JPS5957470A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5957470A
JPS5957470A JP57168002A JP16800282A JPS5957470A JP S5957470 A JPS5957470 A JP S5957470A JP 57168002 A JP57168002 A JP 57168002A JP 16800282 A JP16800282 A JP 16800282A JP S5957470 A JPS5957470 A JP S5957470A
Authority
JP
Japan
Prior art keywords
transistor
region
insulating film
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57168002A
Other languages
Japanese (ja)
Inventor
Tetsunori Wada
哲典 和田
Makoto Dan
檀 良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57168002A priority Critical patent/JPS5957470A/en
Publication of JPS5957470A publication Critical patent/JPS5957470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive improvement in the degree of integration of the titled semiconductor device by a method wherein one transistor is replaced with a semiconductor element formed on an insulating film, and also an insulating film for element isolation is utilized as an insulating film thereof. CONSTITUTION:A selective etching is performed on a polycrystalline Si film 46 using an optical etching method, and polycrystalline Si films 47 and 48 are left on thermal oxide films 44 and 45 respectively. Then, a photoresist is applied on the whole surface, a part of the thermal oxide film 45 located on an Si thin film 43 is exposed by performing exposure and developing processes on said resist, and boron is implanted therein. Another photoresist 51 is applied on the whole surface again, the thermal oxide films 44 and 45 are partially exposed by performing exposure and developing processes on the resist 51, and phosphorus is ion-implanted. Then, an N<+> region 52, a source region 53 and a drain region 54 are exposed by performing a wet etching, and then the resist 51 is removed. Lastly, a source electrode 55, a drain electrode 56 and an anode electrode 57 are formed respectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、新しい動作原理に基づくトランジスタを用い
た半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device using a transistor based on a new operating principle.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

C−MO8型半導体装置は、低消費電力で電気的雑音に
対する余裕が大きいと云う優れた特徴があるため、多く
の半導体回路に採用されている。C−MOB型半導体装
置を製造する場合、nチャネルMO8)ランジスタとp
fヤネルMOSトランジスタと全同一半導体基板上に作
成する必要があるが、このときnfヤネルMOB)ラン
ジスタとpチャネルMO8)ランジスタとを電気的に絶
縁するため、絶縁膜からなる領域でいずれか一方を囲ま
なければならない。そして、この絶縁膜からなる領域、
所謂素子分離領域には素子が形成できないので、半導体
基板の面積が有効に利用されず、これが集積度を向上す
る上で大きな問題となっている。
The C-MO8 type semiconductor device has excellent features such as low power consumption and a large margin against electrical noise, and is therefore used in many semiconductor circuits. When manufacturing a C-MOB type semiconductor device, an n-channel MOB8) transistor and a p
It is necessary to create the f Yarnel MOS transistor on the same semiconductor substrate, but in this case, in order to electrically insulate the nf Yarnel MOB) transistor and the p channel MOB transistor, one of them must be formed using an insulating film region. Must be surrounded. Then, a region made of this insulating film,
Since no element can be formed in the so-called element isolation region, the area of the semiconductor substrate is not effectively utilized, which poses a major problem in improving the degree of integration.

第1図は上記問題を説明するためのもので、C−MOS
インバータの素子構造を示す断面図である。図中lはn
型シリコン基板、2はpウェル、3は素子分離用絶縁膜
、4a、4bはゲート酸化膜、5a、5bはゲート電極
、6a。
Figure 1 is for explaining the above problem.
FIG. 2 is a cross-sectional view showing the element structure of an inverter. l in the diagram is n
2 is a p-well, 3 is an insulating film for element isolation, 4a and 4b are gate oxide films, 5a and 5b are gate electrodes, and 6a.

6bはソース領域、7a 、7bはドレイン領域をそれ
ぞれ示している。この図からも判るように、pウェル2
とpチャネルM OS )ランジスタのソース領域6b
とを電気的に分離するための素子分離用絶縁膜3(例え
ば厚さ5000X 。
Reference numeral 6b indicates a source region, and 7a and 7b indicate drain regions. As can be seen from this figure, p-well 2
and p-channel MOS) transistor source region 6b
An element isolation insulating film 3 (for example, 5000× thick) for electrically isolating the elements.

長さ5μm)が必要となり、これが素子の微細化及び高
集積化を妨げる要因となっている。
5 μm in length), which is a factor that hinders miniaturization and high integration of elements.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のC−MOS半導体装置と同様の
機能を有し、かつ集fj度の向上をはかり得る半導体装
置を提供することにある。
An object of the present invention is to provide a semiconductor device which has the same functions as conventional C-MOS semiconductor devices and which can improve the fj density.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、従来のC−MO8半導体装置の一方の
トランジスタを、新しい動作原理に基く絶縁膜上に形成
された半導体素子に置き換え、かつその絶縁膜として素
子分離用絶縁膜を利用することにある。
The gist of the present invention is to replace one transistor of a conventional C-MO8 semiconductor device with a semiconductor element formed on an insulating film based on a new operating principle, and to use an element isolation insulating film as the insulating film. It is in.

ここで上述の新しい動作原理に基〈半導体素子について
説明する。この半導体素子は、文献(電気通信学会技術
報告、5SI)−81−131゜P1〜5)に記載され
たもので、その素子構造を第2図に示す。絶縁物基板1
1上にn+型領領域12n型領域13及びp+型領領域
14有する厚さ約0.1〜0.5〔μ77+)の半導体
層15が形成されている。n型領域13上には、厚さ約
0.02〜0.05Cμm〕 の絶縁膜16を介して制
御用電極17が形成され、n++域I2(カソード)及
びp++域14(アノード)には各々電極18.19が
接続されている。カソード電極18を基準にしたときの
制御用電極17の電位f VGX 、アノード電極19
の電位eVIKと記すと、この半導体素子は第3図に示
す如き電気的特性を有する。即ち、アノード14とn型
領域13の境界に形成されたp −n 接合を流れる電
流はVG xで制御され、例えばp−n 接合の両端に
順方向に5〔v〕印加しても、VOKが約4.5(V)
以上ならこのp −n 接合には全く電流は流れない。
Here, the semiconductor device will be explained based on the above-mentioned new operating principle. This semiconductor device is described in the literature (Technical Report of Institute of Electrical Communication Engineers, 5SI)-81-131°P1-5), and the structure of the device is shown in FIG. Insulator substrate 1
A semiconductor layer 15 having a thickness of approximately 0.1 to 0.5 [μ77+] and having an n+ type region 12, an n type region 13, and a p+ type region 14 is formed on the semiconductor layer 1. A control electrode 17 is formed on the n-type region 13 via an insulating film 16 with a thickness of approximately 0.02 to 0.05 Cμm, and a control electrode 17 is formed in the n++ region I2 (cathode) and the p++ region 14 (anode), respectively. Electrodes 18,19 are connected. Potential f VGX of control electrode 17 with reference to cathode electrode 18, anode electrode 19
This semiconductor element has electrical characteristics as shown in FIG. 3. That is, the current flowing through the p-n junction formed at the boundary between the anode 14 and the n-type region 13 is controlled by VGx, and even if, for example, 5 [V] is applied in the forward direction to both ends of the p-n junction, VOK is about 4.5 (V)
If this is the case, no current will flow through this p-n junction.

第4図は以下の説明で用いる上記素子の等価記号である
。端子2’l、28.29は前記第2図における電極1
7.18.19にそれぞれ対応する。
FIG. 4 shows equivalent symbols for the above elements used in the following explanation. Terminals 2'l and 28.29 are electrodes 1 in FIG.
7.18.19 respectively.

この半導体素子とnチャネルMO8)ランジスタとを第
5図にかすように接続すると、C−MOSインバータ1
段と同じ信号処理が実現できることを説明する。第5図
におい′C1入力端子31の入力電圧が例えば5〔v〕
のとき、素子32は前述の如<OFF状態になる。この
ときSnチャネルMO8)ランジスタ33がON状態に
なるので、出力端子34は0〔v〕となる。
When this semiconductor element and an n-channel MO8) transistor are connected as shown in FIG.
It will be explained that the same signal processing as the stage can be realized. In Fig. 5, the input voltage of the C1 input terminal 31 is, for example, 5 [V].
At this time, the element 32 is in the OFF state as described above. At this time, the Sn channel MO8) transistor 33 is turned on, so the output terminal 34 becomes 0 [v].

また、入力電圧が0(V)のときは、nチャネルMO8
)ランジスタ33かOFF状態になり、素子32がON
状態になるため、出力端子34は電源端子35と同じ5
〔v〕になる。即ち、C−MOSインバータと同様の動
作をすることに′なる。なお、上記説明では新しい動作
原理に基づく半導体素子(トランジスタ)の素子構造を
n″″−n−p+とじたが、n”−p−p+の構造でも
同様の機能が得られる。
Also, when the input voltage is 0 (V), the n-channel MO8
) The transistor 33 turns OFF, and the element 32 turns ON.
state, the output terminal 34 is the same as the power supply terminal 35.
It becomes [v]. That is, it operates in the same way as a C-MOS inverter. In the above description, the element structure of a semiconductor element (transistor) based on a new operating principle is n''-n-p+, but the same function can be obtained with an n''-p-p+ structure.

本発明はこのような点に着目し、半導体基板の素子形成
領域上にMO8型構造の第1のトランジスタを形成する
と共に、上記半導体基板の素子分離用絶縁股上に前述し
た横型p+−p−n+或いはp”−n−n+槽構造有す
る第2のトランジスタを形成し、これら第1及び第2の
トランジスタを電源と接地端との間に接続し、第1のト
ランジスタのゲート電極及び前記第2のトランジスタの
制御用電極を同一の入力端子に接続し、かつ第1のトラ
ンジスタのソース若しくはドレインの一方と第2のトラ
ンジスタのp+ 領域若しくはn 領域の一方とを同一
の出力端子に接続するようにしたものである。
The present invention focuses on these points, and forms a first transistor with an MO8 type structure on the element formation region of the semiconductor substrate, and also forms the above-mentioned lateral p+-p-n+ on the element isolation insulation crotch of the semiconductor substrate. Alternatively, a second transistor having a p"-n-n+ tank structure is formed, and the first and second transistors are connected between the power supply and the ground terminal, and the gate electrode of the first transistor and the second transistor are connected between the power supply and the ground terminal. The control electrodes of the transistors are connected to the same input terminal, and one of the source or drain of the first transistor and one of the p+ region or the n region of the second transistor are connected to the same output terminal. It is something.

〔発明の効果〕 本発明によれば、前述した第2のトランジスタの特性か
らC−MO8半導体装置と同様に低消費電力を実現する
ことができる0しかも、素子分離用絶縁膜上に第2のト
ランジスタを形成しているので、C−MO8半導体装置
では実現困難な高密庇化、即ち高集積化1達成すること
ができる。
[Effects of the Invention] According to the present invention, it is possible to realize low power consumption similar to the C-MO8 semiconductor device due to the characteristics of the second transistor described above. Since transistors are formed, it is possible to achieve high density, that is, high integration, which is difficult to achieve with a C-MO8 semiconductor device.

〔発明の実施例〕[Embodiments of the invention]

第6図(a)〜(g) Ll、本発明の一実施例に係わ
る半導体装置製造工程を示す断面図である。まず、第6
図(a)に示す如くp型S1  基板(半導体基板)4
1上に厚さ6000〜8000(人〕のフィールド酸化
膜(素子分離用絶縁膜)42を部分的に形成したのち、
CVD法を用い全面に厚さ4000〔A)  のn型S
i薄膜(半導体薄膜)43を形成し、続いてフィールド
酸化膜42の上部にあるSl  薄膜43を残して他を
除去した。
FIGS. 6(a) to 6(g) are sectional views showing a semiconductor device manufacturing process according to an embodiment of the present invention. First, the 6th
As shown in Figure (a), p-type S1 substrate (semiconductor substrate) 4
After partially forming a field oxide film (insulating film for element isolation) 42 with a thickness of 6,000 to 8,000 mm on top of 1,
Using CVD method, the entire surface is coated with n-type S with a thickness of 4000 [A].
An i thin film (semiconductor thin film) 43 was formed, and then the Sl thin film 43 on the top of the field oxide film 42 was left and the rest was removed.

次いで、第6図(b)に示す如く全面を熱酸化させて、
厚さ約300〔又〕の酸化膜54.55を形成し、その
後CVD法を用い全面に厚さ約5ooo(又)  の多
結晶St  膜46を堆積した。
Next, as shown in FIG. 6(b), the entire surface is thermally oxidized,
An oxide film 54,55 with a thickness of about 300 mm was formed, and then a polycrystalline St 2 film 46 with a thickness of about 5 mm was deposited on the entire surface using the CVD method.

この状態で、光蝕刻法を用い第6図(C)に示す如く多
結晶St  膜46を選択エツチングし、熱酸化膜44
.45上に多結晶St  膜47.48をそれぞれ残存
させた。
In this state, the polycrystalline St film 46 is selectively etched using a photoetching method as shown in FIG. 6(C), and the thermal oxide film 44 is etched.
.. Polycrystalline St 2 films 47 and 48 were left on 45, respectively.

次に、第)−1/図(d)に示す如く全面にフォトレジ
スト49を塗布し、このレジストを露光現像してSI 
 薄膜43上の熱酸化膜45の一部を露出させ、その後
レジスト49をマスクとしてホウ素をイオン注入した。
Next, a photoresist 49 is applied to the entire surface as shown in FIG.
A part of the thermal oxide film 45 on the thin film 43 was exposed, and then boron ions were implanted using the resist 49 as a mask.

このイオン注入によりSl  薄膜43の一部にp+領
領域アノード)50が形成される。また、イオン注入の
条件は加速電圧40(KV)、ドーズ量3 X l O
” (cm−’)とした。次いで、熱酸化膜45の露出
部を湿式エツチングで除去したのち、第6図(e)に示
す如く再び全面にフォトレジスト51を塗布し、このレ
ジスト51を露光現像して熱酸化膜44の一部及び熱酸
化膜45の一部を露出した。続いて、上記レジスト51
をマスクとして、加速電圧40(KV、lと80(KV
)−C’燐を2個イオン注入した。イオン注入を2回行
うのは、 81  薄膜43中では比較的浅い所に、基
板41中では比較的深くまで、燐の濃度のピークが形成
されねばならないためである。このイオン注入により、
St  薄膜43の一部にn+ 領域(カソード)52
が形成され、また基板41にはソース領域53及びドレ
イン領域54が形成される。かくして、図中左廻]にn
 f−ヤネルMO8)ランジスタ(第1のトランジスタ
)が作成され、図中右側のフィールド酸化膜42上に新
しい動作原理に基づくトランジスタ(第2のトランジス
タ)が作成されることになる。
By this ion implantation, a p+ region anode 50 is formed in a part of the Sl thin film 43. In addition, the conditions for ion implantation are an acceleration voltage of 40 (KV) and a dose of 3 X l O
"(cm-'). Next, after removing the exposed portion of the thermal oxide film 45 by wet etching, a photoresist 51 is again applied to the entire surface as shown in FIG. 6(e), and this resist 51 is exposed to light. The resist 51 was developed to expose a portion of the thermal oxide film 44 and a portion of the thermal oxide film 45.
As a mask, the acceleration voltages 40 (KV, l and 80 (KV
)-C' Two ions of phosphorus were implanted. The reason why the ion implantation is performed twice is that the peak concentration of phosphorus must be formed at a relatively shallow location in the thin film 43 and relatively deep in the substrate 41. With this ion implantation,
An n+ region (cathode) 52 is formed in a part of the St thin film 43.
A source region 53 and a drain region 54 are also formed in the substrate 41. Thus, to the left in the figure]
A transistor (first transistor) (f-Yarnel MO8) is created, and a transistor (second transistor) based on a new operating principle is created on the field oxide film 42 on the right side of the figure.

次に、湿式エツチングを行い第6図(f)に示す如くn
+領域52、ソース領域53及びドレイン領域54を露
出させ、その後レジスト51を除去した。最後に、第6
図(g)に示す如くソース電極55、ドレイン電極56
及びアノード電極57全形成した。このとき、ドレイン
電極56はカソード電極も兼ねている0捷た、図では示
さないが、多結晶Si  膜47.48からなる2つの
トランジスタの各ゲートは図示の断面外で電気的に接続
されて入力端子を形成し、さらに電極56は出力端子と
なっているO このように橋成された半導体装置は先にも説明したよう
に従来のC−MOSインバータと同様の機能を有する。
Next, wet etching is performed as shown in Figure 6(f).
+ region 52, source region 53, and drain region 54 were exposed, and then resist 51 was removed. Finally, the 6th
As shown in figure (g), a source electrode 55 and a drain electrode 56
And the anode electrode 57 was completely formed. At this time, the drain electrode 56 also serves as a cathode electrode.Although not shown in the figure, the gates of the two transistors made of polycrystalline Si films 47 and 48 are electrically connected outside the illustrated cross section. The semiconductor device formed in this way has the same function as a conventional C-MOS inverter, as described above.

そしてこの場合、pチャネルMO8)う/ジスタの代り
となる第2のトランジスタがフィールド酸化膜42上に
形成されるので、全体の占有面積を大幅に小さくするこ
とができる。つまり、集積度の向上をはかり得る。
In this case, the second transistor, which replaces the p-channel MO transistor (8), is formed on the field oxide film 42, so that the overall occupied area can be significantly reduced. In other words, it is possible to improve the degree of integration.

また、nチャネルMO8)ランジスタと第2のトランジ
スタとかn 領域だけで導通しているので、単一キャリ
アタイプとなり、C−MO8で問題となっていたラッチ
アップ現象をなくすεとができる。
Furthermore, since the n-channel MO8) transistor and the second transistor are electrically conductive only in the n-region, they are of a single carrier type, and can eliminate the latch-up phenomenon that has been a problem with the C-MO8.

なお、本発明は上述した実施例に限定されるものではな
く、その要旨を逸脱しない範囲で、種々変形して実施す
ることができる。例えば、前記第2のトランジスタはn
+−n−p+構造に限らず、n、”−p−p+構造のも
のであってもよい。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof. For example, the second transistor is n
It is not limited to the +-n-p+ structure, but may be an n,"-p-p+ structure.

同様にnチャネルMO8の代りにpチャネルMO8)ラ
ンジスタとの組み合わせとすることも可能である。また
〜不純物ドーピング工程としては、熱拡散の代りに固相
拡散法を用いてもよい。さらに、熱酸化膜のエツチング
として湿式エツチングの代りに反応性イオンエツチング
法を用いてもよいのは勿論のことである。
Similarly, it is also possible to use a combination with a p-channel MO8 transistor instead of the n-channel MO8 transistor. Also, as the impurity doping step, a solid phase diffusion method may be used instead of thermal diffusion. Furthermore, it goes without saying that reactive ion etching may be used instead of wet etching for etching the thermal oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のC−MOSインバータの素−F構造金示
す断11図、第2図乃至第5図は本発明の詳細な説明す
るだめのもので第2図は新しい動作原理に基づく半導体
素子の素子構造を示す断面図、第3図はその動作特性を
示す特性図、第4図はその等価記号を示す図、第5図は
上記素子と従来のMOS)ランジスタとを組み合わせた
回路を示す等価回路図、第6図(a)〜(g)は本発明
の一実施例に係わる半導体装置製造工程を示す断面図で
ある。 41・・・p型Si  基板(半導体基板)、42・・
・フィールド酸化膜(素子分離用絶縁膜)、43・・・
n型3i  薄膜(半導体薄膜)、44.45・・・熱
酸化膜、46,47.48・・・多結晶St  膜、4
9.61・・・フォトレジスト、50・・・p+ 領域
(アノード)、52・・・n+領領域カンード)、53
・・・11+領域(ソース領域)、b4・・・n+領領
域ドレイン領域)、55・・・ソース電極、56・・・
ドレイン電極、57・・・アノード電極。 出願人代理人 弁理士  錦 江 武 彦第1図 第2図 第4図 第 6 図 fJ6図 341−
Fig. 1 is a cross-sectional view showing the elementary F structure of a conventional C-MOS inverter, Figs. 2 to 5 are for explaining the present invention in detail, and Fig. 2 is a semiconductor based on a new operating principle. Figure 3 is a cross-sectional view showing the element structure of the element, Figure 3 is a characteristic diagram showing its operating characteristics, Figure 4 is a diagram showing its equivalent symbol, and Figure 5 is a circuit that combines the above element and a conventional MOS transistor. The equivalent circuit diagrams shown in FIGS. 6(a) to 6(g) are cross-sectional views showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. 41...p-type Si substrate (semiconductor substrate), 42...
・Field oxide film (insulating film for element isolation), 43...
n-type 3i thin film (semiconductor thin film), 44.45...thermal oxide film, 46,47.48...polycrystalline St film, 4
9.61...Photoresist, 50...p+ region (anode), 52...n+ region (cando), 53
...11+ region (source region), b4...n+ region (drain region), 55... source electrode, 56...
Drain electrode, 57... anode electrode. Applicant's representative Patent attorney Takehiko Nishikie Figure 1 Figure 2 Figure 4 Figure 6 Figure fJ6 Figure 341-

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の素子形成領域上に設けられたMO8型構造
の第1のトランジスタと、上記半導体基板の素子分離用
絶縁膜上に設けられた半導体膜に横型p+−p−n+或
いはp+−n−n+槽構造形成すると共に、上記p領域
蓋しくはn領域上に絶縁膜を介して制御用電極を形成し
てなる第2のトランジスタとを具備し、前記第1及び第
2のトランジスタは電源と接地端との間に接続され、前
記第1のトランジスタのゲート電極及び前記第2のトラ
ンジスタの制御用電極は同一の入力端子に接続され、か
つ前記第1のトランジスタのソース若しくはドレインの
一方と前記第2のトランジスタのp+ 領域蓋しくはr
領域の一方とが同一の出力端子に接続されたことを特徴
とする半導体装置。
A first transistor with an MO8 type structure provided on an element formation region of a semiconductor substrate, and a lateral p+-p-n+ or p+-n-n+ semiconductor film provided on an element isolation insulating film of the semiconductor substrate. and a second transistor formed by forming a tank structure and a control electrode formed on the p-region lid or the n-region via an insulating film, and the first and second transistors are connected to a power supply and a ground. the gate electrode of the first transistor and the control electrode of the second transistor are connected to the same input terminal, and one of the source or drain of the first transistor and the control electrode of the second transistor p+ region cover of transistor No. 2 or r
A semiconductor device characterized in that one of the regions is connected to the same output terminal.
JP57168002A 1982-09-27 1982-09-27 Semiconductor device Pending JPS5957470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168002A JPS5957470A (en) 1982-09-27 1982-09-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168002A JPS5957470A (en) 1982-09-27 1982-09-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5957470A true JPS5957470A (en) 1984-04-03

Family

ID=15859975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168002A Pending JPS5957470A (en) 1982-09-27 1982-09-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5957470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113662A (en) * 1984-06-28 1986-01-21 Nippon Telegr & Teleph Corp <Ntt> Complementary type mis transistor device and manufacture thereof
JPS62179143A (en) * 1986-01-31 1987-08-06 Fujitsu Ltd Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113662A (en) * 1984-06-28 1986-01-21 Nippon Telegr & Teleph Corp <Ntt> Complementary type mis transistor device and manufacture thereof
JPS62179143A (en) * 1986-01-31 1987-08-06 Fujitsu Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4616856B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2965783B2 (en) Semiconductor device and manufacturing method thereof
JPH098290A (en) Semiconductor device and manufacture thereof
JPH01155653A (en) High voltage incorporating bipolar/cmos integrated circuit
US5623154A (en) Semiconductor device having triple diffusion
JPS6119164A (en) Supplementary integrated circuit and method of producing same
JPH10107280A (en) Semiconductor integrated circuit and fabrication thereof
US8318559B2 (en) Method of fabricating CMOS transistor
JPH0265254A (en) Semiconductor device
JPS5957470A (en) Semiconductor device
US6207996B1 (en) Semiconductor device and method for manufacturing the same
US5550064A (en) Method for fabricating high-voltage complementary metal-oxide-semiconductor transistors
JPH08316335A (en) Semiconductor device and fabrication thereof
JPH06268057A (en) Manufacture of semiconductor device
JPS62262462A (en) Semiconductor device
JPS58116760A (en) Complementary mos semiconductor device
JPH02148852A (en) Semiconductor device and manufacture thereof
JPH06151740A (en) Power semiconductor device
JPS6346980B2 (en)
KR0161893B1 (en) Semiconductor device and its fabricating method
JPH11317526A (en) Semiconductor integrated circuit device and manufacture thereof
JP2002057222A (en) Semiconductor device and its manufacturing method
JPS6089957A (en) Complementary semiconductor device
KR100252902B1 (en) method for fabricvating complementary metal oxide semiconductor device
JP3064002B2 (en) Method for manufacturing semiconductor device