JPS5959297A - Biological denitrification of organic waste water - Google Patents

Biological denitrification of organic waste water

Info

Publication number
JPS5959297A
JPS5959297A JP16851182A JP16851182A JPS5959297A JP S5959297 A JPS5959297 A JP S5959297A JP 16851182 A JP16851182 A JP 16851182A JP 16851182 A JP16851182 A JP 16851182A JP S5959297 A JPS5959297 A JP S5959297A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
denitrification
gas
carbon source
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16851182A
Other languages
Japanese (ja)
Inventor
Shoji Watanabe
昭二 渡辺
Kenji Baba
研二 馬場
Shunsuke Nokita
舜介 野北
Shunji Mori
俊二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16851182A priority Critical patent/JPS5959297A/en
Publication of JPS5959297A publication Critical patent/JPS5959297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To curtail the amount of an organic carbon source to be used without lowering the efficiency of denitrification, by performing the biological denitrification to denitrify said organic waste water while injecting an organic carbon source in it, after dissolved oxygen in the inflow organic waste water has been reduced. CONSTITUTION:The interior of a denitrification tank 2 is maintained under an anaerobic condition by intercepting the contact of oxygen with it, and gentle agitation for inhibiting the precipitation of microbes, etc. is performed all over the tank. A nitrified liquid 5 containing NOX-N and microbes is let flow into a diffusion zone A, to diffuse dissolved oxygen in the nitrified liquid 5. Just after the nitrified liquid spontaneously falling down passes through a partition plate 13, an organic carbon source 9 is supplied to reduce NOX-N into nitrogen gas. Since the inflow organic waste water is fluctuated in a day as one cycle reflecting human life, a time for diffusion is changed. Hence, the diffusion of dissolved oxygen is not sufficient, and the organic carbon source is consumed by residual dissolved oxygen.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は有機性廃水に還元剤である有機炭素源を供給し
脱窒処理を行う有機性廃水の生物学的脱窒方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a biological denitrification method for organic wastewater in which denitrification treatment is performed by supplying an organic carbon source as a reducing agent to organic wastewater.

〔従来技術〕[Prior art]

一1水などの有機性廃水にきまれる有機性窒素あるいは
アンモニア性窒素は訂栄養化物質であシ。
Organic nitrogen or ammonia nitrogen, which is found in organic wastewater such as water, is a nutrient-rich substance.

富栄養化物質を含んだまま放流すると河川や湖を著しく
汚染する。有機性廃水に含まれる窒素を除去するには活
性汚泥を用いた生物学的脱窒方法が最も効果的と云われ
ている。
If water is released containing eutrophic substances, it will seriously pollute rivers and lakes. Biological denitrification using activated sludge is said to be the most effective method for removing nitrogen contained in organic wastewater.

生物学的脱窒方法は例えば第1図のような構成になって
いる。
The biological denitrification method has a structure as shown in FIG. 1, for example.

有機性廃水4は硝化槽1に流入し沈殿池3から返送され
る返送汚泥8と混合される。硝化槽1内は図示しない曝
気手段によって曝気され好気性になっている。有機性廃
水4に含有する有機性あるいはアンモニア性窒素(NH
s−N)は返送汚泥8中の硝化菌の作用によって硝酸性
窒素(NO3−N)あるいは亜硝酸性窒素(NO2−N
)に酸化される。
The organic wastewater 4 flows into the nitrification tank 1 and is mixed with return sludge 8 returned from the settling tank 3. The inside of the nitrification tank 1 is aerated by an aeration means (not shown) to make it aerobic. Organic or ammonia nitrogen (NH) contained in organic wastewater 4
s-N) is converted into nitrate nitrogen (NO3-N) or nitrite nitrogen (NO2-N) by the action of nitrifying bacteria in the returned sludge 8.
) is oxidized to

以後、N05−N、N02−Nを単に窒素と称する。Hereinafter, N05-N and N02-N will be simply referred to as nitrogen.

硝化槽lから流出した硝化液5は脱窒槽2に流入する。The nitrified liquid 5 flowing out from the nitrification tank 1 flows into the denitrification tank 2.

脱窒槽2において硝化液5のN03−N。N03-N of nitrification liquid 5 in denitrification tank 2.

N02−Nは脱窒菌によって窒素ガスに還元される。N02-N is reduced to nitrogen gas by denitrifying bacteria.

脱窒槽2は嫌気性になっており、また還元剤としてメタ
ノールなどの有機炭素源9が注入されている。沈殿池3
は脱窒液6の硝化菌と脱窒菌を沈降分離し、上溌液を処
理水7として河川に放流する。
The denitrification tank 2 is anaerobic, and an organic carbon source 9 such as methanol is injected as a reducing agent. Sedimentation pond 3
The denitrifying bacteria and denitrifying bacteria in the denitrifying liquid 6 are separated by sedimentation, and the resulting liquid is discharged into a river as treated water 7.

一方、沈降した硝化菌と脱窒菌を含む活性汚泥は大部分
は硝化槽lに返送され、残りは系外に排出される。
On the other hand, most of the settled activated sludge containing nitrifying bacteria and denitrifying bacteria is returned to the nitrification tank 1, and the remainder is discharged outside the system.

このようにして脱室を行うのであるが、硝化槽lおよび
脱窒槽2内における生物反応を化学式で表わすと次式の
ようになる。
In this way, the room is removed, and the biological reactions in the nitrification tank 1 and the denitrification tank 2 can be expressed by the following chemical formula.

硝化槽N)(4”+1.50.→N02−HJ20+2
H”  ・(1)NO□−+〇、502→NO,−・・
・(2)脱窒槽2NO□−+3(ル)→N2 +20H
−+ 2 )L!0・・・(3) 2NO3’−+5 (几)→N2+20圧+4H20・
・・(4) このような化学反応をして脱窒する際に、脱窒槽2には
還元剤として有機炭素源を注入する必要がある。ところ
が、有機炭素源はNO,−Hの還元だけでなく、溶存酸
素(DO)にも消費される。
Nitrification tank N) (4”+1.50.→N02-HJ20+2
H" ・(1) NO□-+〇, 502→NO,-・・
・(2) Denitrification tank 2NO□-+3(ru) → N2 +20H
-+ 2) L! 0...(3) 2NO3'-+5 (几)→N2+20pressure+4H20・
(4) When performing denitrification through such a chemical reaction, it is necessary to inject an organic carbon source into the denitrification tank 2 as a reducing agent. However, organic carbon sources are consumed not only by reduction of NO and -H but also by dissolved oxygen (DO).

有機炭素源としてメタノールを使用した場合、メタノー
ル消費fi Cmは次式で表わされる。
When methanol is used as an organic carbon source, methanol consumption fi Cm is expressed by the following equation.

Cm−2,47(NOs  N)+1.53(NO2N
)+0.87(DO)             ・・
・(5)硝化槽1における硝化効率は溶存酸素濃度が低
いと悪化するため、安定した効率を得るにはある程度の
溶存酸素濃度を維持しなければならない。
Cm-2,47(NOsN)+1.53(NO2N
)+0.87(DO)...
- (5) Since the nitrification efficiency in the nitrification tank 1 deteriorates when the dissolved oxygen concentration is low, a certain level of dissolved oxygen concentration must be maintained in order to obtain stable efficiency.

一般には3〜41階/7に浴存酸素#度を保つ必要があ
るとさtしている。従って、脱窒槽2に流入する硝化液
は硝化槽lで維持されている溶存酸素を含んでいる。硝
化液中のNO,−NはNO,−Nが殆んどであるが、一
般的な下水処理場における硝化液のNO,−N濃度は1
0〜20グ/を程度である。したがって、溶存酸素によ
るメタノール消費割合は全供給量の7〜13%となる。
In general, it is said that it is necessary to maintain the oxygen level in the bath on the 3rd to 41st floors/7. Therefore, the nitrification liquid flowing into the denitrification tank 2 contains the dissolved oxygen maintained in the nitrification tank 1. Most of the NO and -N in the nitrification solution are NO and -N, but the concentration of NO and -N in the nitrification solution in a typical sewage treatment plant is 1.
It is about 0 to 20 g/. Therefore, the proportion of methanol consumed by dissolved oxygen is 7 to 13% of the total supply amount.

このように1M機炭素源は硝化液の溶存酸素によって消
費されるため、還元剤として適量の有機炭素源を注入し
たとしても脱窒効率が低下することになる。また、溶存
酸素の消費を考慮して有機炭素源を注入することは高価
な有機炭素源を無、駄に便用することになり経済的に得
策でない。
Since the 1M organic carbon source is thus consumed by dissolved oxygen in the nitrifying solution, the denitrification efficiency will decrease even if an appropriate amount of organic carbon source is injected as a reducing agent. Furthermore, injecting an organic carbon source in consideration of the consumption of dissolved oxygen results in the unnecessary use of an expensive organic carbon source, which is not economically advisable.

このような不都合は第2図に示すように、脱窒槽2が硝
化槽1の前段に位置し、有機性廃水403倍程度の硝化
液ioを硝化槽lがら脱擢槽2に循環させる構成を採る
と著しく不利益となる。すなわち、硝化液1oは稀釈効
果にょシ低NO,−Na度となるため、溶存酸素による
メタノール消費率が全供給量の22〜36Xとなる。
This inconvenience can be solved by constructing a structure in which the denitrification tank 2 is located before the nitrification tank 1, and the nitrification liquid io, which is about 403 times the amount of organic wastewater, is circulated from the nitrification tank 1 to the desaturation tank 2, as shown in Figure 2. If you choose to do so, you will be at a significant disadvantage. That is, since the nitrifying solution 1o has a dilution effect with low NO and -Na degrees, the methanol consumption rate due to dissolved oxygen is 22 to 36 times the total supply amount.

以上のように、従来の生物学的脱窒方法では還元剤とし
て注入する有機炭素源が硝化液の溶存酸素によって無駄
に消費されるため経済的に不利という問題点を有してい
る。
As described above, the conventional biological denitrification method has the problem of being economically disadvantageous because the organic carbon source injected as a reducing agent is wasted by dissolved oxygen in the nitrifying solution.

〔発明の目的〕[Purpose of the invention]

本−A明は上記点に対処して成されたもので、その目的
とするところは脱窒効率を低下させることなく有機炭素
源の使用量を節減できる有機性廃水の生物学的脱窒方法
を提供することにある。
The present invention was developed in response to the above-mentioned problems, and its purpose is to provide a biological denitrification method for organic wastewater that can reduce the amount of organic carbon source used without reducing the denitrification efficiency. Our goal is to provide the following.

本発明の他の目的は生物学的脱窒装置の基本構成を変更
することなく簡単に実現できる有機性廃水の生物学的脱
窒装置を提供することKある。
Another object of the present invention is to provide a biological denitrification device for organic wastewater that can be easily realized without changing the basic structure of the biological denitrification device.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは硝化液の溶存酸素を気相中
に放散させ、溶存酸素の低減を待って有機炭素源全注入
するようにしたことにある。
The present invention is characterized in that dissolved oxygen in the nitrification solution is diffused into the gas phase, and the organic carbon source is completely injected after waiting for the dissolved oxygen to be reduced.

本発明の他の特徴とするところは硝化液の溶存酸素の放
散を脱望楕内で行わせるよう如したことにある。溶存酸
素の放散時間を30分程でよく、脱窒槽における滞留時
間が2〜3時であり、脱窒惜内の放散領域としては全体
の1/4以下程度となる。また、放散領域も嫌気性の状
態にあり、硝化液あるいは流入有機性廃水に含まれる有
機物を還元剤として脱窒反応が進行するので脱窒容積が
不足することはない。
Another feature of the present invention is that dissolved oxygen in the nitrifying solution is diffused within the desorption ellipse. The dispersion time of dissolved oxygen may be about 30 minutes, the residence time in the denitrification tank is 2 to 3 hours, and the dispersion area in the denitrification tank is about 1/4 or less of the whole. Further, the denitrification region is also in an anaerobic state, and the denitrification reaction proceeds using the nitrification solution or organic matter contained in the inflowing organic wastewater as a reducing agent, so there is no shortage of denitrification volume.

本発明の他の特徴は以下の説明から明らかになるであろ
う。
Other features of the invention will become apparent from the description below.

〔発明の実施例〕[Embodiments of the invention]

第3図に本発明の一実施例を示し、脱窒槽2の部分のみ
を示している。
FIG. 3 shows an embodiment of the present invention, in which only the denitrification tank 2 is shown.

第3図において、第1図および第2図と同一符号のもの
は相当物を示す。脱窒槽2を放散領域Aと脱窒領域Bに
分け、その境界に多数の穴13aが穿設されている多孔
仕切板13が配置されている。放散領域Aの溶存酸素濃
度(DO)はDO計21で測定され攪拌制御装置22に
人力される。
In FIG. 3, the same reference numerals as in FIGS. 1 and 2 indicate equivalent parts. The denitrification tank 2 is divided into a dispersion area A and a denitrification area B, and a porous partition plate 13 having a large number of holes 13a is arranged at the boundary thereof. The dissolved oxygen concentration (DO) in the diffusion area A is measured by a DO meter 21 and manually inputted to the stirring control device 22.

攪拌制御装置22はDO測定値DOoとDO目標値DO
の偏差に応じて電動機23の回転する。攪拌翼24は電
動機23により駆動される。脱窒槽2の気イ目部Cに発
生した窒素ガス引抜管10で引抜かれる。引抜管11の
他端は吸込管14に接続される。吸込管14にはガスが
比較的大きな流速で流れている。
The stirring control device 22 controls the DO measurement value DOo and the DO target value DO.
The electric motor 23 rotates according to the deviation. The stirring blades 24 are driven by the electric motor 23. Nitrogen gas generated in the air section C of the denitrification tank 2 is drawn out by a drawing pipe 10. The other end of the drawing pipe 11 is connected to the suction pipe 14. Gas flows through the suction pipe 14 at a relatively high flow rate.

次に、その動作を説明する。Next, its operation will be explained.

脱窒槽2内は酸素接触を断って嫌気状態下に維持すると
ともに、微生物の沈殿防止等のために緩−かな攪拌が全
槽に渡って行わnる。NO□−N及び微生物を含有した
硝化液5を放散領域Aに流入させ硝化液5中の溶存酸素
を放散させる。自然流下した硝化液が仕切板13を通過
した直後に有機炭素源9を供給してNo、−Nを窒素ガ
スに還元させる。
The inside of the denitrification tank 2 is maintained in an anaerobic state by cutting off contact with oxygen, and gentle stirring is performed throughout the tank to prevent microorganisms from settling. The nitrifying solution 5 containing NO□-N and microorganisms is caused to flow into the dispersion area A, and the dissolved oxygen in the nitrifying solution 5 is dissipated. Immediately after the naturally flowing nitrification liquid passes through the partition plate 13, an organic carbon source 9 is supplied to reduce No and -N to nitrogen gas.

放散領域Aでの溶存酸素は次のようにして放散される。Dissolved oxygen in the dispersion area A is dissipated as follows.

(6)式は気液平衡を示す。Equation (6) shows gas-liquid equilibrium.

x、=P。/K           ・・・(6)(
6)式から液中の酸素溶融KXoは気゛相中の酸素分圧
Poに比例することがわかる。20Cにおける水に対す
る酸素溶解量(溶存酸素濃度)を(6)式から求めた結
果を第4図に示す。第4図において、気相中の酸素分圧
を低下させることにより溶存酸素を低減できることがわ
かる。一般的に脱窒槽2の気相部COガス雰囲気は脱窒
反応の結果発生する蓋素ガスが支配的となシ、酸素濃度
は1%程度である。平衡溶存酸素濃度は0.5 mt/
 を以下となる。従って、放散領域Aを設けることによ
り溶存談素は自然放散して低減するので、有機炭素源の
無駄な消費量を少なくできる。
x,=P. /K...(6)(
From equation 6), it can be seen that the oxygen melt KXo in the liquid is proportional to the oxygen partial pressure Po in the gas phase. FIG. 4 shows the results of determining the amount of oxygen dissolved in water (dissolved oxygen concentration) at 20C using equation (6). In FIG. 4, it can be seen that dissolved oxygen can be reduced by lowering the oxygen partial pressure in the gas phase. Generally, the CO gas atmosphere in the gas phase of the denitrification tank 2 is dominated by hydrogen gas generated as a result of the denitrification reaction, and the oxygen concentration is about 1%. Equilibrium dissolved oxygen concentration is 0.5 mt/
is as follows. Therefore, by providing the dispersion region A, the dissolved dolphins are naturally dissipated and reduced, so that the amount of wasteful consumption of the organic carbon source can be reduced.

一方、流入する有様性廃水は人間生活を反映して一日を
一周期として変動するために放散時間が変化し、溶存酸
素の放散が十分でなく残留溶存酸素によって有機炭素源
が消費されろことになる。
On the other hand, the dissipation time of the inflowing morphological wastewater changes over the course of a day, reflecting human life, and the dispersion of dissolved oxygen is insufficient, resulting in the organic carbon source being consumed by the residual dissolved oxygen. It turns out.

このことから、放散領域Aの酸素放散を操作するのが望
lしい。
For this reason, it is desirable to manipulate oxygen dissipation in the dissipation region A.

液中ノ溶存QHccD放散速e−d/d t (DO)
 f!c(7)式に示す。
Dissolved QHccD diffusion rate in liquid e-d/dt (DO)
f! It is shown in equation c(7).

ここで、DOo:溶存酸素濃度、1)On:気相酸素分
圧に対する平衡溶存酸素濃度* K t a  :酸素
移動係数、Kr :酸素消費速期、S:微生物濃度であ
る。
Here, DOo: dissolved oxygen concentration, 1) On: equilibrium dissolved oxygen concentration with respect to gas phase oxygen partial pressure* K ta: oxygen transfer coefficient, Kr: oxygen consumption rate period, S: microorganism concentration.

(7)式の右辺第1項は気液平衡による放散であり、第
2項は微生物消費による減少である。
The first term on the right side of equation (7) is the dissipation due to vapor-liquid equilibrium, and the second term is the reduction due to microbial consumption.

第5図は脱窒槽2の気相部Cの酸素濃度を1%とし、機
械攪拌、曝気攪拌時の放散時間に対する溶存酸素濃度を
(7)式から求めた計算結果を示す。
FIG. 5 shows the calculation results of the dissolved oxygen concentration versus the dispersion time during mechanical agitation and aeration agitation using equation (7), assuming that the oxygen concentration in the gas phase C of the denitrification tank 2 is 1%.

第5図から、所定値の溶存酸素濃度を得る放散時間が存
在することがわかる。一方、第5図の関係は酸素移動係
数Kt、a  が大きくなる程溶存酸素が低下する。ま
た、酸素移動係数K t a は攪拌強度に対応して変
化することから、与えられた放散時間内で所定の溶存酸
素濃度にするためには攪拌強度を調節すれば良いことが
わかる。さらに、脱窒槽2の気相部Cを負圧にすれば(
7)式平衡溶存酸素濃度DOnが低下し、放散速度が高
まる。従って、放散領域Aにおける酸素放散は煉拌強度
及び気相部Cの圧力を操作することにより促進される。
From FIG. 5, it can be seen that there is a diffusion time to obtain a predetermined dissolved oxygen concentration. On the other hand, the relationship shown in FIG. 5 shows that the larger the oxygen transfer coefficient Kt,a, the lower the dissolved oxygen. Further, since the oxygen transfer coefficient K ta changes in accordance with the stirring intensity, it is understood that the stirring intensity can be adjusted to achieve a predetermined dissolved oxygen concentration within a given diffusion time. Furthermore, if the gas phase C of the denitrification tank 2 is made negative pressure (
7) The equilibrium dissolved oxygen concentration DOn decreases and the dissipation rate increases. Therefore, oxygen dissipation in the dispersion area A is promoted by manipulating the stirring intensity and the pressure of the gas phase C.

第3図の実施例において、攪拌強度の操作は、放散領域
Aに溶存酸素濃度計21で測定した実測値D Ooが所
定値Do以下となるように攪拌翼24の回転数を制御す
る。
In the embodiment shown in FIG. 3, the stirring intensity is controlled by controlling the rotational speed of the stirring blade 24 so that the actual value D Oo measured by the dissolved oxygen concentration meter 21 in the dispersion area A is equal to or less than a predetermined value Do.

なお、機械攪拌装置は新たに設置することなく、従来設
置されているものを使用することもできる。
Note that a conventionally installed mechanical stirring device may be used without installing a new mechanical stirring device.

一方、引抜管lOが比較的ガス流速の大きい吸込管14
にエゼクタ方式で接続されており、気相部Cが負圧とな
る。吸込管14のガス体としては新たな空気でも良いが
硝化槽lの排ガスを流動させることにより新たな動力を
使用せずに負圧を維持できる。このようにして脱窒する
際に、多孔仕切壁13は放散領域Aと脱窒領域Bの逆混
合を防止し、放散領域Aでの有機炭素消費を抑制する動
きをする。
On the other hand, the drawing pipe lO is the suction pipe 14 with a relatively high gas flow rate.
The gas phase section C becomes a negative pressure. The gas in the suction pipe 14 may be fresh air, but by flowing the exhaust gas from the nitrification tank 1, negative pressure can be maintained without using new power. When denitrifying in this manner, the porous partition wall 13 acts to prevent back mixing between the dispersion region A and the denitrification region B, and to suppress organic carbon consumption in the dispersion region A.

次に、第3図の実施例では酸素放散の促進を機械攪拌に
より行っているが、ガス撹拌でも行うことができる。ガ
ス攪拌は第5図に示したように、機械攪拌よりも放散速
度を増加をせ放散領域Aの容積を縮少できる。
Next, in the embodiment shown in FIG. 3, oxygen diffusion is promoted by mechanical stirring, but gas stirring can also be used. As shown in FIG. 5, gas agitation can increase the dispersion speed and reduce the volume of the dispersion area A compared to mechanical agitation.

第6図にガス攪拌による本発明の実施例を示す。FIG. 6 shows an embodiment of the present invention using gas stirring.

攪拌用ガスとしては窒素ガスが支配的となる脱窒ガスを
用いることができる。
As the stirring gas, a denitrifying gas in which nitrogen gas is dominant can be used.

第6図において第3図と同一記号のものは相当物を示す
。脱窒槽2の気相部Cから引抜管lOで捕集した脱窒ガ
ス(窒素ガス)を循環ガス管11を介して圧縮機25に
加える。圧縮機25によって脱窒ガスを放散領域Aの底
部に設置した散気管15から曝気させ、攪拌を行うとと
もに気液接触により溶存酸素の放散を回通する。放散領
域Aからの排出ガスは脱窒領域Bの生成ガスと混会し脱
窒ガスとして再び循環され、一部は分配器19の作用に
より糸外へ排出ガス12として抜出される。
In FIG. 6, the same symbols as in FIG. 3 indicate equivalents. Denitrification gas (nitrogen gas) collected from the gas phase C of the denitrification tank 2 by the drawing pipe IO is added to the compressor 25 via the circulating gas pipe 11. Denitrification gas is aerated by the compressor 25 from the aeration pipe 15 installed at the bottom of the diffusion area A, stirring is performed, and the dissolved oxygen is circulated through gas-liquid contact. The exhaust gas from the dispersion area A mixes with the generated gas from the denitrification area B and is circulated again as denitrification gas, and a portion is extracted to the outside of the yarn as exhaust gas 12 by the action of the distributor 19.

放敗速+Xは放散領域Aに設置された溶存酸素濃度計2
1の実測値DOoが所定領Do以下となるように(W拌
制御装置22で圧縮機25を制御する。
The dissipation rate +X is the dissolved oxygen concentration meter 2 installed in the dissipation area A.
The compressor 25 is controlled by the W stirring control device 22 so that the actual measured value DOo of 1 is below the predetermined range Do.

なお、第6図の実施例では攪拌用ガスとして脱窒生成ガ
スを用いたが、新たな不活性ガスを使用しても同様の放
散速度促進効果が得られる。
In the embodiment shown in FIG. 6, the denitrification gas was used as the stirring gas, but the same effect of accelerating the dispersion rate can be obtained even if a new inert gas is used.

WJ77は本発明の他の実施例を示すもので、ガスリフ
ト攪拌全行うものである。
WJ77 shows another embodiment of the present invention, in which all gas lift stirring is performed.

循環ガス管11を放散領域Aの上部から底部方向に浸漬
させ、循環ガス管11の周囲にリフト管16を放散領域
Aの気相部Cまで配置する。循環ガスでリフトされた液
中の溶存酸素は循環ガスとの接触時および気相部Cでの
滴下時に放散される。
The circulating gas pipe 11 is immersed from the top to the bottom of the dispersion area A, and the lift pipe 16 is arranged around the circulating gas pipe 11 up to the gas phase part C of the dispersion area A. Dissolved oxygen in the liquid lifted by the circulating gas is dissipated upon contact with the circulating gas and during dripping in the gas phase section C.

第8図、第9図にガス攪拌と慎械攪拌を組合せて溶存酸
素を放散させる実施例を示す。
FIGS. 8 and 9 show an example in which dissolved oxygen is diffused by combining gas stirring and mechanical stirring.

第8図は攪拌翼24の下部に散気管15を配置して構成
したものである 第8図の実施例では攪拌液の放散液の
放牧抵抗を減少させるとともに。
Fig. 8 shows a configuration in which an aeration pipe 15 is disposed below the stirring blade 24. In the embodiment shown in Fig. 8, the grazing resistance of the dispersed liquid of the stirring liquid is reduced.

曝気ガスの滞留時間を長くするとともに気泡の微粒化を
図ることができる。第9図はJ″i、拌翼24の上面に
循環ガス管11に案内されたガスを吹込むようにしたも
のである。第9図でも第8図と同様の効果が得られる。
It is possible to lengthen the residence time of the aeration gas and to atomize the bubbles. FIG. 9 shows J″i, in which gas guided through the circulation gas pipe 11 is blown into the upper surface of the stirring blade 24. In FIG. 9, the same effect as in FIG. 8 can be obtained.

ま/こ、第9図の実側絡では攪拌翼24の回転力により
ガスの吸引作用が動き、ガス吹込み動力の低減を図るこ
とができる。このように、ガス攪拌と機械攪拌の組合せ
による撹拌によって液とガスの接触面積を増し、溶存は
素の放散を促進することができる。放散速度の増加は、
所定値の溶存酸素濃度を得るための放散時間を短縮でき
ることから、放散領域Aの脱窒槽2全体に占める割合を
低減させることができる。
In the real side connection shown in FIG. 9, the gas suction action is activated by the rotational force of the stirring blade 24, and the gas blowing power can be reduced. In this way, by stirring using a combination of gas stirring and mechanical stirring, the contact area between the liquid and the gas can be increased, and the dispersion of dissolved elements can be promoted. The increase in dissipation rate is
Since the diffusion time for obtaining a predetermined dissolved oxygen concentration can be shortened, the ratio of the diffusion region A to the entire denitrification tank 2 can be reduced.

次に、上述の実施例は溶存酸素によって攪拌強度を制御
したが、溶存酸素以外を指標として制御することもでき
る。(6)式において、溶存酸素濃度は気相中の酸素濃
度に規定されることから、放散領域Aの排出ガス中の酸
素濃度を攪拌強度の指標とすることができる。
Next, in the above embodiments, the stirring intensity was controlled using dissolved oxygen, but it can also be controlled using indicators other than dissolved oxygen. In equation (6), since the dissolved oxygen concentration is defined by the oxygen concentration in the gas phase, the oxygen concentration in the exhaust gas in the diffusion region A can be used as an index of the stirring intensity.

また、流入水解によシ放欣頭1埃Aの滞留時間すなわも
放散時間が決定さhることから、特定成敗時間において
所ボ直の浴rI酸素濃度を得るようにfJ+″ト・iq
i度を操1「することもできる。
In addition, since the retention time of the dust A, that is, the dispersion time, is determined by the inflow water decomposition, fJ+''t・iq
You can also manipulate the i degree.

第iotΔ?−1: 、この場合の実7踊しJで、硝化
水量を流i[F計26で?il:、l定する。4i7拌
制r11υ’A itf、 22 ’は流量(則>X+
直と放;汐頗J或Aのがitfから〕攻敗時(H]を求
め、該成敗時1ii9こおいて溶仔酸索旗度3+21’
で測定された硝化液中0)を6存1ぽネが所7N値以[
とlる放散速度をJ<める、そして、放散(*;莢と1
攪拌強度の関係に、+5づいてilj姑磯23を操作す
る。この際、成敗頒城A内のγ谷イγ1淡素濃度を攪拌
1ijlJ :nl装置d22′(こフイ ドパンクし
、j渡拌強度の補正を実権する。
No.iotΔ? -1: In this case, the amount of nitrified water is flowed i [F total 26? il:, l set. 4i7 Stirring control r11υ'A itf, 22' is the flow rate (rule>X+
Direct and release; Shioguri J or A's from itf] Calculate the time of attack or defeat (H), and at the time of success or defeat, 1ii9, Sosai acid search standard degree 3 + 21'
0) in the nitrifying solution measured at
Calculate the dissipation rate as J<, and dissipate (*; pod and 1
In relation to the stirring intensity, ilj 23 is operated according to +5. At this time, the γ valley i γ1 element concentration in success/failure distribution castle A is stirred 1ijlJ:nl device d22' (coffee d22') is punctured, and the correction of the j-crossing intensity is actually controlled.

ここで、脱A漕2に流入する硝化水らtによって(1〜
拌強度を制+1ltlする際に、jが拌が機械攪拌であ
っても同様しこ成し得ることは容易に理解されることで
める。
Here, due to the nitrified water flowing into the de-A tank 2, (1~
It can be easily understood that when controlling the stirring intensity by +1ltl, the same effect can be achieved even if j is mechanically stirred.

第1−1図は本発明の他の冥か′q回を示すもので、放
散槽2′を脱望イd2の前段に設けたものである。
FIG. 1-1 shows another version of the present invention, in which a dispersion tank 2' is provided at the front stage of the desorption tank d2.

第11図の実施例では放散槽2′のガス雰囲気が放散に
より酸素1#度が上昇するのを防ぐために。
In the embodiment shown in FIG. 11, the purpose is to prevent the gas atmosphere in the diffusion tank 2' from increasing by 1 degree of oxygen due to diffusion.

脱窒槽2で生成された脱室ガスを引抜710を介して放
散槽2′に取入れている。脱窒ガスは放散槽2′の気相
部を経由させるだけでも良いが lf拌用に使用すれば
放散速度の促進効果を増長できる。第11図では放散槽
2′で溶存酸素を低減された硝化水5′が脱窒槽2に流
入する。また、放散槽2′の生成ガスと脱室ガスは引抜
管10′から引抜かれる。なお、脱窒ガスの変わりに新
たな不活性ガスを用いることも可能である。
The dechambering gas generated in the denitrification tank 2 is taken into the diffusion tank 2' via a drawer 710. The denitrification gas can be simply passed through the gas phase portion of the diffusion tank 2', but if used for lf stirring, the effect of accelerating the diffusion rate can be increased. In FIG. 11, nitrified water 5' whose dissolved oxygen has been reduced in the diffusion tank 2' flows into the denitrification tank 2. Further, the generated gas and the vented gas in the diffusion tank 2' are extracted from the extraction pipe 10'. Note that it is also possible to use a new inert gas instead of the denitrifying gas.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は硝化液の溶存酸素を低減さ
せてから有機炭素源を注入しているので、溶存酸素によ
って無駄に消費される有機炭素源を少なくできる。した
がって、有機炭素源を還元剤として効果的に作用させる
ことになり、脱窒効率を低下させることなく有機炭素源
の使用量を低減できる。
As explained above, in the present invention, since the organic carbon source is injected after reducing the dissolved oxygen in the nitrification solution, it is possible to reduce the amount of organic carbon source wasted due to dissolved oxygen. Therefore, the organic carbon source can effectively act as a reducing agent, and the amount of organic carbon source used can be reduced without reducing the denitrification efficiency.

また1本発明では脱窒槽内で硝化液の溶存酸素を低減さ
せ得るので、生物学的脱窒装置の基本構成を変更するこ
となく簡単に実現できる。
Furthermore, in the present invention, dissolved oxygen in the nitrification solution can be reduced in the denitrification tank, so that it can be easily realized without changing the basic configuration of the biological denitrification device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ生物学的脱窒装置の構J戊図
、第3図は本発明の一実施例を示す構成図。 第4図は気相中酸素濃度と溶存酸素濃度の関係を示す特
性図、第5図は攪拌による溶存酸素濃度の時間変化を示
す特性図、第6図は本発明の他の実施例を示す構成図、
第7〜9図はそれぞれ本発明による攪拌手段の他の例を
示す要部構成図、第10図、第11図はそれぞれ本発明
の他の実施例を示す構成図である。 ■・・・硝化槽、2・・・脱窒槽、5・・・硝化液、9
・・・有機炭素源、lO・・・ガス引抜管、13・・・
多孔仕切壁、茗t(21 薯2m 第4m 爾し4画梨案4し賞(′わt〕
FIGS. 1 and 2 are schematic diagrams of a biological denitrification apparatus, respectively, and FIG. 3 is a diagram showing an embodiment of the present invention. Fig. 4 is a characteristic diagram showing the relationship between oxygen concentration in the gas phase and dissolved oxygen concentration, Fig. 5 is a characteristic diagram showing the temporal change in dissolved oxygen concentration due to stirring, and Fig. 6 shows another embodiment of the present invention. Diagram,
7 to 9 are main part configuration diagrams showing other examples of stirring means according to the present invention, and FIGS. 10 and 11 are configuration diagrams showing other embodiments of the present invention, respectively. ■... Nitrification tank, 2... Denitrification tank, 5... Nitrification liquid, 9
...Organic carbon source, lO...Gas extraction pipe, 13...
Porous partition wall, Meat t (21 薯2m, 4th meter, 4 strokes, 4 designs)

Claims (1)

【特許請求の範囲】 1、流入する有機性廃水に有機炭素源を注入して脱窒す
る脱窒工程を有する生物学的脱窒方法において、前記有
機性廃水の溶存酸素の低減を待って前記有機炭素源を注
入することを特徴とする有機性廃水の生物学的脱窒方法
。 2、特許請求の範囲第1項において、有機性廃水の溶存
酸素の低減は前記有機性廃水を攪拌し溶存酸素を気相中
に強制的に放散させて行うことを特徴とする有機性廃水
の生物学的脱窒方法。 3、%許請求の範囲第2項において、有機性廃水の攪拌
は機械的に行うことを%徴とする有機性廃水の生物学的
脱窒方法。 4、特許請求の範囲第2項において、有機性廃水の攪拌
は不活性ガスを散気して行うことを特徴とする有機性廃
水の生物学的脱窒方法。 5、特許請求の範囲第4項において、不活性ガスは脱窒
工程で発生する窒素ガスであることを特徴とする有機性
廃水の生物学的脱窒方法。
[Scope of Claims] 1. A biological denitrification method having a denitrification step of injecting an organic carbon source into inflowing organic wastewater to denitrify it, after waiting for the reduction of dissolved oxygen in the organic wastewater. A method for biological denitrification of organic wastewater, characterized by the injection of an organic carbon source. 2. The organic wastewater according to claim 1, wherein the reduction of dissolved oxygen in the organic wastewater is carried out by stirring the organic wastewater and forcibly dissipating the dissolved oxygen into the gas phase. Biological denitrification methods. 3. A method for biological denitrification of organic wastewater according to claim 2, characterized in that stirring of the organic wastewater is performed mechanically. 4. A biological denitrification method for organic wastewater according to claim 2, characterized in that stirring of the organic wastewater is performed by aerating inert gas. 5. The biological denitrification method for organic wastewater according to claim 4, wherein the inert gas is nitrogen gas generated in the denitrification process.
JP16851182A 1982-09-29 1982-09-29 Biological denitrification of organic waste water Pending JPS5959297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16851182A JPS5959297A (en) 1982-09-29 1982-09-29 Biological denitrification of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16851182A JPS5959297A (en) 1982-09-29 1982-09-29 Biological denitrification of organic waste water

Publications (1)

Publication Number Publication Date
JPS5959297A true JPS5959297A (en) 1984-04-05

Family

ID=15869398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16851182A Pending JPS5959297A (en) 1982-09-29 1982-09-29 Biological denitrification of organic waste water

Country Status (1)

Country Link
JP (1) JPS5959297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094458A (en) * 2016-12-08 2018-06-21 太平洋セメント株式会社 Denitrification reaction accelerator composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094458A (en) * 2016-12-08 2018-06-21 太平洋セメント株式会社 Denitrification reaction accelerator composition

Similar Documents

Publication Publication Date Title
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
CN105502657A (en) Device and method for treating high-concentration ammonia-nitrogen wastewater in aeration-anaerobic circulation mode
CN107512774A (en) Preposition short-cut denitrification Anammox handles the apparatus and method of low C/N municipal sewages
CN103058375A (en) Anaerobic-aerobic process control method for efficient phosphorus removal and nitrogen reservation of municipal domestic sewage
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
CN115465953B (en) AOD biochemical reaction system for treating sewage and sewage treatment method thereof
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPS5959297A (en) Biological denitrification of organic waste water
JP4142138B2 (en) Microbial reaction tank and waste water treatment method
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP2543745Y2 (en) Anaerobic / aerobic activated sludge treatment equipment
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
CN111233262A (en) Novel AC-SBR operation control method for sewage biological treatment
CN208762233U (en) A kind of municipal sewage high efficiency nitrification and denitrification system
JP3649632B2 (en) Biological nitrogen removal method
CN109824145B (en) Device and method for rapidly realizing autotrophic denitrification of domestic sewage by regulating and controlling flora structure
JPH0938683A (en) Biological water treating device
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
CN218968997U (en) Internal circulation intermittent adjustable biochemical treatment system
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
KR20010068370A (en) A removal method of organics and nitrogen compounds of wastewater using sequence batch reactor