JPH04196189A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04196189A
JPH04196189A JP2323582A JP32358290A JPH04196189A JP H04196189 A JPH04196189 A JP H04196189A JP 2323582 A JP2323582 A JP 2323582A JP 32358290 A JP32358290 A JP 32358290A JP H04196189 A JPH04196189 A JP H04196189A
Authority
JP
Japan
Prior art keywords
silicon substrate
semiconductor laser
laser chip
laser
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2323582A
Other languages
Japanese (ja)
Other versions
JP2892820B2 (en
Inventor
Hideyuki Nakanishi
秀行 中西
Akio Yoshikawa
昭男 吉川
Takeshi Hamada
健 浜田
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2323582A priority Critical patent/JP2892820B2/en
Publication of JPH04196189A publication Critical patent/JPH04196189A/en
Application granted granted Critical
Publication of JP2892820B2 publication Critical patent/JP2892820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Abstract

PURPOSE:To facilitate alignment in the direction of light emitting by forming a V-shaped groove having each different specific surface on both slanting surfaces on a specific surface of a silicon substrate, lowering one groove ridge line where a laser chip is fixed, and using the other groove slanting surface as a reflection surface. CONSTITUTION:There is formed a V-shaped groove 11 whose both slanting surfaces are (111) sides on a silicon substrate 10 of (100) sides. The side which is near the inclination 45 deg. to the surface of the substrate 10 is set as a mirror plane 12. A main plane 33 which faces this plane is lowered than a main plane 32 on the opposite side. A laser chip 13 is fixed on the plane 33 in such a manner that a light emitting section is positioned in the lower side. The light emitted from the laser chip 13 is reflected on the mirror 12 and emitted as output light at an optical pass. This construction makes it possible to mount a signal detection photodiode or a laser output detection photodiode on the substrate 10 and hence enhance alignment accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光情報処理、光計測、光通信等に用いる半導
体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device used for optical information processing, optical measurement, optical communication, etc.

従来の技術 従来の半導体レーザ装置を第6図に示した断面図を参照
して説明する。
2. Description of the Related Art A conventional semiconductor laser device will be described with reference to the sectional view shown in FIG.

この構造は、素子固定台1の一側面の」一方にヒートシ
ンク2を固定し、この上に半導体レーザチップ(以後レ
ーザデツプと記す)3を固定し、レーザチップ3の発光
面とヒートシンク2の側面および素子固定台1の上面を
揃えるとともに、レーザデツプ3の発光面とは反対側に
レーザ出力光検出用フォトダイオードが載置され、素子
固定台1の」−面に信号検出用フォトダイオード5が載
置されたものである。
In this structure, a heat sink 2 is fixed on one side of the element fixing table 1, a semiconductor laser chip (hereinafter referred to as a laser depth) 3 is fixed on top of the heat sink 2, and the light emitting surface of the laser chip 3 and the side surface of the heat sink 2 are fixed. While the top surfaces of the element fixing table 1 are aligned, a photodiode for detecting laser output light is placed on the side opposite to the light emitting surface of the laser deep 3, and a photodiode 5 for signal detection is placed on the negative side of the element fixing table 1. It is what was done.

次に、この構造の動作を説明する。レーザチップ2から
図面の上方に出射された出射光6は、対象物に反射され
て反射光7として信号検出用フォトダイオード5に入力
され、信号処理される。−方、レーザチップ3の出射光
面の反対側から出射されるレーザ光は、レーザ出力光検
出用フォトダイオード4に入力され、レーザ光の強弱に
対応した電流信号に変換される。この信号をレーザチッ
プ駆動回路にフィードバックさせてレーザ光の出力を安
定に制御する。
Next, the operation of this structure will be explained. Emitted light 6 emitted upward in the drawing from the laser chip 2 is reflected by the object and input as reflected light 7 to the signal detection photodiode 5, where it is subjected to signal processing. On the other hand, the laser light emitted from the side opposite to the light emitting surface of the laser chip 3 is input to the laser output light detection photodiode 4, and is converted into a current signal corresponding to the intensity of the laser light. This signal is fed back to the laser chip drive circuit to stably control the laser light output.

この従来の構成では、信号検出用フォトダイオード5と
レーザ出力光検出用フォトダイオード4は素子固定台1
に対して水平と水平に近い面内に固定させるのに対して
、レーザチップ3は垂直面内に固定しなければならない
ので、組立作業効率が悪く、位置合わせ精度に大きな問
題があった。
In this conventional configuration, the signal detection photodiode 5 and the laser output light detection photodiode 4 are mounted on the element fixing base 1.
The laser chip 3 must be fixed in a vertical plane, whereas the laser chip 3 has to be fixed in a vertical plane, resulting in poor assembly work efficiency and a major problem in positioning accuracy.

この問題を解決する構造として、第7図の断面図に示す
ような半導体レーザ装置がある。
As a structure that solves this problem, there is a semiconductor laser device as shown in the cross-sectional view of FIG.

この構造は、(100)面のシリコン基板8に、両側の
斜面が(111)面により形成されるV状の溝が形成さ
れ、同溝の斜面のうち一方の面をレーザ出射光を反射さ
せる反射ミラー面つとし、これに対向する面側のシリコ
ン基板8の主面を他方の主面に対して低くし、低くした
シリコン基板の主面とV状の溝の斜面とが交わる稜線に
レーザチップ3のレーザ光が出射される前方端面面が平
行になるようにレーザチップ3が固定されたものである
In this structure, a V-shaped groove whose slopes on both sides are formed by (111) planes is formed in a silicon substrate 8 having a (100) plane, and one of the slopes of the groove reflects the laser emitted light. The main surface of the silicon substrate 8 on the side opposite to the reflecting mirror is made lower than the other main surface, and a laser beam is applied to the ridgeline where the lowered main surface of the silicon substrate intersects with the slope of the V-shaped groove. The laser chip 3 is fixed so that the front end face of the chip 3 from which laser light is emitted is parallel.

この構造によれば、レーザデツプ3より、水平方向に出
射された出射光を反射ミラー面9て反射されて、はぼ上
方へ取り出すことができる。これにより、信号検出用フ
ォトダイオード(図示せず)やレーザ出力検出用フォト
ダイオード(図示せず)をシリコン基板8の主面に載置
することができ、位置合わせ精度を上げることができる
According to this structure, the emitted light emitted from the laser deep 3 in the horizontal direction can be reflected by the reflecting mirror surface 9 and taken out substantially upward. Thereby, a signal detection photodiode (not shown) and a laser output detection photodiode (not shown) can be placed on the main surface of the silicon substrate 8, and alignment accuracy can be improved.

発明が解決しようとする課題 (100)面のシリコン基板8に、斜面が(111)面
により形成されるV状の溝を形成した場合、溝の取射ミ
ラー面9とシリコン基板8の表面に対する傾きθが約5
4°となるため、出射光の中心軸はシリコン基板主面の
垂直方向より約18°傾いてしまうという問題点があっ
た。
Problem to be Solved by the Invention When a V-shaped groove whose slope is formed by a (111) plane is formed in a silicon substrate 8 having a (100) plane, The slope θ is about 5
4 degrees, so there was a problem that the central axis of the emitted light was inclined by about 18 degrees with respect to the perpendicular direction of the main surface of the silicon substrate.

また、各種用途のフォトダイオードをシリコン基板」二
に載置しなければならず、組立工程が複雑= 5− になるという問題点があった。
In addition, photodiodes for various uses must be mounted on a silicon substrate, making the assembly process complicated.

課題を解決するための手段 本発明の半導体レーザ装置は、<110>方向を軸とし
て5〜15°のオフアングルを有する(100)面のシ
リコン基板上に、(111)面により形成されたV状の
溝が形成され、前記(1,11)面のうち前記シリコン
基板表面に対する傾きが45°に近い面をレーザ光を反
射させる反射ミラー面とし、この面に対向する側のシリ
コン基板の主面を他方の主面に対して低(し、更に、こ
の反射ミラー面に対向する面の上端稜線に対して半導体
レーザチップの前方端面が平行になるように前記半導体
レーザチップが前記シリコン基板に固定されるとともに
、反射ミラー面内のシリコン基板上もしくは前記半導体
レーザチップの後方の前記シリコン基板上にレーザ出力
光検出用フォトダイオードが形成され、さらに前記シリ
コン基板上に信号検出用フォトダイオード、レーザ駆動
回路、増幅回路および光信号処理回路のうちいずれか1
以上が形成されたものである。
Means for Solving the Problems A semiconductor laser device of the present invention has a V formed by a (111) plane on a (100) plane silicon substrate having an off angle of 5 to 15 degrees with the <110> direction as an axis. A groove is formed, and the surface of the (1,11) surface with an inclination close to 45 degrees with respect to the silicon substrate surface is used as a reflective mirror surface that reflects the laser beam, and the main surface of the silicon substrate on the side opposite to this surface is used as a reflective mirror surface that reflects the laser beam. The semiconductor laser chip is placed on the silicon substrate so that the front end surface of the semiconductor laser chip is parallel to the upper edge line of the surface opposite to the reflecting mirror surface. At the same time, a photodiode for detecting laser output light is formed on the silicon substrate within the plane of the reflection mirror or on the silicon substrate behind the semiconductor laser chip, and a photodiode for signal detection and a laser beam are further formed on the silicon substrate. Any one of a drive circuit, an amplifier circuit, and an optical signal processing circuit
The above is what was formed.

作用 この構造によれば、シリコン基板の主面が(100)面
より5〜15°のオフアングルを設けた面になっている
ため、(111)面により形成されたV状の溝の反射ミ
ラー面とシリコン基板の主面との角度θを39°≦θ≦
49°の範囲にすることができる。このためレーザチッ
プから出射されたレーザ光は反射ミラー面で反射された
後のレーザ光の中心軸をシリコン基板主面に対してほぼ
垂直方向にすることができる。
Function: According to this structure, since the main surface of the silicon substrate is a surface with an off angle of 5 to 15 degrees from the (100) plane, the reflection mirror in the V-shaped groove formed by the (111) plane The angle θ between the surface and the main surface of the silicon substrate is 39°≦θ≦
It can be in the range of 49°. Therefore, the central axis of the laser beam emitted from the laser chip after being reflected by the reflecting mirror surface can be made substantially perpendicular to the main surface of the silicon substrate.

また、レーザチップを載置するヒートシンク用のシリコ
ン基板内に、レーザ出力光検出用フォトダイオード、レ
ーザ駆動回路、増幅回路および光信号処理回路が形成さ
れているため、組立時の角度の補正や組立工程等の複雑
さを無くずことかできる。
In addition, a photodiode for laser output light detection, a laser drive circuit, an amplification circuit, and an optical signal processing circuit are formed in the silicon substrate for the heat sink on which the laser chip is mounted, so it is possible to correct the angle during assembly. It is possible to eliminate the complexity of processes, etc.

実施例 本発明の半導体レーザ装置の実施例を第1図に示した斜
視図とA−A線に沿った断面図を参照して説明する。
Embodiment An embodiment of the semiconductor laser device of the present invention will be described with reference to a perspective view and a sectional view taken along line A--A shown in FIG.

これは、<110>方向を回転軸として約9゜のオフア
ングルを持たせた( ]、 OO)面のシリコン基板1
0上に両側の斜面が(111)面により形成される■状
の、溝(以後■溝と記す)11が形成され、これらの斜
面のうちシリコン基板10の表面に対する傾きθが45
°に近い方の面を反射ミラー面12とし、この面に対向
する側のシリコン基板の主面33を他方の主面32に対
して低くし、更にこの反射ミラー面に対向する面の溝上
端稜線に対して半導体レーザチップ13の前方端面が平
行になるようにシリコン基板10の表面にレーザチップ
13を固定した構造である。なお、反射ミラー面12の
表面には3000〜5000への金薄膜14が形成され
ており、ミラーの反射率は90%以」二になっている。
This is a silicon substrate 1 with an off angle of about 9 degrees with the <110> direction as the rotation axis ( ), OO).
A ■-shaped groove (hereinafter referred to as ■groove) 11 is formed on the surface of the silicon substrate 10, and the slopes on both sides thereof are formed by (111) planes.
The surface closer to the angle is set as the reflecting mirror surface 12, the main surface 33 of the silicon substrate on the side opposite to this surface is made lower than the other main surface 32, and the groove upper end of the surface opposite to this reflecting mirror surface is made lower. In this structure, the laser chip 13 is fixed to the surface of the silicon substrate 10 so that the front end face of the semiconductor laser chip 13 is parallel to the ridgeline. Note that a gold thin film 14 of 3000 to 5000 mm is formed on the surface of the reflective mirror surface 12, and the reflectance of the mirror is 90% or more.

また、レーザチップ13は発光部が下側になるようには
んだ材て固定されている。
Further, the laser chip 13 is fixed with solder material so that the light emitting part is on the lower side.

この構造により、レーザチップ13から水平方向に出射
されたレーザ光は光路15に示すように反射ミラーで反
射されて垂直あるいは垂直方向に近い方向へ進み、出力
光として取り出される。
With this structure, the laser light emitted from the laser chip 13 in the horizontal direction is reflected by the reflecting mirror as shown by the optical path 15, travels vertically or in a direction close to the vertical direction, and is extracted as output light.

また、シリコン基板の表面として約9°のオフアングル
を持たせた(100)面を使用したが、実際使用上5〜
15°のオフアングルを有する(100)面のものでも
よい。このとき反射ミラー面のシリコン基板の表面に対
する傾きθを39゜≦θ≦49°の範囲におさえること
ができる。
In addition, we used a (100) plane with an off angle of about 9 degrees as the surface of the silicon substrate, but in actual use it is
It may also be a (100) plane with an off angle of 15°. At this time, the inclination θ of the reflecting mirror surface with respect to the surface of the silicon substrate can be kept within the range of 39°≦θ≦49°.

なお、このことは後に述べる他の実施例においても同じ
ことが言える。
Note that this also applies to other embodiments described later.

次に、本発明の半導体レーザ装置の他の実施例について
第2図に示した斜視図および断面図を参照して説明する
Next, another embodiment of the semiconductor laser device of the present invention will be described with reference to a perspective view and a sectional view shown in FIG.

これは、第1図1図で説明したオフアングルを設けた(
100)面のシリコン基板10の主面32に対して低く
した主面33の領域を図に示すように、シリコン基板の
端部まででなく、少なくともレーザチップ13が収納で
きる領域とした構造であり、反射ミラー面12や半導体
レーザチップ13の構造は第一1図で説明した通りであ
る。
This is done by providing the off-angle explained in Fig.
As shown in the figure, the area of the main surface 33 that is lower than the main surface 32 of the silicon substrate 10 having a surface of 100) does not extend to the edge of the silicon substrate, but is designed to be an area that can accommodate at least the laser chip 13. The structures of the reflecting mirror surface 12 and the semiconductor laser chip 13 are as explained in FIG. 11.

次に、本発明の半導体レーザ装置の他の実施例について
第3図に示した断面図を参照して説明する。
Next, another embodiment of the semiconductor laser device of the present invention will be described with reference to the cross-sectional view shown in FIG.

これは、<110>方向を回転軸として約9゜のオフア
ングルを持たぜた(100)面のP型シリコン基板20
上に、第1図で示したV溝が形成され、このV溝のシリ
コン基板20の表面に対する傾きが45°に近い方の面
をレーザ光を反射させる反射ミラー面21とし、この面
に対向する側のシリコン基板の主面33を他方の主面3
2に対して低くし、反射ミラー面のP型シリコン基板2
0側にn型の拡散領域22が形成され、反射ミラー面2
1の上に絶縁用の酸化シリコン膜23と金薄膜24.が
積層され、反射ミラー面21に対向する面の上端稜線に
対してレーザチップ13の前方端面が平行になるように
レーザチップ13がシリコン基板20に固定された構造
である。
This is a (100) plane P-type silicon substrate 20 with an off angle of approximately 9 degrees with the <110> direction as the rotation axis.
A V-groove shown in FIG. 1 is formed on the top, and the surface of the V-groove whose inclination with respect to the surface of the silicon substrate 20 is close to 45 degrees is used as a reflective mirror surface 21 that reflects the laser beam, and a surface opposite to this surface is formed. The main surface 33 of the silicon substrate on the side to be connected to the other main surface 3
P-type silicon substrate 2 with a reflective mirror surface
An n-type diffusion region 22 is formed on the 0 side, and the reflection mirror surface 2
1, an insulating silicon oxide film 23 and a gold thin film 24. are stacked, and the laser chip 13 is fixed to the silicon substrate 20 so that the front end surface of the laser chip 13 is parallel to the upper edge line of the surface facing the reflecting mirror surface 21.

なお、金薄膜24の膜厚を500〜1.000 人とし
て半透過膜とし、レーザ光の一部がP型シリコン基板2
0とn型拡散領域23とて構成されたフォトダイオード
に入射される構造である。
In addition, the thickness of the gold thin film 24 is set to 500 to 1,000 mm to make it a semi-transparent film, and a part of the laser beam is transmitted to the P-type silicon substrate 2.
This structure is such that the light is incident on a photodiode composed of a 0 and an n-type diffusion region 23.

この構造により、レーザチップ13から水平方向に出射
されたレーザ光は、一部は金薄膜24で形成された半透
過膜を通過してフォトダイオードに入射され、残りは半
透過膜で反射されて光路25に示すように垂直あるいは
垂直に近い方向に進み、出力光として取り出される。
With this structure, a portion of the laser light emitted horizontally from the laser chip 13 passes through the semi-transparent film formed of the gold thin film 24 and enters the photodiode, and the rest is reflected by the semi-transparent film. As shown in the optical path 25, the light travels in a vertical or nearly vertical direction and is extracted as output light.

なお、フォトダイオードに入射された光は、その光強度
に応じて電流信号に変化され、この電流信号がレーザチ
ップ駆動回路に帰還されてレーザ光の出力を一定にさせ
るのに使用される。
Note that the light incident on the photodiode is changed into a current signal according to its light intensity, and this current signal is fed back to the laser chip drive circuit and used to keep the output of the laser light constant.

次に本発明の半導体レーザ装置の他の実施例について第
4図に示した断面図を参照して説明する。
Next, another embodiment of the semiconductor laser device of the present invention will be described with reference to the cross-sectional view shown in FIG.

これは、< 110>方向を回転軸として約9゜のオフ
アングルを持たせた(100)面のP型シリコン基板2
0上に、第1図で示したV溝が形成され、このV溝のシ
リコン基板20の表面に対する傾きが45°の近い方の
面をレーザ光を反射させる反射ミラー面21とし、この
面に対向する側のシリコン基板の主面33を他方の主面
32に対して低(し反射ミラー面に対向する面の上端稜
線に対してレーザチップ13の前方端面が平行になるよ
うにレーザチップ13がシリコン基板20に固定され、
レーザチップ13の後方のP型シリコン基板20の主面
33あるいは主面32と主面33がなす段差にまたがっ
てn型拡散領26が形成された構造である。
This is a (100)-plane P-type silicon substrate 2 with an off angle of about 9 degrees with the <110> direction as the rotation axis.
A V-groove shown in FIG. The main surface 33 of the silicon substrate on the opposite side is placed at a lower level (lower than the other main surface 32), and the laser chip 13 is placed so that the front end surface of the laser chip 13 is parallel to the upper edge line of the surface opposite to the reflecting mirror surface. is fixed to the silicon substrate 20,
This is a structure in which an n-type diffusion region 26 is formed across the main surface 33 of the P-type silicon substrate 20 behind the laser chip 13 or the step between the main surfaces 32 and 33.

P型シリコン基板20とn型拡散領域26で形成される
フォトダイオードは、レーザチップ13の後端面から出
射されたレーザ光を受光し、その光強度に応じて変化し
た電流信号を発生させる。
The photodiode formed by the P-type silicon substrate 20 and the n-type diffusion region 26 receives the laser light emitted from the rear end face of the laser chip 13, and generates a current signal that changes depending on the light intensity.

この電流信号をレーザチップ駆動回路に帰還させて、レ
ーザチップ13の前端面から出射されるレーザ光の強度
を一定にさせるモニタ用として利用される。
This current signal is fed back to the laser chip drive circuit and used for monitoring to keep the intensity of the laser light emitted from the front end face of the laser chip 13 constant.

なお、レーザチップ13の前端面から水平方向に出射さ
れたレーザ光は、金薄膜が被覆された反射ミラー面21
で反射されて垂直あるいは垂直に近い方向に進み、出力
光として取り出される。
Note that the laser beam emitted in the horizontal direction from the front end surface of the laser chip 13 is directed to a reflective mirror surface 21 coated with a thin gold film.
The light is reflected by the beam, propagates in a vertical or near-vertical direction, and is extracted as output light.

なお、27はレーザチップ13後端面より出射されたレ
ーザ光の光路、28はレーザチップ13前端面より出射
されたレーザ光の光路を示す。
Note that 27 indicates the optical path of the laser beam emitted from the rear end surface of the laser chip 13, and 28 indicates the optical path of the laser beam emitted from the front end surface of the laser chip 13.

次に、本発明の半導体レーザ装置の他の実施例について
第5図に示した斜視図を参照して説明する。
Next, another embodiment of the semiconductor laser device of the present invention will be described with reference to the perspective view shown in FIG.

この構造は、<110>方向を回転軸として約9°のオ
フアングルを持たせた(100)面のP型シリコン基板
20上に両側の斜面が(111)面により形成されるV
溝11が形成され、これらの斜面のうちシリコン基板2
0の表面に対する傾きが45°に近い方の反射ミラー面
12とし、この面に対向する例のシリコン基板の主面3
3を他方の主面32に対して低くし反射ミラー面に対向
する面の溝上端稜線に対してレーザチップ13の前方端
面が平行になるようにシリコン基板20の表面にレーザ
チップ13が固定され、レーザチップ13の後方にn型
拡散領域を形成することによリレーザ出力光検出用フォ
トダイオード2つが形成され、さらにシリコン基板20
上に信号検出用フォトダイオード30が形成されたもの
である。
This structure consists of a V-type silicon substrate 20 with slopes on both sides formed by (111) planes on a (100) plane P-type silicon substrate 20 with an off-angle of about 9 degrees with the <110> direction as the rotation axis.
Grooves 11 are formed, and among these slopes, the silicon substrate 2
The reflective mirror surface 12 has an inclination closer to 45 degrees with respect to the surface of 0, and the main surface 3 of the silicon substrate in the example opposite to this surface
3 is lower than the other main surface 32, and the laser chip 13 is fixed to the surface of the silicon substrate 20 so that the front end surface of the laser chip 13 is parallel to the groove top edge line on the surface facing the reflecting mirror surface. , two photodiodes for detecting laser output light are formed by forming an n-type diffusion region behind the laser chip 13, and a silicon substrate 20.
A signal detection photodiode 30 is formed thereon.

この構成により、レーザチップ13の前端面から水平方
向に出射されたレーザ光は、金薄膜が被覆された反射ミ
ラー面12で反射されて光路15に示すように垂直ある
いは垂直に近い方向に進み、出力光として取り出される
。この出力光が対象物で反射された信号光31は、信号
検出用フォトダイオード30に入力され、信号処理され
る。
With this configuration, the laser beam emitted in the horizontal direction from the front end face of the laser chip 13 is reflected by the reflective mirror surface 12 coated with a thin gold film and travels in a vertical or nearly vertical direction as shown in the optical path 15. It is extracted as output light. Signal light 31, which is the output light reflected by the object, is input to a signal detection photodiode 30 and subjected to signal processing.

一方、レーザチップ13の後端面より出射されたレーザ
光は、レーザ出力検出用フォトダイオード29に入力さ
れ、光強度に応じた電流信号に変換される。この電流信
号がレーザチップ駆動回路に帰還されて、レーザチップ
の前端面より出射されたレーザ光の出力を一定にさせる
のに利用される。
On the other hand, the laser light emitted from the rear end face of the laser chip 13 is input to the laser output detection photodiode 29, and is converted into a current signal according to the light intensity. This current signal is fed back to the laser chip drive circuit and is used to keep the output of the laser light emitted from the front end face of the laser chip constant.

この構造によれば、レーザ出力光検出用フォトダイオー
ド29と信号検出用フォトダイオード30を同一基板上
に形成しているので小型に集積化することができる。
According to this structure, since the laser output light detection photodiode 29 and the signal detection photodiode 30 are formed on the same substrate, they can be integrated into a small size.

なお、実施例ではレーザ出力光検出用と信号検出用のフ
ォトダイオードを示したが、これに限られることはな(
、フォトダイオードから得られる信号の増幅回路、レー
ザチップの駆動回路および光信号処理回路等を同一基板
上に形成することができる。
In addition, although the example shows a photodiode for laser output light detection and signal detection, the invention is not limited to this.
, an amplifying circuit for a signal obtained from a photodiode, a driving circuit for a laser chip, an optical signal processing circuit, and the like can be formed on the same substrate.

発明の効果 本発明の半導体レーザ装置によれば、<110>方向を
軸さして5〜15°のオフアングルを有する(100)
面のシリコン基板を用いて、(111)面により形成さ
れるV溝を形成するので、この(1,11)面のうち一
つはシリコン基板の表面に対する傾きが約45°となり
、この面を反射ミラー面とすることができる。この結果
、レーザチップから水平方向に出射されたレーザ光は反
射ミラー面で反射されて、はぼ垂直方向に取り出すこと
ができ、出射方向の位置合わせが簡単となる。
Effects of the Invention According to the semiconductor laser device of the present invention, the (100)
Since a V-groove formed by the (111) plane is formed using a plane silicon substrate, one of the (1,11) planes has an inclination of about 45° with respect to the surface of the silicon substrate, It can be a reflective mirror surface. As a result, the laser beam emitted from the laser chip in the horizontal direction is reflected by the reflecting mirror surface and can be taken out in the substantially vertical direction, making it easy to align the laser beam in the emission direction.

また、レーザチップを載置するヒーI・シンク用のシリ
コン基板上に、レーザ出力光検出用フォトダイオード、
信号検出用フォトダイオード、レーザ駆動回路、増幅回
路および光信号処理回路のうちいずれかが形成されてい
るため、集積化されるとともに組立時の角度の補正や組
立工程の複雑さをなくすことができ、費用を削減するこ
とができる。
In addition, on the silicon substrate for the heat sink on which the laser chip is mounted, there is a photodiode for detecting laser output light,
Since a photodiode for signal detection, a laser drive circuit, an amplifier circuit, and an optical signal processing circuit are formed, it is integrated, and it is possible to eliminate angle correction during assembly and complexity of the assembly process. , costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザ装置のV溝およびシリコ
ン基板の主面を低くした領域を有する場合の斜視図と断
面図、第2図は本発明の半導体レーザ装置の主面を低く
した領域をレーザチップが少なくとも収納できる領域に
限定した場合の斜視図と断面図、第3図は反射ミラー面
側にフォトダイオードが形成された本発明の半導体レー
ザ装置の断面図、第4図はレーザチップの後方にフォト
ダイオードが形成された本発明の半導体レーザ装置の断
面図、第5図はレーザチップを載置するシリコン基板上
に各種素子が形成された本発明の半導体レーザ装置の斜
視図、第6図はレーザチップが固定台に設置された従来
の半導体レーザ装置の10・・・・・・シリコン基板、
11・・・・・・V状の溝(V溝)、12.17.21
・・・・・・反射ミラー面、13・・・・・・半導体レ
ーザチップ、14.24・・・・・・金薄膜、15,1
9.25・・・・・・光路、16・・・・・・四角錐状
凹部、18・・・・・・反射ミラー面に向い合う面の四
角錐状凹部の上端稜線、20・・・・・・P型シリコン
基板、22.26・・・・・・n型拡散領域、23・・
・・・・酸化シリコン膜、27・・・・・・レーザチッ
プ後端面より出射されたレーザ光の光路、28・・・・
・・レーザチップ前端面より出射されたレーザ光の光路
、29・・・・・・レーザ出力光検出用フォトダイオー
ド、30・・・・・・信号検出用フォトダイオード、3
1・・・・・・信号光、32・・・・・・シリコン基板
の主面、33・・・・・・低くしたシリコン基板の主面
。 代理人の氏名 弁理士小鍜治明 ほか2名q kN”)  ゞ守  も  (ト レ1 ト腎6 >呻 1 ← 、\ 1い ゛せ 口 hr 1 )幇
FIG. 1 is a perspective view and a sectional view of a semiconductor laser device of the present invention having a V-groove and a region where the main surface of the silicon substrate is lowered, and FIG. 2 is a region where the main surface of the semiconductor laser device of the invention is lowered. FIG. 3 is a cross-sectional view of a semiconductor laser device of the present invention in which a photodiode is formed on the reflective mirror surface side, and FIG. 5 is a sectional view of a semiconductor laser device of the present invention in which a photodiode is formed at the rear of the semiconductor laser device of the present invention, and FIG. 5 is a perspective view of a semiconductor laser device of the present invention in which various elements are formed on a silicon substrate on which a laser chip is placed. Figure 6 shows a conventional semiconductor laser device in which a laser chip is installed on a fixed base.
11... V-shaped groove (V groove), 12.17.21
...Reflection mirror surface, 13 ... Semiconductor laser chip, 14.24 ... Gold thin film, 15,1
9.25... Optical path, 16... Square pyramidal recess, 18... Upper edge line of the square pyramidal recess on the surface facing the reflecting mirror surface, 20... ...P-type silicon substrate, 22.26...N-type diffusion region, 23...
...Silicon oxide film, 27...Optical path of laser light emitted from the rear end surface of the laser chip, 28...
...Optical path of laser light emitted from the front end surface of the laser chip, 29...Photodiode for laser output light detection, 30...Photodiode for signal detection, 3
1...Signal light, 32...Main surface of silicon substrate, 33...Main surface of lowered silicon substrate. Name of agent: Patent attorney Haruaki Ogata and 2 others q kN”)

Claims (6)

【特許請求の範囲】[Claims] (1)<110>方向を軸として5〜15°のオフアン
グルを有する(100)面のシリコン基板上に、両側の
斜面が(111)面により構成されるV状の溝が形成さ
れ、同溝の斜面のうち前記シリコン基板表面に対する傾
きが45°に近い面をレーザ光を反射する反射ミラー面
とし、この面に対向する側のシリコン基板の主面を他方
の主面に対して低くし、更に反射ミラー面に対向する面
の溝上端稜線に対して半導体レーザチップの前端面がほ
ぼ平行になるように前記半導体レーザチップが前記シリ
コン基板に固定されたことを特徴とする半導体レーザ装
置。
(1) A V-shaped groove whose slopes on both sides are (111) planes is formed on a (100) plane silicon substrate with an off angle of 5 to 15 degrees with the <110> direction as the axis. Among the slopes of the groove, a surface having an inclination of nearly 45° with respect to the silicon substrate surface is used as a reflective mirror surface that reflects the laser beam, and the main surface of the silicon substrate on the side opposite to this surface is lowered relative to the other main surface. Further, the semiconductor laser device is further characterized in that the semiconductor laser chip is fixed to the silicon substrate so that the front end surface of the semiconductor laser chip is substantially parallel to the groove top edge line of the surface facing the reflection mirror surface.
(2)特許請求の範囲第1項に記載のシリコン基板にお
ける主面を低くする領域を少なくとも半導体レーザチッ
プが収納できる領域に制限したことを特徴とする半導体
レーザ装置。
(2) A semiconductor laser device characterized in that the area where the main surface of the silicon substrate according to claim 1 is lowered is limited to an area where at least a semiconductor laser chip can be accommodated.
(3)反射ミラー面にレーザ光の反射率を高めるコーテ
ィング膜が施されていることを特徴とする請求項1また
は請求項2記載の半導体レーザ装置。
(3) The semiconductor laser device according to claim 1 or 2, wherein a coating film that increases the reflectance of laser light is applied to the reflecting mirror surface.
(4)反射ミラー面内のシリコン基板上にフォトダイオ
ードが形成されていることを特徴とする請求項1または
請求項2または請求項3記載の半導体レーザ装置。
(4) The semiconductor laser device according to claim 1, 2, or 3, wherein a photodiode is formed on a silicon substrate within the surface of the reflection mirror.
(5)半導体レーザチップが固定されたシリコン基板上
の同半導体レーザチップの後方にフォトダイオードが形
成されていることを特徴とする請求項1または請求項2
または請求項3記載の半導体レーザ装置。
(5) Claim 1 or Claim 2, characterized in that a photodiode is formed behind the semiconductor laser chip on a silicon substrate to which the semiconductor laser chip is fixed.
Or a semiconductor laser device according to claim 3.
(6)半導体レーザチップが固定されたシリコン基板上
にレーザの駆動回路、フォトダイオード、同フォトダイ
オードから得られる信号の増幅回路、光信号処理回路の
うちいずれか1以上が形成されていることを特徴とする
請求項1または請求項2または請求項3記載の半導体レ
ーザ装置。
(6) One or more of a laser drive circuit, a photodiode, a signal amplification circuit obtained from the photodiode, and an optical signal processing circuit are formed on the silicon substrate to which the semiconductor laser chip is fixed. 4. A semiconductor laser device according to claim 1, 2, or 3.
JP2323582A 1990-11-26 1990-11-26 Semiconductor laser device Expired - Fee Related JP2892820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323582A JP2892820B2 (en) 1990-11-26 1990-11-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323582A JP2892820B2 (en) 1990-11-26 1990-11-26 Semiconductor laser device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10358945A Division JPH11274654A (en) 1998-12-17 1998-12-17 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH04196189A true JPH04196189A (en) 1992-07-15
JP2892820B2 JP2892820B2 (en) 1999-05-17

Family

ID=18156319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323582A Expired - Fee Related JP2892820B2 (en) 1990-11-26 1990-11-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2892820B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027826A1 (en) * 1993-05-20 1994-12-08 Compaq Computer Corporation Ink jet printhead assembly having aligned dual internal channel arrays
US5479426A (en) * 1994-03-04 1995-12-26 Matsushita Electronics Corporation Semiconductor laser device with integrated reflector on a (511) tilted lattice plane silicon substrate
US5680385A (en) * 1995-03-30 1997-10-21 Nec Corporation Optical head with a heat sink
US5719414A (en) * 1993-03-16 1998-02-17 Sato; Keiji Photoelectric conversion semiconductor device with insulation film
US5793785A (en) * 1994-03-04 1998-08-11 Matsushita Electronics Corporation Semiconductor laser device
WO2003067586A1 (en) * 2002-02-08 2003-08-14 Sony Corporation Optical pickup and disk drive unit
US6693871B2 (en) 1999-09-27 2004-02-17 Kabushiki Kaisha Toshiba Integrated unit, optical pickup, and optical recording medium drive device
JP2005203782A (en) * 2004-01-13 2005-07-28 Samsung Electronics Co Ltd Micro optical bench structure and its manufacturing method
JP2010212491A (en) * 2009-03-11 2010-09-24 Sharp Corp Mounting member and semiconductor light-emitting device with mounting member
US8471289B2 (en) 2009-12-28 2013-06-25 Sanyo Electric Co., Ltd. Semiconductor laser device, optical pickup device and semiconductor device
CN116859532A (en) * 2023-08-15 2023-10-10 武汉钧恒科技有限公司 Optical path structure for silicon optical module and silicon optical module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696665U (en) * 1979-12-26 1981-07-31
JPS61153360U (en) * 1985-03-14 1986-09-22
JPS6223163A (en) * 1985-07-23 1987-01-31 Matsushita Electric Ind Co Ltd Hybrid optical ic device
JPH01253983A (en) * 1988-04-04 1989-10-11 Mitsubishi Electric Corp Semiconductor laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696665U (en) * 1979-12-26 1981-07-31
JPS61153360U (en) * 1985-03-14 1986-09-22
JPS6223163A (en) * 1985-07-23 1987-01-31 Matsushita Electric Ind Co Ltd Hybrid optical ic device
JPH01253983A (en) * 1988-04-04 1989-10-11 Mitsubishi Electric Corp Semiconductor laser device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719414A (en) * 1993-03-16 1998-02-17 Sato; Keiji Photoelectric conversion semiconductor device with insulation film
WO1994027826A1 (en) * 1993-05-20 1994-12-08 Compaq Computer Corporation Ink jet printhead assembly having aligned dual internal channel arrays
US5479426A (en) * 1994-03-04 1995-12-26 Matsushita Electronics Corporation Semiconductor laser device with integrated reflector on a (511) tilted lattice plane silicon substrate
US5793785A (en) * 1994-03-04 1998-08-11 Matsushita Electronics Corporation Semiconductor laser device
US5680385A (en) * 1995-03-30 1997-10-21 Nec Corporation Optical head with a heat sink
US6693871B2 (en) 1999-09-27 2004-02-17 Kabushiki Kaisha Toshiba Integrated unit, optical pickup, and optical recording medium drive device
WO2003067586A1 (en) * 2002-02-08 2003-08-14 Sony Corporation Optical pickup and disk drive unit
JP2005203782A (en) * 2004-01-13 2005-07-28 Samsung Electronics Co Ltd Micro optical bench structure and its manufacturing method
JP2010212491A (en) * 2009-03-11 2010-09-24 Sharp Corp Mounting member and semiconductor light-emitting device with mounting member
US8471289B2 (en) 2009-12-28 2013-06-25 Sanyo Electric Co., Ltd. Semiconductor laser device, optical pickup device and semiconductor device
CN116859532A (en) * 2023-08-15 2023-10-10 武汉钧恒科技有限公司 Optical path structure for silicon optical module and silicon optical module
CN116859532B (en) * 2023-08-15 2024-04-09 武汉钧恒科技有限公司 Optical path structure for silicon optical module and silicon optical module

Also Published As

Publication number Publication date
JP2892820B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5479426A (en) Semiconductor laser device with integrated reflector on a (511) tilted lattice plane silicon substrate
EP0636911B1 (en) Coupling structure between optical semiconductor and optical waveguide, and coupling method of the same
US5793785A (en) Semiconductor laser device
WO2004034423A3 (en) Semiconductor photodetector with internal reflector
JPH034571A (en) Optoelectronic semiconductor device and manufacture thereof
JPH04196189A (en) Semiconductor laser
JP3731754B2 (en) Method and apparatus for coupling a waveguide to a component
JP2892812B2 (en) Semiconductor laser device
JPH11274654A (en) Semiconductor laser device
JPH11339295A (en) Integrated mirror and laser/detector integrated device using reflected and diffracted light beams
US5668823A (en) Injection laser assembly incorporating a monitor photosensor
JP3032376B2 (en) Semiconductor laser device
KR960701439A (en) Optics
EP0115184B1 (en) An automatic focus control device
JP2005203787A (en) Semiconductor optical package
JPH05327131A (en) Semiconductor laser device
JPS60257584A (en) Photodetector built-in type semiconductor laser
JPH11261172A (en) Semiconductor laser device
US6392283B1 (en) Photodetecting device and method of manufacturing the same
JPH0290585A (en) Laser device
JP3140085B2 (en) Semiconductor laser device
JP3040252B2 (en) Semiconductor laser device
JPH0843692A (en) Light emitting element module
JPH10198999A (en) Semiconductor laser device
JPH0429582Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees