generated light passes through the wall surface of the housing portion from the inside of the housing portion, enters the optical member at the tip of the objective lens, and is collected.
  • the excitation light emitted from the light source is collected and irradiated to the sample solution disposed at the focal position, and the luminescent substance is dispersed in the sample solution and present at the focal position.
  • a lens for optical analysis for condensing light emitted from the optical system comprising a tip optical member having a recess recessed on the image side on the most distal surface, and the focal position is on the image surface or on the most image side It is the lens for optical analysis arrange
  • the tip optical member collects the light incident from the first surface and the first surface constituting the inner surface of the recess, on which the light emitted from the light emitting substance at the focal position is incident. And a second surface having a positive power.
  • the said 1st surface may be comprised by the inner spherical surface centering on the said focus position.
  • the second surface may be a spherical surface that is decentered toward the optical axis direction image side with respect to the first surface, or may be an ellipsoidal surface.
  • the SN ratio when photo-counting light of one molecule level in a sample solution, the SN ratio can be improved and highly accurate detection can be performed.
  • FIG. 1 It is a block diagram which shows the optical analyzer which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view which shows an example of the front-end
  • the optical analyzer 1 reflects a light source 4 that emits laser light, and the laser light emitted from the light source 4 and transmits light generated in the sample solution A.
  • the condensing lens 7 that collects the light that has passed through the dichroic mirror 5, the confocal pinhole 8 that is disposed near the focal position of the condensing lens 7, and the light that has passed through the confocal pinhole 8
  • an analysis unit 10 that analyzes the intensity of light detected by the light detector 9 and sets an autocorrelation function.
  • reference numeral 11 denotes a collimating lens
  • reference numeral 12 denotes a barrier filter
  • reference numeral 13 denotes a mirror
  • reference numeral 14 denotes a condenser lens.
  • the confocal pinhole 8 is disposed at a position optically conjugate with the focal position of the objective lens 6.
  • the photodetector 9 is, for example, a photomultiplier tube.
  • the objective lens 6 is arranged with the optical axis directed in the vertical direction and the tip thereof directed vertically upward.
  • the objective lens 6 includes a tip optical member 6a shown in FIG. Although only the tip optical member 6a is shown in the figure, in practice, one or more lenses (not shown) for further collecting the light collected by the tip optical member 6a are provided on the image side.
  • the distal optical member 6a includes a concave portion 6c that is recessed toward the image side in the direction of the optical axis C on the frontmost surface 6b that is a plane orthogonal to the optical axis C thereof.
  • the recess 6 c is configured by an inner spherical surface that is a hemispherical inner surface.
  • the tip optical member 6a includes a first surface 6d made of an inner surface constituting the recess 6c, and a second surface 6e made of a spherical surface arranged on the image side in the optical axis C direction.
  • the first surface 6d is an inner spherical surface having a center D at a position where the optical axis C and the foremost surface 6b intersect.
  • the second surface 6e is a spherical surface having a center E (see FIG. 4) disposed at an interval on the image side in the optical axis C direction with respect to the center D of the first surface 6d.
  • the sample solution A is a living body such as an atom, molecule, or an aggregate thereof (hereinafter referred to as a particle) such as a protein, peptide, nucleic acid, lipid, sugar chain, amino acid, or an aggregate thereof.
  • a particle such as a protein, peptide, nucleic acid, lipid, sugar chain, amino acid, or an aggregate thereof.
  • Particles such as molecules, viruses, cells, or non-biological particles are dispersed or dissolved. These particles may be either particles that emit light themselves, or particles to which any luminescent label or luminescent probe is added, and are hereinafter referred to as luminescent particles (luminescent materials).
  • the light emitted from the luminescent particles is fluorescence or phosphorescence emitted by irradiation with excitation light.
  • the sample solution A is set in the optical analyzer 1 while being accommodated in a container 15.
  • the container (optical analysis container) 15 according to the present embodiment is attached to a part of the wall surface of the container 15 (a part of the bottom surface of the container 15 in FIG. 9).
  • a convex portion (accommodating portion) 16 protruding in the direction is provided.
  • the outer surface 16 a of the convex portion 16 has a shape complementary to the first surface 6 d of the concave portion 6 c provided on the tip optical member 6 a of the objective lens 6. That is, since the concave portion 6c has the first surface 6d made of a hemispherical surface, the outer surface 16a of the convex portion 16 also has a spherical shape with the same or slightly smaller radius as the concave portion 6c.
  • the wall surface of the container 15 of the convex portion 16 has a substantially uniform thickness dimension, and the sample solution A stored in the container 15 is located at the center of the spherical surface constituting the outer surface 16a of the convex portion 16. It has come to be arranged. A liquid may be interposed between the convex portion 16 of the container 15 and the concave portion 6c of the objective lens 6 as necessary, so that the two are brought into close contact with each other without any gap.
  • the convex portion 16 provided on the bottom of the container 15 containing the sample solution A is shown in FIG.
  • the objective lens 6 is inserted into a recess 6c provided on the most distal surface 6b of the most distal member 6a, and the both are kept in close contact with each other.
  • laser light is emitted from the light source 4.
  • the laser light is converted into substantially parallel light by the collimating lens 11, then reflected by the dichroic mirror 5 and incident on the objective lens 6.
  • the focal position is disposed at the center D position of the concave portion 6c formed of the inner spherical surface provided on the foremost surface 6b, as shown in FIG.
  • the laser light incident on 6 is condensed at the focal position.
  • the luminescent particles dispersed in the sample solution A are excited when irradiated with laser light, and generate fluorescence.
  • Fluorescence generated in the sample solution A is collected by the objective lens 6 and passes through the dichroic mirror 5 as substantially parallel light. After the laser light is removed from the fluorescence transmitted through the dichroic mirror 5 by the barrier filter 12, it is condensed by the condenser lens 7, reflected by the mirror 13, and only the fluorescence that has passed through the confocal pinhole 8 is condensed. The light is collected by the lens 14 and detected by the photodetector 9.
  • the confocal pinhole 8 is disposed at a position optically conjugate with the focal position of the objective lens 6, the fluorescence detected by the photodetector 9 through the confocal pinhole 8 is Only the fluorescence generated from the focal position of the objective lens 6 is obtained.
  • ⁇ (90) / ⁇ (70) 1.5
  • the concave portion 6c provided on the foremost surface 6b of the tip optical member 6a of the objective lens 6 is constituted by the first surface 6d made of an inner spherical surface having the focal position as the center D.
  • the fluorescence emitted from the focal position is incident on the first surface 6d perpendicularly. Therefore, the fluorescence is not refracted on the first surface 6d but is incident on the tip optical member 6a, and is further refracted on the image side on the second surface 6e on the image side.
  • the first surface 6d is an inner spherical surface
  • the second surface 6e is a spherical surface having a radius R
  • the center E position of the second surface 6e is set to the center D position of the first surface 6d.
  • the image side is decentered by a distance L.
  • the optical analyzer 1 As described above, according to the optical analyzer 1, the objective lens 6, and the container 15 according to the present embodiment, it is possible to detect a larger amount of fluorescent light and to photocount one-level light in the sample solution. In addition, there is an advantage that the SN ratio can be improved and highly accurate detection can be performed.
  • the tip optical member 6a in which the second surface 6e is a spherical surface is illustrated, but instead, as shown in FIG. 8, the second surface 6e may be configured by an ellipsoidal surface. Good. By doing in this way, the dimension along the optical axis C direction of the front-end
  • tip optical member 6a can be shortened, and it becomes possible to achieve size reduction of the objective lens 6 whole.
  • the container 15 capable of performing optical analysis while containing the sample solution A has been proposed, but instead of using the container 15, the objective lens 6 can be used as the objective lens 6.
  • the optical analysis may be performed using the immersion objective lens while the sample solution A is dropped and stored directly in the recess 6c.

Abstract

The objective of the present invention is, when photocounting light for a level of one molecule in a specimen solution, to improve an SN ratio and perform high-precision detection. Provided is a spectroscopic device provided with an objective lens (6), and wherein: a tip optical member (6a) of the objective lens (6) comprises an indentation recessed toward an image side at an endmost surface (6b) of said tip optical member (6a); and a focal point position (D) is placed within the indentation, said focal point position (D) being placed on the endmost surface (6b) or closer to the image side. Said objective lens: condenses excitation light emitted from a light source and shines said excitation light into the specimen solution (A), which is placed at the focal point position; and condenses light emitted from a light-emitting substance that diffuses in the specimen solution (A) and exists at the focal point position.

Description

光分析装置、光分析用レンズおよび光分析用容器Optical analysis device, optical analysis lens and optical analysis container
 本発明は、光分析装置、光分析用レンズおよび光分析用容器に関するものである。 The present invention relates to an optical analysis device, an optical analysis lens, and an optical analysis container.
 従来、1光子または1蛍光分子レベルの微弱光の検出を行う技術として、蛍光相関分光分析(FCS:Fluorescence Correlation Spectroscopy)が知られている(例えば、特許文献1参照。)。
 このFCSは、レーザ共焦点顕微鏡の光学系およびフォトカウンティング技術を用いて、試料溶液中の微小領域内に出入りする蛍光分子または蛍光標識された分子からの蛍光強度を測定する。
Conventionally, fluorescence correlation spectroscopy (FCS) is known as a technique for detecting weak light at the level of one photon or one fluorescent molecule (see, for example, Patent Document 1).
This FCS uses a laser confocal microscope optical system and a photocounting technique to measure the fluorescence intensity from fluorescent molecules entering or exiting a microregion in a sample solution or fluorescently labeled molecules.
特開2005-98876号公報Japanese Patent Laying-Open No. 2005-98766
 しかしながら、このFCSに用いられる光学系は、試料内の蛍光をイメージングするためのレーザ共焦点顕微鏡に備えられた液浸対物レンズを用いるため、蛍光分子等から発せられる蛍光の大部分を利用できず、SN比が低いという不都合がある。すなわち、溶液中における粒子は高速で回転しているために放射される蛍光はあらゆる方向に均一に等方的に放射されるが、通常のレーザ共焦点顕微鏡の液浸対物レンズの取り込み角度は光軸を中心とした片側70°角度範囲であるため、残りの片側110°の角度範囲に相当する方向に放射される蛍光は検出されずに捨てられてしまう。 However, since the optical system used in this FCS uses an immersion objective lens provided in a laser confocal microscope for imaging fluorescence in a sample, most of the fluorescence emitted from fluorescent molecules cannot be used. There is a disadvantage that the SN ratio is low. That is, since the particles in the solution rotate at high speed, the emitted fluorescence is emitted uniformly and isotropically in all directions, but the angle of capture of the immersion objective lens of a normal laser confocal microscope is the light. Since the angle range is 70 ° on one side with the axis as the center, the fluorescence emitted in the direction corresponding to the angle range of 110 ° on the other side is discarded without being detected.
 本発明は、上述した事情に鑑みてなされたものであって、試料溶液中の1分子レベルの光をフォトカウンティングする場合に、SN比を向上して、精度の高い検出を行うことができる光分析装置、光分析用レンズおよび光分析用容器を提供することを目的としている。 The present invention has been made in view of the above-described circumstances. In the case of photocounting light of one molecule level in a sample solution, the light that can improve the SN ratio and perform highly accurate detection. An object of the present invention is to provide an analyzer, a lens for optical analysis, and a container for optical analysis.
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の一態様は、光源から発せられる励起光を集光して焦点位置に配置される試料溶液に照射するとともに、該試料溶液内に分散し、前記焦点位置に存在する発光物質から発せられる光を集光する対物レンズを備え、該対物レンズの先端光学部材が、その最先端面に像側に窪む凹部を有するとともに、前記焦点位置が、前記最先端面上またはそれよりも像側の前記凹部内に配置されている光分析装置である。
In order to achieve the above object, the present invention provides the following means.
One embodiment of the present invention condenses excitation light emitted from a light source and irradiates a sample solution disposed at a focal position, and is dispersed in the sample solution and emitted from a light-emitting substance existing at the focal position. An objective lens for condensing light, and a tip optical member of the objective lens has a concave portion recessed on the image side on the most distal surface, and the focal position is on the image surface side or on the most image side It is an optical analyzer arrange | positioned in the said recessed part.
 本態様によれば、光源から発せられた励起光は、対物レンズによって集光され、その焦点位置に配置されている試料溶液に照射される。試料溶液内には発光物質が分散しているので、励起光は対物レンズの焦点位置を通過する発光物質を励起することにより蛍光あるいは燐光等の光を発生させる。焦点位置の発光物質において発生した光は、あらゆる方向に等方的に放射されるが、焦点位置が対物レンズの最先端面上またはそれよりも像側の凹部内に配置されているので、光軸を中心として片側約90°の角度範囲に相当する方向に放射された光(すなわち、発生した光の約半分)を、凹部を構成する内面から対物レンズ内に取り込み、検出することが可能となる。すなわち、試料溶液中の1分子レベルの光であっても、フォトカウンティングする場合のSN比を向上して、精度の高い検出を行うことができる。 According to this aspect, the excitation light emitted from the light source is collected by the objective lens and irradiated to the sample solution arranged at the focal position. Since the luminescent substance is dispersed in the sample solution, the excitation light generates light such as fluorescence or phosphorescence by exciting the luminescent substance that passes through the focal position of the objective lens. The light generated in the luminescent material at the focal point is emitted isotropically in all directions, but the focal point is located on the foremost surface of the objective lens or in the concave portion on the image side, so that the light Light emitted in a direction corresponding to an angle range of about 90 ° on one side about the axis (that is, about half of the generated light) can be taken into the objective lens from the inner surface constituting the recess and detected. Become. That is, even with light of a single molecule level in the sample solution, the SN ratio in the case of photocounting can be improved and highly accurate detection can be performed.
 上記態様においては、前記先端光学部材が、前記焦点位置の発光物質から発せられた光を入射させる、前記凹部の内面を構成する第1面と、該第1面から入射した光を集光する正のパワーを有する第2面とを備えていてもよい。
 このようにすることで、凹部の内面を構成する第1面から対物レンズ内に入射させた光を第2面によって集光し、その全てを像側に指向させることができる。
In the above aspect, the tip optical member collects the light incident from the first surface and the first surface constituting the inner surface of the recess, on which the light emitted from the light emitting substance at the focal position is incident. And a second surface having a positive power.
By doing in this way, the light entered into the objective lens from the first surface constituting the inner surface of the concave portion can be condensed by the second surface, and all of the light can be directed to the image side.
 また、上記態様においては、前記第1面が、前記焦点位置を中心とする内球面により構成されていてもよい。
 このようにすることで、焦点位置において励起光を照射されることにより蛍光物質が励起されて発生した光は、焦点位置を中心として放射状に射出されるが、凹部を構成する内面を内球面(球状の内面)により構成しておくことにより、当該内面においては屈折を生ずることなく対物レンズ内に入射させることができる。
Moreover, in the said aspect, the said 1st surface may be comprised by the inner spherical surface centering on the said focus position.
In this way, the light generated by exciting the fluorescent material by irradiating the excitation light at the focal position is emitted radially around the focal position, but the inner surface ( Spherical inner surface) makes it possible to enter the objective lens without refraction on the inner surface.
 また、上記態様においては、前記第2面が、前記第1面に対して光軸方向像側に偏心させた球面であってもよい。
 このようにすることで、先端光学部材の製造を容易にすることができる。
In the above aspect, the second surface may be a spherical surface that is decentered toward the image side in the optical axis direction with respect to the first surface.
By doing in this way, manufacture of a tip optical member can be made easy.
 また、上記態様においては、前記第2面が、前記第1面に対して光軸方向像側に偏心させた楕円体面であってもよい。
 このようにすることで、先端光学部材を扁平に構成して、対物レンズを含む光分析装置の小型化を図ることができる。
In the aspect described above, the second surface may be an ellipsoidal surface decentered toward the optical axis direction image side with respect to the first surface.
By doing in this way, a front-end | tip optical member can be comprised flatly and size reduction of the optical analyzer containing an objective lens can be achieved.
 また、本発明の他の態様は、上記いずれかの光分析装置の前記対物レンズに設けられた前記凹部の内面と相補的な形状の外面を有するとともに、内部に前記試料溶液を収容可能な収容部を備え、該収容部が、前記凹部に組み合わせられたときに、前記対物レンズの焦点に一致することとなる位置に試料溶液を配置可能である容器である。 According to another aspect of the present invention, there is provided an outer surface having a shape complementary to the inner surface of the concave portion provided in the objective lens of any one of the above optical analyzers, and accommodating the sample solution therein. A container in which the sample solution can be placed at a position that coincides with the focal point of the objective lens when the container is combined with the recess.
 本態様によれば、収容部の内部に試料溶液を収容して、該収容部の外面を対物レンズに設けられた凹部の内面に組み合わせると、収容部の外面が凹部の内面に密着させられる。この状態では、収容部内に収容された試料溶液の一部が、対物レンズの焦点位置に一致する位置に配置されるので、対物レンズを介して励起光を照射することにより、試料溶液内に分散している発光物質のうち、焦点位置を通過する発光物質が励起させられて光が発生する。 According to this aspect, when the sample solution is accommodated in the accommodating portion and the outer surface of the accommodating portion is combined with the inner surface of the concave portion provided in the objective lens, the outer surface of the accommodating portion is brought into close contact with the inner surface of the concave portion. In this state, a part of the sample solution accommodated in the accommodating portion is arranged at a position that matches the focal position of the objective lens, so that it is dispersed in the sample solution by irradiating excitation light through the objective lens. Among the luminescent materials, the luminescent materials that pass through the focal position are excited to generate light.
 発生した光は、収容部内から収容部の壁面を貫通して対物レンズの先端光学部材内に入射し、集光される。このようにすることで、試料溶液を容器内に入れたままの状態で、フォトカウンティングする場合のSN比を向上して、精度の高い検出を行うことができる。 The generated light passes through the wall surface of the housing portion from the inside of the housing portion, enters the optical member at the tip of the objective lens, and is collected. By doing in this way, the SN ratio in the case of carrying out photocounting can be improved in the state which put the sample solution in the container, and a highly accurate detection can be performed.
 また、本発明の他の態様は、光源から発せられる励起光を集光して焦点位置に配置される試料溶液に照射するとともに、該試料溶液内に分散し、前記焦点位置に存在する発光物質から発せられる光を集光する光分析用レンズであって、最先端面に像側に窪む凹部を有する先端光学部材を備え、前記焦点位置が、前記最先端面上またはそれよりも像側の前記凹部内に配置されている光分析用レンズである。 In another aspect of the present invention, the excitation light emitted from the light source is collected and irradiated to the sample solution disposed at the focal position, and the luminescent substance is dispersed in the sample solution and present at the focal position. A lens for optical analysis for condensing light emitted from the optical system, comprising a tip optical member having a recess recessed on the image side on the most distal surface, and the focal position is on the image surface or on the most image side It is the lens for optical analysis arrange | positioned in the said recessed part.
 上記態様においては、前記先端光学部材が、前記焦点位置の発光物質から発せられた光を入射させる、前記凹部の内面を構成する第1面と、該第1面から入射した光を集光する正のパワーを有する第2面とを備えていてもよい。
 また、上記態様においては、前記第1面が、前記焦点位置を中心とする内球面により構成されていてもよい。
 また、上記態様においては、前記第2面が、前記第1面に対して光軸方向像側に偏心させた球面であってもよいし、楕円体面であってもよい。
In the above aspect, the tip optical member collects the light incident from the first surface and the first surface constituting the inner surface of the recess, on which the light emitted from the light emitting substance at the focal position is incident. And a second surface having a positive power.
Moreover, in the said aspect, the said 1st surface may be comprised by the inner spherical surface centering on the said focus position.
Further, in the above aspect, the second surface may be a spherical surface that is decentered toward the optical axis direction image side with respect to the first surface, or may be an ellipsoidal surface.
 本発明によれば、試料溶液中の1分子レベルの光をフォトカウンティングする場合に、SN比を向上して、精度の高い検出を行うことができるという効果を奏する。 According to the present invention, when photo-counting light of one molecule level in a sample solution, the SN ratio can be improved and highly accurate detection can be performed.
本発明の一実施形態に係る光分析装置を示すブロック図である。It is a block diagram which shows the optical analyzer which concerns on one Embodiment of this invention. 図1の光分析装置に備えられた本実施形態に係る光分析用レンズの先端光学部材の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the front-end | tip optical member of the lens for optical analysis which concerns on this embodiment with which the optical analyzer of FIG. 1 was equipped. 図2の先端光学部材の凹部の中心に集光されるレーザ光および凹部の中心から発せられた蛍光の光路を模式的に示す図である。It is a figure which shows typically the optical path of the laser beam condensed on the center of the recessed part of the front-end | tip optical member of FIG. 2, and the fluorescence emitted from the center of a recessed part. 図2の先端光学部材の詳細を示す図である。It is a figure which shows the detail of the front-end | tip optical member of FIG. 図2の先端光学部材の第1面と第2面との関係を変化させたときの蛍光の光路を模式的に示す図である。It is a figure which shows typically the optical path of the fluorescence when changing the relationship between the 1st surface and 2nd surface of the front-end | tip optical member of FIG. 試料溶液内で発生した蛍光の内、図2の先端光学部材に取り込まれる蛍光を示す図である。It is a figure which shows the fluorescence taken in by the front-end | tip optical member of FIG. 2 among the fluorescence generate | occur | produced in the sample solution. 立体角を説明する図である。It is a figure explaining a solid angle. 図2の先端光学部材の変形例を示す図である。It is a figure which shows the modification of the front-end | tip optical member of FIG. 図1の光分析装置において使用される試料溶液を収容する本実施形態に係る光分析用容器の一例を示す部分的な縦断面図である。It is a partial longitudinal cross-sectional view which shows an example of the container for optical analysis which concerns on this embodiment which accommodates the sample solution used in the optical analyzer of FIG. 図8の光分析用容器を用いた場合の先端光学部材の凹部の中心に集光されるレーザ光および凹部の中心から発せられた蛍光の光路を模式的に示す図である。It is a figure which shows typically the optical path of the fluorescence emitted from the laser beam condensed from the center of the recessed part of the front-end | tip optical member at the time of using the container for optical analysis of FIG. 8, and the recessed part.
 本発明の一実施形態に係る光分析装置1、光分析用レンズ6および光分析用容器15について、図面を参照して、以下に説明する。
 本実施形態に係る光分析装置1は、図1に示されるように、レーザ光を射出する光源4と、該光源4から発せられたレーザ光を反射し、試料溶液Aにおいて発生した光を透過するダイクロイックミラー5と、該ダイクロイックミラー5により反射されたレーザ光を集光して試料溶液Aに照射する対物レンズ(光分析用レンズ)6と、試料溶液A内において発生し対物レンズ6により集光され、ダイクロイックミラー5を透過した光を集光する集光レンズ7と、該集光レンズ7の焦点位置近傍に配置された共焦点ピンホール8と、該共焦点ピンホール8を通過した光を検出する光検出器9と、該光検出器9により検出された光の強度を解析して自己相関関数を設定する解析部10とを備えている。
An optical analyzer 1, an optical analysis lens 6, and an optical analysis container 15 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the optical analyzer 1 according to the present embodiment reflects a light source 4 that emits laser light, and the laser light emitted from the light source 4 and transmits light generated in the sample solution A. Dichroic mirror 5, an objective lens (a lens for photoanalysis) 6 that collects the laser light reflected by the dichroic mirror 5 and irradiates the sample solution A, and is generated in the sample solution A and collected by the objective lens 6. The condensing lens 7 that collects the light that has passed through the dichroic mirror 5, the confocal pinhole 8 that is disposed near the focal position of the condensing lens 7, and the light that has passed through the confocal pinhole 8 And an analysis unit 10 that analyzes the intensity of light detected by the light detector 9 and sets an autocorrelation function.
 図中、符号11はコリメートレンズ、符号12はバリアフィルタ、符号13はミラー、符号14は集光レンズである。共焦点ピンホール8は、対物レンズ6の焦点位置と光学的に共役な位置に配置されている。また、光検出器9は、例えば、光電子増倍管である。 In the figure, reference numeral 11 denotes a collimating lens, reference numeral 12 denotes a barrier filter, reference numeral 13 denotes a mirror, and reference numeral 14 denotes a condenser lens. The confocal pinhole 8 is disposed at a position optically conjugate with the focal position of the objective lens 6. The photodetector 9 is, for example, a photomultiplier tube.
 本実施形態に係る対物レンズ6は、光軸を鉛直方向に向け、その先端を鉛直上方に向けて配置されるようになっている。
 また、対物レンズ6は、図2に示される先端光学部材6aを備えている。図中、先端光学部材6aのみ示しているが、実際には、その像側に、先端光学部材6aによって集光された光をさらに集光する1以上のレンズ(図示略)を備えている。
The objective lens 6 according to the present embodiment is arranged with the optical axis directed in the vertical direction and the tip thereof directed vertically upward.
The objective lens 6 includes a tip optical member 6a shown in FIG. Although only the tip optical member 6a is shown in the figure, in practice, one or more lenses (not shown) for further collecting the light collected by the tip optical member 6a are provided on the image side.
 先端光学部材6aは、その光軸Cに直交する平面からなる最先端面6bに、光軸C方向像側に窪む凹部6cを備えている。
 図2に示す例では、凹部6cは、半球状の内面である内球面により構成されている。そして、先端光学部材6aは、凹部6cを構成している内面からなる第1面6dと、その光軸C方向の像側に配置される球面からなる第2面6eとを備えている。
The distal optical member 6a includes a concave portion 6c that is recessed toward the image side in the direction of the optical axis C on the frontmost surface 6b that is a plane orthogonal to the optical axis C thereof.
In the example shown in FIG. 2, the recess 6 c is configured by an inner spherical surface that is a hemispherical inner surface. The tip optical member 6a includes a first surface 6d made of an inner surface constituting the recess 6c, and a second surface 6e made of a spherical surface arranged on the image side in the optical axis C direction.
 第1面6dは、光軸Cと最先端面6bとの交差する位置に中心Dを有する内球面である。
 第2面6eは、第1面6dの中心Dに対して光軸C方向像側に間隔をあけて配置された中心E(図4参照。)を有する球面である。
The first surface 6d is an inner spherical surface having a center D at a position where the optical axis C and the foremost surface 6b intersect.
The second surface 6e is a spherical surface having a center E (see FIG. 4) disposed at an interval on the image side in the optical axis C direction with respect to the center D of the first surface 6d.
 試料溶液Aは、溶液中に、原子、分子またはこれらの凝集体(以下、これらを粒子と称する。)、例えば、タンパク質、ペプチド、核酸、脂質、糖鎖、アミノ酸もしくはこれらの凝集体等の生体分子、ウィルス、細胞などの粒子状の対象物、あるいは、非生物学的な粒子を分散あるいは溶解させたものである。これらの粒子は、それ自体が光を発する粒子、あるいは、任意の発光標識あるいは発光プローブが付加された粒子のいずれでもよく、以下、発光粒子(発光物質)と称する。発光粒子から発せられる光は、励起光の照射により発せられる蛍光あるいは燐光等である。 The sample solution A is a living body such as an atom, molecule, or an aggregate thereof (hereinafter referred to as a particle) such as a protein, peptide, nucleic acid, lipid, sugar chain, amino acid, or an aggregate thereof. Particles such as molecules, viruses, cells, or non-biological particles are dispersed or dissolved. These particles may be either particles that emit light themselves, or particles to which any luminescent label or luminescent probe is added, and are hereinafter referred to as luminescent particles (luminescent materials). The light emitted from the luminescent particles is fluorescence or phosphorescence emitted by irradiation with excitation light.
 図1において、試料溶液Aは、容器15に収容した状態で光分析装置1にセットされる。
 本実施形態に係る容器(光分析用容器)15は、図9および図10に示されるように、容器15の壁面の一部(図9においては、容器15の底面の一部)に、外向きに突出する凸部(収容部)16を備えている。
In FIG. 1, the sample solution A is set in the optical analyzer 1 while being accommodated in a container 15.
As shown in FIGS. 9 and 10, the container (optical analysis container) 15 according to the present embodiment is attached to a part of the wall surface of the container 15 (a part of the bottom surface of the container 15 in FIG. 9). A convex portion (accommodating portion) 16 protruding in the direction is provided.
 凸部16の外面16aは、対物レンズ6の先端光学部材6aに設けられた凹部6cの第1面6dと相補的な形状を有している。すなわち、凹部6cが半球面からなる第1面6dを有するので、凸部16の外面16aも凹部6cと同一もしくは若干小さい半径の球面形状を有している。また、凸部16の容器15壁面は、略均一な厚さ寸法を有しており、凸部16の外面16aを構成する球面の中心位置には、容器15内に収容された試料溶液Aが配されるようになっている。容器15の凸部16と対物レンズ6の凹部6cとの間には、必要に応じて液体を介在させることにより、両者を隙間なく密着させることにしてもよい。 The outer surface 16 a of the convex portion 16 has a shape complementary to the first surface 6 d of the concave portion 6 c provided on the tip optical member 6 a of the objective lens 6. That is, since the concave portion 6c has the first surface 6d made of a hemispherical surface, the outer surface 16a of the convex portion 16 also has a spherical shape with the same or slightly smaller radius as the concave portion 6c. The wall surface of the container 15 of the convex portion 16 has a substantially uniform thickness dimension, and the sample solution A stored in the container 15 is located at the center of the spherical surface constituting the outer surface 16a of the convex portion 16. It has come to be arranged. A liquid may be interposed between the convex portion 16 of the container 15 and the concave portion 6c of the objective lens 6 as necessary, so that the two are brought into close contact with each other without any gap.
 このように構成された本実施形態に係る光分析装置1の作用について以下に説明する。
 本実施形態に係る光分析装置1を用いて試料溶液A内の発光粒子からの光を検出するには、試料溶液Aを収容した容器15の底部に設けられた凸部16を、図9に示されるように、対物レンズ6の最先端部材6aの最先端面6bに設けられた凹部6c内に挿入し、両者を密着させておく。
The operation of the optical analyzer 1 according to this embodiment configured as described above will be described below.
In order to detect light from the luminescent particles in the sample solution A using the optical analyzer 1 according to the present embodiment, the convex portion 16 provided on the bottom of the container 15 containing the sample solution A is shown in FIG. As shown in the drawing, the objective lens 6 is inserted into a recess 6c provided on the most distal surface 6b of the most distal member 6a, and the both are kept in close contact with each other.
 この状態で、光源4からレーザ光を射出する。レーザ光はコリメートレンズ11によって略平行光に変換された後、ダイクロイックミラー5によって反射され、対物レンズ6に入射される。 In this state, laser light is emitted from the light source 4. The laser light is converted into substantially parallel light by the collimating lens 11, then reflected by the dichroic mirror 5 and incident on the objective lens 6.
 本実施形態に係る対物レンズ6においては、焦点位置が、最先端面6bに設けられた内球面からなる凹部6cの中心D位置に配置されているので、図3に示されるように、対物レンズ6に入射されたレーザ光は焦点位置に集光させられる。そして、試料溶液A内に分散している発光粒子は、レーザ光が照射されることにより励起され、蛍光を発生する。 In the objective lens 6 according to the present embodiment, since the focal position is disposed at the center D position of the concave portion 6c formed of the inner spherical surface provided on the foremost surface 6b, as shown in FIG. The laser light incident on 6 is condensed at the focal position. The luminescent particles dispersed in the sample solution A are excited when irradiated with laser light, and generate fluorescence.
 試料溶液A内において発生した蛍光は、対物レンズ6によって集光され、略平行光となってダイクロイックミラー5を透過する。ダイクロイックミラー5を透過した蛍光からはバリアフィルタ12によってレーザ光が除去された後に、集光レンズ7によって集光され、ミラー13によって反射されて、共焦点ピンホール8を通過した蛍光のみが集光レンズ14によって集光され、光検出器9によって検出される。 Fluorescence generated in the sample solution A is collected by the objective lens 6 and passes through the dichroic mirror 5 as substantially parallel light. After the laser light is removed from the fluorescence transmitted through the dichroic mirror 5 by the barrier filter 12, it is condensed by the condenser lens 7, reflected by the mirror 13, and only the fluorescence that has passed through the confocal pinhole 8 is condensed. The light is collected by the lens 14 and detected by the photodetector 9.
 この場合において、共焦点ピンホール8は、対物レンズ6の焦点位置と光学的に共役な位置に配置されているので、共焦点ピンホール8を通過して光検出器9により検出される蛍光は、対物レンズ6の焦点位置から発生した蛍光のみとなる。
 対物レンズ6の焦点位置からは、図6に示されるように、あらゆる方向に等方的に放射されるが、焦点位置は対物レンズ6の先端光学部材6aの最先端面上に配置されているので、図6に実線で示されるように、光軸Cに対して片側角度θ=90°の範囲の蛍光が集光される。すなわち、図3に模式的に示されるように、先端光学部材6aによって像側に屈折させられた後に、後段の図示しないレンズによって集光され、光軸方向を像側に向かう平行光に変換される。
In this case, since the confocal pinhole 8 is disposed at a position optically conjugate with the focal position of the objective lens 6, the fluorescence detected by the photodetector 9 through the confocal pinhole 8 is Only the fluorescence generated from the focal position of the objective lens 6 is obtained.
As shown in FIG. 6, the objective lens 6 is isotropically radiated in all directions as shown in FIG. 6, but the focal position is disposed on the most distal surface of the tip optical member 6 a of the objective lens 6. Therefore, as shown by the solid line in FIG. 6, the fluorescence in the range of the one-side angle θ = 90 ° with respect to the optical axis C is collected. That is, as schematically shown in FIG. 3, after being refracted to the image side by the tip optical member 6a, it is condensed by a lens (not shown) in the subsequent stage and converted into parallel light whose optical axis direction is directed to the image side. The
 ここで、図7に示されるように、取り込みの立体角Ω(単位:ステラジアン)は、
 Ω(θ)=2π・(1-cosθ)
と記載することができる。
 一般的な対物レンズの場合に、取り込み可能な蛍光の光軸Cに対する片側の角度範囲は、高々70°であることから、本実施形態のようにθ=90°とできる場合には、
 Ω(90)/Ω(70)=1.5
となり、1.5倍の光量の蛍光を取り込むことができるという利点がある。
Here, as shown in FIG. 7, the solid angle Ω (unit: steradian) of the uptake is
Ω (θ) = 2π · (1-cosθ)
Can be described.
In the case of a general objective lens, the angle range on one side with respect to the optical axis C of fluorescent light that can be captured is 70 ° at most. Therefore, when θ can be 90 ° as in this embodiment,
Ω (90) / Ω (70) = 1.5
Thus, there is an advantage that it is possible to take in a fluorescence of 1.5 times the amount of light.
 また、本実施形態においては、対物レンズ6の先端光学部材6aの最先端面6bに設けられた凹部6cは、焦点位置を中心Dとする内球面からなる第1面6dにより構成されているので、焦点位置から発せられた蛍光は、この第1面6dに垂直に入射する。したがって、蛍光は、この第1面6dにおいて屈折することなく、先端光学部材6a内に入射し、さらに像側の第2面6eにおいて像側に屈折させられる。 Further, in the present embodiment, the concave portion 6c provided on the foremost surface 6b of the tip optical member 6a of the objective lens 6 is constituted by the first surface 6d made of an inner spherical surface having the focal position as the center D. The fluorescence emitted from the focal position is incident on the first surface 6d perpendicularly. Therefore, the fluorescence is not refracted on the first surface 6d but is incident on the tip optical member 6a, and is further refracted on the image side on the second surface 6e on the image side.
 ここで、先端光学部材6a内を伝播する蛍光が第2面6eにおいて全反射しないように、第2面の形状およびガラスの屈折率を合わせ込むことは困難なことではない。例えば、図4および図5に示されるように、第1面6dを内球面、第2面6eを半径Rの球面とし、第2面6eの中心E位置を第1面6dの中心D位置に対して像側に距離Lだけ偏心させた場合を想定する。 Here, it is not difficult to match the shape of the second surface and the refractive index of the glass so that the fluorescence propagating in the tip optical member 6a is not totally reflected on the second surface 6e. For example, as shown in FIGS. 4 and 5, the first surface 6d is an inner spherical surface, the second surface 6e is a spherical surface having a radius R, and the center E position of the second surface 6e is set to the center D position of the first surface 6d. On the other hand, it is assumed that the image side is decentered by a distance L.
 ガラスの屈折率n1>空気の屈折率n2とした場合、幾何学的および光学的な解析から、下記の条件であれば、焦点位置から発生した蛍光は第2面6eで全反射することなく像側に導かれる。
 0<L<R・(n2/n1)
When the refractive index n1 of the glass is greater than the refractive index n2 of the air, the fluorescence generated from the focal point is not totally reflected by the second surface 6e under the following conditions from geometrical and optical analysis. Led to the side.
0 <L <R · (n2 / n1)
 図5に示されるように、距離Lを徐々に大きくしていくと、図5(a)、(b)のいずれも蛍光は全て像側に導かれるが、図5(c)となった時点で、第2面6eに入射する際に蛍光に全反射が発生し、像側に導かれる蛍光の光量が低下する。したがって、全反射の発生しない条件に設定すれば、蛍光光量を最大限に検出することができる。 As shown in FIG. 5, when the distance L is gradually increased, all of the fluorescence in FIGS. 5 (a) and 5 (b) is guided to the image side, but when it becomes FIG. 5 (c). Thus, when the light enters the second surface 6e, total reflection occurs in the fluorescence, and the amount of fluorescence guided to the image side decreases. Therefore, if the conditions are set so that total reflection does not occur, the amount of fluorescent light can be detected to the maximum.
 このように、本実施形態に係る光分析装置1、対物レンズ6および容器15によれば、より多くの蛍光光量を検出することができ、試料溶液中の1分子レベルの光をフォトカウンティングする場合に、SN比を向上して、精度の高い検出を行うことができるという利点がある。 As described above, according to the optical analyzer 1, the objective lens 6, and the container 15 according to the present embodiment, it is possible to detect a larger amount of fluorescent light and to photocount one-level light in the sample solution. In addition, there is an advantage that the SN ratio can be improved and highly accurate detection can be performed.
 なお、本実施形態においては、第2面6eが球面である先端光学部材6aを例示したが、これに代えて、図8に示されるように、第2面6eを楕円体面により構成してもよい。このようにすることで、先端光学部材6aの光軸C方向に沿う寸法を短縮することができ、対物レンズ6全体の小型化を図ることが可能となる。 In the present embodiment, the tip optical member 6a in which the second surface 6e is a spherical surface is illustrated, but instead, as shown in FIG. 8, the second surface 6e may be configured by an ellipsoidal surface. Good. By doing in this way, the dimension along the optical axis C direction of the front-end | tip optical member 6a can be shortened, and it becomes possible to achieve size reduction of the objective lens 6 whole.
 また、本実施形態においては、試料溶液Aを収容したままの状態で光分析を行うことができる容器15を提案したが、これに代えて、容器15を使用することなく、対物レンズ6として液浸対物レンズを使用し、凹部6cに直接試料溶液Aを滴下して溜めた状態で光分析を行うことにしてもよい。 In the present embodiment, the container 15 capable of performing optical analysis while containing the sample solution A has been proposed, but instead of using the container 15, the objective lens 6 can be used as the objective lens 6. The optical analysis may be performed using the immersion objective lens while the sample solution A is dropped and stored directly in the recess 6c.
 A 試料溶液
 D 中心(焦点位置)
 1 光分析装置
 4 光源
 6 対物レンズ(光分析用レンズ)
 6a 先端光学部材
 6b 最先端面
 6c 凹部
 6d 第1面
 6e 第2面
 16a 凸部(収容部)
A Sample solution D Center (focus position)
1 Optical Analyzer 4 Light Source 6 Objective Lens (Lens for Optical Analysis)
6a Front end optical member 6b Most advanced surface 6c Concave portion 6d First surface 6e Second surface 16a Convex portion (accommodating portion)

Claims (11)

  1.  光源から発せられる励起光を集光して焦点位置に配置される試料溶液に照射するとともに、該試料溶液内に分散し、前記焦点位置に存在する発光物質から発せられる光を集光する対物レンズを備え、
     該対物レンズの先端光学部材が、その最先端面に像側に窪む凹部を有するとともに、前記焦点位置が、前記最先端面上またはそれよりも像側の前記凹部内に配置されている光分析装置。
    An objective lens that collects the excitation light emitted from the light source and irradiates the sample solution disposed at the focal position, and also disperses the light emitted from the luminescent material present at the focal position while being dispersed in the sample solution. With
    The tip optical member of the objective lens has a concave portion that is recessed toward the image side on the most distal surface thereof, and the focal position is disposed on the most distal surface or within the concave portion on the image side relative to that. Analysis equipment.
  2.  前記先端光学部材が、前記焦点位置の発光物質から発せられた光を入射させる、前記凹部の内面を構成する第1面と、該第1面から入射した光を集光する正のパワーを有する第2面とを備える請求項1に記載の光分析装置。 The tip optical member has a first surface that constitutes the inner surface of the concave portion, on which light emitted from the light emitting material at the focal position is incident, and positive power that condenses the light incident from the first surface. The optical analyzer according to claim 1, further comprising a second surface.
  3.  前記第1面が、前記焦点位置を中心とする内球面により構成されている請求項2に記載の光分析装置。 3. The optical analyzer according to claim 2, wherein the first surface is constituted by an inner spherical surface centered on the focal position.
  4.  前記第2面が、前記第1面に対して光軸方向像側に偏心させた球面である請求項3に記載の光分析装置。 4. The optical analyzer according to claim 3, wherein the second surface is a spherical surface decentered toward the image side in the optical axis direction with respect to the first surface.
  5.  前記第2面が、前記第1面に対して光軸方向像側に偏心させた楕円体面である請求項3に記載の光分析装置。 The optical analyzer according to claim 3, wherein the second surface is an ellipsoidal surface decentered toward the image side in the optical axis direction with respect to the first surface.
  6.  請求項1から請求項5のいずれかに記載の光分析装置の前記対物レンズに設けられた前記凹部の内面と相補的な形状の外面を有するとともに、内部に前記試料溶液を収容可能な収容部を備え、
     該収容部が、前記凹部に組み合わせられたときに、前記対物レンズの焦点に一致することとなる位置に試料溶液を配置可能である光分析用容器。
    6. An accommodating portion that has an outer surface that is complementary to an inner surface of the concave portion provided in the objective lens of the optical analyzer according to claim 1, and that can accommodate the sample solution therein. With
    A container for optical analysis in which a sample solution can be arranged at a position that coincides with a focal point of the objective lens when the accommodating portion is combined with the concave portion.
  7.  光源から発せられる励起光を集光して焦点位置に配置される試料溶液に照射するとともに、該試料溶液内に分散し、前記焦点位置に存在する発光物質から発せられる光を集光する光分析用レンズであって、
     最先端面に像側に窪む凹部を有する先端光学部材を備え、
     前記焦点位置が、前記最先端面上またはそれよりも像側の前記凹部内に配置されている光分析用レンズ。
    An optical analysis that collects the excitation light emitted from the light source and irradiates the sample solution arranged at the focal position, and also collects the light emitted from the luminescent substance existing at the focal position, dispersed in the sample solution. Lenses,
    Provided with a tip optical member having a recess recessed on the image side on the most advanced surface,
    The optical analysis lens in which the focal position is arranged on the forefront surface or in the concave portion on the image side.
  8.  前記先端光学部材が、前記焦点位置の発光物質から発せられた光を入射させる、前記凹部の内面を構成する第1面と、該第1面から入射した光を集光する正のパワーを有する第2面とを備える請求項7に記載の光分析用レンズ。 The tip optical member has a first surface that constitutes the inner surface of the concave portion, on which light emitted from the light emitting material at the focal position is incident, and positive power that condenses the light incident from the first surface. The optical analysis lens according to claim 7, further comprising a second surface.
  9.  前記第1面が、前記焦点位置を中心とする内球面により構成されている請求項8に記載の光分析用レンズ。 The optical analysis lens according to claim 8, wherein the first surface is constituted by an inner spherical surface centered on the focal position.
  10.  前記第2面が、前記第1面に対して光軸方向像側に偏心させた球面である請求項9に記載の光分析用レンズ。 The optical analysis lens according to claim 9, wherein the second surface is a spherical surface that is decentered toward the image side in the optical axis direction with respect to the first surface.
  11.  前記第2面が、前記第1面に対して光軸方向像側に偏心させた楕円体面である請求項9に記載の光分析用レンズ。 The optical analysis lens according to claim 9, wherein the second surface is an ellipsoidal surface decentered toward the image side in the optical axis direction with respect to the first surface.
PCT/JP2013/053236 2012-03-12 2013-02-12 Spectroscopic device, spectroscopic lens and spectroscopic container WO2013136891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-054384 2012-03-12
JP2012054384 2012-03-12

Publications (1)

Publication Number Publication Date
WO2013136891A1 true WO2013136891A1 (en) 2013-09-19

Family

ID=49160810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053236 WO2013136891A1 (en) 2012-03-12 2013-02-12 Spectroscopic device, spectroscopic lens and spectroscopic container

Country Status (1)

Country Link
WO (1) WO2013136891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110136B2 (en) 2013-05-14 2021-09-07 Probiotical S.P.A. Composition comprising lactic acid bacteria for use in the preventive and/or curative treatment of recurrent cystitis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500191A (en) * 1992-08-03 1995-01-05 サピダイン・インコーポレーテッド Certification system
JPH1090164A (en) * 1996-07-30 1998-04-10 Bayer Corp Optic system for blood analyzer
JP2000019099A (en) * 1998-06-30 2000-01-21 Hamamatsu Photonics Kk Titer plate
JP2001516870A (en) * 1997-09-17 2001-10-02 グラクソ グループ リミテッド Apparatus for performing photometric analysis
JP2007248063A (en) * 2006-03-13 2007-09-27 Hitachi Ltd Photodetector
JP2008536099A (en) * 2005-02-16 2008-09-04 アプレラ コーポレイション Refractive index matching in capillary illumination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07500191A (en) * 1992-08-03 1995-01-05 サピダイン・インコーポレーテッド Certification system
JPH1090164A (en) * 1996-07-30 1998-04-10 Bayer Corp Optic system for blood analyzer
JP2001516870A (en) * 1997-09-17 2001-10-02 グラクソ グループ リミテッド Apparatus for performing photometric analysis
JP2000019099A (en) * 1998-06-30 2000-01-21 Hamamatsu Photonics Kk Titer plate
JP2008536099A (en) * 2005-02-16 2008-09-04 アプレラ コーポレイション Refractive index matching in capillary illumination
JP2007248063A (en) * 2006-03-13 2007-09-27 Hitachi Ltd Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110136B2 (en) 2013-05-14 2021-09-07 Probiotical S.P.A. Composition comprising lactic acid bacteria for use in the preventive and/or curative treatment of recurrent cystitis

Similar Documents

Publication Publication Date Title
US10690898B2 (en) Light-field microscope with selective-plane illumination
JP4472024B2 (en) Fluorescence detection apparatus and fluorescence detection method
JP5080186B2 (en) Molecular analysis photodetection method, molecular analysis photodetection device used therefor, and sample plate
JP4782593B2 (en) Photodetector
JP5366536B2 (en) Raman scattered light measurement system
US9778184B2 (en) Measurement method and measurement device
RU2593623C2 (en) Device for photometric or spectrometric analysis of liquid sample
JP2007132792A (en) Optical measuring instrument and optical coupling system with sample
JP2012237647A (en) Multifocal confocal raman spectroscopic microscope
US8803106B2 (en) Optical analysis device, optical analysis method and computer program for optical analysis for observing polarization characteristics of a single light-emitting particle
CA2591200A1 (en) Systems, illumination subsystems, and methods for increasing fluorescence emitted by a fluorophore
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
JP5107003B2 (en) Evanescent wave generator and observation apparatus using the same
KR101210899B1 (en) portable fluorescence detection system
JP5356804B2 (en) Raman scattered light measurement system
US8525988B2 (en) Miniaturized confocal spectrometer
CN106198951B (en) A kind of bio-sensing scaling method, calibration system and disease detecting system
JP5673211B2 (en) Optical specimen detector
WO2006106966A1 (en) Optical measuring apparatus
WO2013136891A1 (en) Spectroscopic device, spectroscopic lens and spectroscopic container
JP2012526972A5 (en)
JP5052318B2 (en) Fluorescence detection device
JP5300249B2 (en) Liquid analyzer
US9164038B2 (en) Fluorescence light detection device and fluorescence light detection method
JP2000019114A (en) Method and apparatus for detecting faint fluorescence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP