JPS58116760A - Complementary mos semiconductor device - Google Patents

Complementary mos semiconductor device

Info

Publication number
JPS58116760A
JPS58116760A JP56213693A JP21369381A JPS58116760A JP S58116760 A JPS58116760 A JP S58116760A JP 56213693 A JP56213693 A JP 56213693A JP 21369381 A JP21369381 A JP 21369381A JP S58116760 A JPS58116760 A JP S58116760A
Authority
JP
Japan
Prior art keywords
region
type
substrate
complementary
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56213693A
Other languages
Japanese (ja)
Inventor
Yuji Furumura
雄二 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56213693A priority Critical patent/JPS58116760A/en
Publication of JPS58116760A publication Critical patent/JPS58116760A/en
Pending legal-status Critical Current

Links

Classifications

    • H01L29/7839
    • H01L27/0921

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latchup phenomenon from occurring by forming a reverse conductive type well region on the surface layer of the partial region of a semiconductor substrate and Schottky contacting a drain with the surfaces of the substrate and well region respectively. CONSTITUTION:The surface of a silicon substrate 11 is oxidized as a field insulating film 13, a V-shaped groove is formed at the intermediate, and an insulating isolation region 14 is formed therein. Then, a dioxidized silicon film 15 is formed, a window is opened, ions are implanted, thereby sequentially forming an n type well 17, an n<+> type region 19 and a p<+> type region 21. Subsequently, a polycrystalline silicon film 23 is formed, and is partly oxidized to convert it into a dioxidized silicon layer 23', thereby forming a gate. Thereafter, ground electrode wirings 24, power source electrode wirings 25 and output electrode wirings 26 are formed, thereby completing a Schottky drain type complementary MOS semiconductor device.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は相補型MO8半導体装置の改良に関する。[Detailed description of the invention] (1) Technical field of the invention The present invention relates to improvements in complementary MO8 semiconductor devices.

畦しくは、ラッチアップ現象をともなわない、高集積度
の相補型MO8牛導体装筐に関する。
More particularly, the present invention relates to a highly integrated complementary MO8 conductor housing without latch-up phenomenon.

(2ン 技術の背景 Pチャンネル型MOB トランジスタとNチャンネル型
MO8)ランジスタとが同一半導体テップ上に形成され
ており、これら二つのトランジスタのゲート同志とドレ
イン同志とがそれぞれ接続されて、それぞれ、入力端子
と出力端子とを構成し、上記二つのトランジスタのソー
ス間に電圧が印加されており、入力電圧の正負の変化に
対応して、出力端子1’−o NJまたはl’−OF 
FJに変化する半導体装置を相補型MO8半導体装置と
いい、主として高速、低所要電力の論理回路として使用
されている。
(2nd Technology Background P-channel type MOB transistor and N-channel type MOB transistor) A transistor is formed on the same semiconductor chip, and the gates and drains of these two transistors are connected, respectively, and the input A voltage is applied between the sources of the two transistors, and the output terminal 1'-o NJ or l'-OF corresponds to positive or negative changes in the input voltage.
A semiconductor device that transforms into an FJ is called a complementary MO8 semiconductor device, and is mainly used as a high-speed, low-power-required logic circuit.

一方、ソース・ドレイン電極のそれぞれが半導体鼻板と
シ曹ットキ接触をもって接続される金礪電極よりなるM
O8)ランジスタの製造が可能なことはかねてより知ら
れており、シ薯ットキ・ソース・ドレインM08トラン
ジスタといわれる。
On the other hand, each of the source and drain electrodes is made of metal electrodes that are connected to the semiconductor nose plate with solid contact.
It has been known for some time that it is possible to manufacture an O8) transistor, which is called a Schottky source-drain M08 transistor.

(3)  従来技術と問題点 従来技術における相補型MO8牛導体装置は一般に第1
図にその概念的断面図を示す構成を有する。
(3) Prior art and problems The complementary MO8 conductor device in the prior art is generally
It has a configuration whose conceptual cross-sectional view is shown in the figure.

図において、l#′iP型シリコン(8工)基板であり
、2はn型ウェル領域1あり、3.3は舅チャンネル型
トランジスタのソース領域とドレイン領域とを構成する
高温fii n WIl[斌テあり、4.4’ハP?ヤ
ンネル型トランジスタのソース領域とドレイン領域とを
構成する高置Wp型領域)あり、5はNチャンネル型ト
ランジスタのソース電極1ありこの例にあっては接地電
位が印加されている。6はPチャンネル型トランジスタ
のソース電極ffiアiJこの例にあっては電源電圧が
印加されている。7.8は、それぞれNチャンネル型ト
ランジスタとPチャンネル屋トランジスタのゲート電極
であり相互に接続されて共通の入力信号電圧が印加され
る09、lOは、それぞれNチャンネル型トランジスタ
とPチャンネル型トランジスタのドレイン電極であり相
互に接続されて出力電極を構成する。入力信号が一定値
以上の正電圧1あると、Nチャンネル型トランジスタが
rONJ L、Pチャンネル型トランジスタが「0′F
IP」シ、出力電極は電l!1li11t圧から絶縁さ
れてこの相補型MC1B手導体装置の出力はOとなる。
In the figure, it is a l#'iP type silicon (8-layer) substrate, 2 has an n-type well region 1, and 3.3 is a high-temperature fii n WIl [bin] which constitutes the source region and drain region of the leg-channel transistor. There is Te, 4.4'HaP? There is an elevated Wp type region constituting a source region and a drain region of a Jannel type transistor, and reference numeral 5 denotes a source electrode 1 of an N channel type transistor, to which a ground potential is applied in this example. Reference numeral 6 denotes a source electrode ffiiaiJ of a P-channel transistor, to which a power supply voltage is applied in this example. 7.8 are the gate electrodes of the N-channel transistor and the P-channel transistor, respectively, which are connected to each other and a common input signal voltage is applied. 09 is the gate electrode of the N-channel transistor and the P-channel transistor, respectively. They are drain electrodes and are connected to each other to form output electrodes. When the input signal has a positive voltage 1 above a certain value, the N-channel transistor goes to rONJ L, and the P-channel transistor goes to "0'F".
IP”, the output electrode is electric! The output of this complementary MC1B hand conductor device is 0 because it is insulated from the 1li11t voltage.

又、入力信号が一定値以下の負電圧であると、Pチャン
ネル型トランジスタがl0NJ LNチャンネル製トラ
ンジスタが「OFF」し、重連電位が出力電極を介して
出力されてこの相amMO8半導体装置の出力は高電位
となる。
In addition, when the input signal is a negative voltage below a certain value, the P-channel transistor turns OFF, and the LN-channel transistor turns OFF, and the multiplexed potential is output through the output electrode, resulting in the output of this phase amMO8 semiconductor device. becomes a high potential.

ところで、上記の構成を有する相補型MO8半導体装置
の集積度が向上して各素子が微細化すると、スフ9イク
状ノイズ等何かの刺激によりて浮遊キャリヤが発生し、
これが原因となって、いわゆる、ラッチアップ現象が発
生する。このラッチアンプ現象とは、PNPN接合また
はNPNP接合の存在を前提として、上記の浮遊キャリ
ヤの発生によって上記の接合がサイリスタとして機能し
て、電流の強制的遮断または逆バイアス電圧の印加がな
いか「す、継続して導通状態を持続し、相補型MOB牛
導体装置としてm能しえなくなる現象をいう。第1図に
その概念的断面図を示す。従来技術における相補型MO
8牛導体装置においては、(イ)電源電極6と接地電極
5の間すなわち各ソース3.4間と、(ロ)電源電極6
と出力電極9と接続されているドレイン3との間と、e
つ出力電1k10と接続されているドレイン4′と接地
電極5と接続されているソース3との間でそれぞれ発生
する可能性があるが、近接している為←)の発生確率が
最も高く、この発生を防止することが最も必要1ある。
By the way, as the degree of integration of the complementary MO8 semiconductor device having the above configuration increases and each element becomes finer, floating carriers are generated due to some stimulus such as block noise.
This causes what is called a latch-up phenomenon. This latch amplifier phenomenon is based on the premise that a PNPN junction or NPNP junction exists, and the above junction functions as a thyristor due to the generation of floating carriers, and there is no forced interruption of current or application of a reverse bias voltage. This is a phenomenon in which a conductive state continues and the complementary MOB becomes unable to function as a conductor device. Fig. 1 shows a conceptual cross-sectional view of the complementary MOB conductor device in the prior art.
In the eight conductor device, (a) between the power supply electrode 6 and the ground electrode 5, that is, between each source 3.4, and (b) the power supply electrode 6
and the drain 3 connected to the output electrode 9, and e
There is a possibility that the occurrence occurs between the drain 4' which is connected to the output voltage 1k10 and the source 3 which is connected to the ground electrode 5, but the probability of occurrence of ←) is the highest because they are close to each other. It is most necessary to prevent this occurrence.

ラッチアップ現象の発生は、上記のとおり、サイリスタ
と同一の接合の存在と浮遊キャリヤの存在あるいは発生
という二重条件を必要とするから、その条件のいずれか
または双方を解消すれば、ラッチアップ現象の発生を防
止しうる筈である。
As mentioned above, the occurrence of the latch-up phenomenon requires the dual conditions of the existence of the same junction as the thyristor and the existence or occurrence of floating carriers.If either or both of these conditions are eliminated, the latch-up phenomenon can be prevented. It should be possible to prevent the occurrence of

そこで、従来技術においては、浮遊キャリヤを消滅する
ことによってラッチアップ現象を防止する手段として、
第2図に示す如く、各ソース3.4に並列に高不純物領
域31.41を形成しておき、pm!シリコン(Sl)
基板1とn型ウェル領域2とのいずれかに浮遊キャリヤ
が発生したら、それぞれ、この高不純物領域31.41
のいずれかを介して、接地電極5と電源電極・のいずれ
かに浮遊キャリヤを流入させ、p型シリコン(sl)基
板lとn型ウェル領域2とのいずれの電位もノイズ等の
刺激によって変動することのない構成となした相補慶M
O51牛導体装瞳があり、この構成が2ツチアンプ現象
の防止に有効なことは確認されている。
Therefore, in the prior art, as a means to prevent the latch-up phenomenon by eliminating floating carriers,
As shown in FIG. 2, high impurity regions 31.41 are formed in parallel to each source 3.4, and pm! Silicon (Sl)
If floating carriers are generated in either the substrate 1 or the n-type well region 2, these high impurity regions 31 and 41, respectively.
Floating carriers are caused to flow into either the ground electrode 5 or the power supply electrode through either the ground electrode 5 or the power supply electrode, and the potentials of both the p-type silicon (SL) substrate l and the n-type well region 2 are fluctuated by stimulation such as noise. Complementary Kei M with a configuration that does not have to be done
There is an O51 cow conductor pupil, and it has been confirmed that this configuration is effective in preventing the double amplifier phenomenon.

しかし、この従来技術における、ラッチアップ現象を防
止しうる構成を有する相補型MO8半導体装置は、第2
図に示すとおり、その構造が複雑である故、素子の微細
化が必ずしも容易でなく、また、製造工程も複雑であり
、工程的にも特性的にも改善の余地を残すものfありだ
However, in this prior art, the complementary MO8 semiconductor device having a configuration that can prevent the latch-up phenomenon is
As shown in the figure, since the structure is complicated, it is not necessarily easy to miniaturize the element, and the manufacturing process is also complicated, leaving room for improvement in terms of process and characteristics.

(4)発明の目的 本発明の目的は、この改善を実現すること(二あり、リ
ーク電流勢の特性的不利益をともなうことなく、構造が
簡易1微細化に適し、しかも、その製造方法も簡易fあ
り、ラッチアップ現象の発生が防止されている、相補W
 MO8牛導体装置を提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to realize this improvement (2) to have a simple structure suitable for miniaturization without any characteristic disadvantages such as leakage current, and also to have a manufacturing method thereof. Complementary W with simple f, preventing latch-up phenomenon
The purpose of the present invention is to provide an MO8 conductor device.

(5)発明の構成 本発明の構成は、p型またはn!ljの一導電型の半導
体基板の表層部の一部の領域に形成された反対導電型の
、すなわち、n!itまたはpmのウェル領域を有し、
上記の半導体基板と上記のクエル餉域のそれぞれに形成
された、それぞれのチャンネルの導電型が異なる、一対
のMOB型電界効果型トランジスタを有し、この一対の
MO8型電界効果型トランジスタのゲート電極は互に接
続され一括して入力電極として機能し、上記の一対のト
ランジスタのドレイン電極は互に接続され一括して出力
電極として機能し、上記の一対のトランジスタのソース
は、それぞれ正負の電源端子とされている、相補1ii
j MO8半導体装置において、上記一対のトランジス
タのドレインが、それぞれ、上記の半導体基板上と上記
のウェル領域上とにシ冒ットキ接触されてシ冒ットキ・
ドレイン型とされていることにある。
(5) Structure of the invention The structure of the present invention is p-type or n! A semiconductor substrate of one conductivity type lj is formed in a part of the surface layer of the semiconductor substrate of the opposite conductivity type, that is, n! having a well area of it or pm;
A pair of MOB field effect transistors each having a different conductivity type of channel are formed on the semiconductor substrate and the query region, and the gate electrode of the pair of MOB field effect transistors is provided. are connected to each other and collectively function as input electrodes, the drain electrodes of the above pair of transistors are connected to each other and collectively function as output electrodes, and the sources of the above pair of transistors are connected to positive and negative power supply terminals, respectively. complementary 1ii
j In the MO8 semiconductor device, the drains of the pair of transistors are in direct contact with the semiconductor substrate and the well region, respectively.
This is because it is considered to be a drain type.

更に、本発明の附加的構成は、上記の基本的構成に加え
て、上記一対のMOB型電界効果型トランジスタを構成
する2個の要素トランジスタの境界領域に、上記の半導
体基板の表層から、少なくともウェル領域の深さ以上の
深さに絶縁物の隔壁が形成されていることにある。
Furthermore, an additional configuration of the present invention, in addition to the above-mentioned basic configuration, is such that at least one of The reason is that the insulating barrier ribs are formed at a depth equal to or greater than the depth of the well region.

本発明の着想は、ラッチアップ現象発生のib做条件で
あるpmpai合または1iPNP!I合を不存在にす
ることにあり、この着想を具体化するために、ドレイン
にPH8合を必要をしないMO8電界効果型トランジス
タ!あるシ冒ットキドレインMO8電界効果型トランジ
スタを使用したもめフある。これにより、ラッチアップ
現象の発生する可能性のある三つの場合のうち、最も重
要な(ロ)の発生する可能性は解消され、同時にeつの
発生する可能性も解消される。ただ、この構成によって
は、0)の発生する可能性は解消されないの1、附加的
構成としての隔壁をもって要素トランジスタのチャンネ
ルを部分的に隔離すれば、(イ)の発生する可能性も有
効に減少され、本発明の目的に反するリーク電流叫の特
性的不利益をともなうことがなく、構造が比較的簡易1
微細化に適しており、しかもその製造方法も簡易1あり
、ラッチアップ現象の発生が防止されている、相補型M
O8半導体装置を実現することがfきる。
The idea of the present invention is that the latch-up phenomenon occurs when pmpai or 1iPNP! The goal is to eliminate the I coupling, and in order to embody this idea, we created an MO8 field effect transistor that does not require a PH8 coupling at the drain! There is a problem using a field-effect transistor with a drain MO8 field effect transistor. As a result, of the three cases in which the latch-up phenomenon may occur, the most important possibility (b) is eliminated, and at the same time, the possibility that the latch-up phenomenon occurs is also eliminated. However, depending on this configuration, the possibility of occurrence of 0) cannot be eliminated.1 If the channel of the element transistor is partially isolated using a partition wall as an additional structure, the possibility of occurrence of (a) can also be effectively eliminated. The structure is relatively simple and does not have the characteristic disadvantage of leakage current which is contrary to the purpose of the present invention.
Complementary type M is suitable for miniaturization, has a simple manufacturing method, and prevents latch-up phenomenon.
It is possible to realize an O8 semiconductor device.

(6)  発明の実施例 以下、図面を参照しつつ、本発明の一実施例にかかる、
シ璽ットキ・ドレイン型相補型MOB牛導体装置の製造
方法における主要工程を説明し、本発明の構成と特有の
効果とを更に明らかにする。
(6) Embodiment of the invention Hereinafter, with reference to the drawings, an embodiment of the invention will be described.
The main steps in the manufacturing method of a complementary MOB conductor device of the shut-off drain type will be explained to further clarify the structure and unique effects of the present invention.

−例として、p型シリコン(81)基板にnウェルを有
し各要素トランジスタのゲート電極すなわち相補型半導
体装置の入力電極と配線は多結晶シリコン(81)より
なり、各要素トランジスタのソース・ドレイン電極すな
わち相補型半導体装置の電源電極・配線と出力電極・配
線とは白金(pt)よりなり、各ソース電極は高濃度不
純物領域とオーミックコンタクトにより接続されている
が、各ドレイン電極はシ曹ットキ接触されてシ■ットキ
ドレインとされているシ璽ットキ・ドレイン型相補型M
O8半導体装置をあげる。
- As an example, an n-well is formed on a p-type silicon (81) substrate, and the gate electrode of each element transistor, that is, the input electrode and wiring of a complementary semiconductor device are made of polycrystalline silicon (81), and the source and drain of each element transistor are The electrodes, that is, the power supply electrodes/wirings and the output electrodes/wirings of the complementary semiconductor device are made of platinum (PT), and each source electrode is connected to a high concentration impurity region by an ohmic contact, while each drain electrode is made of silicon carbon. Complementary type M of the shut-off drain type that is contacted and turned into shut-down drain
Let's take an O8 semiconductor device.

第3図参照 101 @ /、、l程変にpm不純物を含有するシリ
コン(Sl)基板11表面を酸化して、相補型半導体装
置形成予定領域稔を除き約6,0OOXの厚さに二酸化
シリコン(810,)膜を形成してフィールP絶縁膜1
3とする。次に、この相補型半導体装置形成予定領域1
2をほぼ二分するように幅・深さとも1μm程度のV@
を形成し、更に該溝内を二酸化シリコン(Sin、)に
より埋めて絶縁アイソレージ■ン領域14を形成する。
Refer to Fig. 3 101 @ /,, The surface of the silicon (Sl) substrate 11 containing PM impurities is oxidized to a thickness of about 6,000 x silicon dioxide except for the area where the complementary semiconductor device is to be formed. (810,) Form a film to feel P insulating film 1
Set it to 3. Next, this complementary semiconductor device formation area 1
V@ with a width and depth of approximately 1 μm so as to roughly divide 2 into two.
Then, the inside of the trench is filled with silicon dioxide (Sin) to form an insulating isolation region 14.

この隔壁形成工程はKOHを用いての選択エツチング及
びこれに続く選択酸化法を使用して実施することができ
る。
This barrier rib forming step can be performed using selective etching using KOH followed by selective oxidation.

第4図参照 基板全面を酸化して相補型半導体装置形成予定領域12
上に後工程によるオートドープ防止の為約2501程度
の厚さに二酸化シリコン(S10□)膜15を形成し、
通常のホトリングツフィー法でnウェル形成予7!領#
216を窓開けなする。次に、二酸化シリコン(EII
O,)膜「とレジスト(破線で示す)をマスクとして砒
素(^1)等n型不純物なnウェル形成予定領域16に
イオン注入した後、レジストを除去し、1,050℃程
度の窒3L(N、)雰囲気中1約圓分間熱処理して約l
声mの探さま1実効的に1o17α1の濃度にrsm不
純物を含有するnウェル17を形成する。
Refer to FIG. 4. Region 12 where the entire surface of the substrate is oxidized to form a complementary semiconductor device.
A silicon dioxide (S10□) film 15 with a thickness of about 250 mm is formed on top to prevent autodoping in post-processing.
Preparing for n-well formation using the normal photolingtuphy method 7! Territory#
Open the window of 216. Next, silicon dioxide (EII
After implanting ions of an n-type impurity such as arsenic (^1) into the n-well formation area 16 using the resist (indicated by the broken line) as a mask, the resist was removed and 3L of nitrogen was added at approximately 1,050°C. (N,) After heat treatment for about 1 minute in an atmosphere, about 1
Search for voice m 1 Form an n-well 17 containing rsm impurities at an effective concentration of 1o17α1.

第5図参照 再び一様に基板全面を250ム程シ二酸化した後、一つ
の要素トランジスタ1あるNチャンネルMOSトランジ
スタのソース形成予定領域において通常のホト−リソグ
ラフィー法により開口18を形成し、砒素(ムa ) 
郷n型不純物をイオン注入し、約1000℃の窒素(N
り雰囲気中1約lO分間熱処理して約2000 Xの深
さま”I’ 10”/α3の濃度にn型不純物を含有す
るn+領域19を形成する。
Referring to FIG. 5, after uniformly oxidizing the entire surface of the substrate for about 250 μm, an opening 18 is formed by a conventional photolithography method in the region where the source of one N-channel MOS transistor is to be formed. Mua)
After ion implantation of n-type impurities, nitrogen (N
An n+ region 19 containing n-type impurities is formed at a depth of about 2000X and a concentration of "I'10"/α3 by heat treatment for about 10 minutes in an atmosphere.

第6図参照 基板全面を酸化した後、PチャンネルMOB)ランジス
タのソース形成予定領域において通常のホトリソグラフ
ィー法により開口加を形成し一ロン(B)lpJ不純物
をイオン注入し、更に約1000℃の窒素(N、)雰囲
気中1約lO分間熱処理して、約2000 Hの深さま
で10 /cIRの濃度にpal不純物を含有するp+
領竣21を形成する。
After oxidizing the entire surface of the substrate (see Figure 6), an aperture is formed in the region where the source of the P-channel MOB transistor is to be formed by ordinary photolithography, and ion implantation of monoron (B)lpJ impurity is performed, followed by further heating at approximately 1000°C. P+ containing pal impurities to a concentration of 10/cIR was heat treated in a nitrogen (N) atmosphere for about 10 minutes to a depth of about 2000 H.
Form the territory 21.

第7図参照 相補m牛導体装置形成予定領域12上から前記二酸化シ
リコン(8102)膜15を一旦除去した後、基板を再
び酸化して同一の領域に約soo Xの厚さに二酸化シ
リコン(stop)膜nを形成してゲート絶縁膜とする
。更にOVD法を使用して約λ000Xの厚さを有する
燐CP)を含む多結晶シリコン(81)膜部な形成する
Referring to FIG. 7, after the silicon dioxide (8102) film 15 is removed from the area 12 where the complementary conductor device is to be formed, the substrate is oxidized again and silicon dioxide (stop) is deposited on the same area to a thickness of about soo ) A film n is formed to serve as a gate insulating film. Further, using the OVD method, a polycrystalline silicon (81) film portion containing phosphorus (CP) having a thickness of about λ000X is formed.

第8図参照 多結晶シリコン(81)膜ツな、双方のI!累トランジ
スタのゲート領域の上とこれらに連接する配線領域の上
のみに残留して他の領域から除去し、費に酸化して、残
留している多結晶シリコン(81)膜nの表層を二酸化
シリコン(810,)層n′に変換して、各要素トラン
ジスタのゲートを形成する。
Refer to FIG. 8. Both I! of polycrystalline silicon (81) film. It remains only on the gate region of the multilayer transistor and the wiring region connected to these and is removed from other regions, and is thoroughly oxidized to oxidize the surface layer of the remaining polycrystalline silicon (81) film. A silicon (810,) layer n' is converted to form the gate of each element transistor.

これらのゲートは相互に接続されて、相鞠型MOEI牛
導体装置の入力電極を構成する。このとき、燐を含む多
結晶シリコンは燐を含まない多結晶シリコンにくらべ5
倍以上の速度1酸化されるので酸化は容易である。
These gates are interconnected to form the input electrodes of a parallel MOEI conductor device. At this time, polycrystalline silicon containing phosphorus has a
Oxidation is easy because it is oxidized more than twice as fast as 1.

第9図参照 双方の要素トランジスタのソース領域上とドレイン領域
上とからゲート絶縁膜nを除去して、ソース・ドレイン
電極被着用開口を形成し、基板全面に白金(pt)層を
形成の後、所望により、この白金(pt)層を各ソース
電極上とこれらに連接する配線領域上と、各ドレイン電
極上とこれらを接続する配線領域上とこれらに連接する
配線領域上とに残留して他の領域から除去し、接地電極
・配線Uと電源電極・配線6と出力電極・配置!26と
を形成して、シ曹ット中・ドレイン型相補型MO8半導
体装置を完成する。なお、この相補g MO13半導体
装曾の入力電極は、各要素トランジスタのゲート田を相
互に接続して形成される。
Refer to FIG. 9 After removing the gate insulating film n from the source region and drain region of both element transistors, forming openings for attaching source and drain electrodes, and forming a platinum (PT) layer on the entire surface of the substrate. If desired, this platinum (PT) layer is left on each source electrode and the wiring region connected to these, on each drain electrode and the wiring region connecting these, and on the wiring region connected to these. Remove from other areas and arrange the ground electrode/wiring U, power electrode/wiring 6, and output electrode! 26 to complete a complementary MO8 semiconductor device of the drain type. Note that the input electrode of this complementary gMO13 semiconductor device is formed by interconnecting the gate fields of each element transistor.

王妃の構成を有する相補ffMO8牛導体装置において
は、電源電極6と接地電極あとの間にはPNPN接合が
存在するが、電源電極部と出力電極Uとの間にも出力電
極と接地電極との間にもPMPN g合は不存在である
から電源電極5と接地電極あとの間板外にラッチアップ
現象の発生する可能性は原理上ない。ただ、電源電極す
と接地電極あとの間にはラッチアップ現象が発生する可
能性はあるが、隔壁14が存在してサイリスタ動作の原
因となる少数キャリヤの流入を阻止する結果となるの1
、これらの電Bs、24間においてもランチアップ状象
の発生が有効に防止される0なお、以上の寮施例にあっ
ては、P型基板にNウェルを形成して相鵜型MO8半導
体装置を形成する場合を示したが、本発明はこれに限ら
れるものではなく、N型基板にPウェルを形成しての相
補型MO8半導体装置1も適用することが1きる。
In the complementary ffMO8 conductor device having the queen configuration, there is a PNPN junction between the power supply electrode 6 and the ground electrode, but there is also a connection between the output electrode and the ground electrode between the power supply electrode part and the output electrode U. Since there is no PMPN connection between them, there is no possibility in principle of a latch-up phenomenon occurring outside the board between the power supply electrode 5 and the ground electrode. However, although there is a possibility that a latch-up phenomenon may occur between the power supply electrode and the ground electrode, the existence of the partition wall 14 will prevent the inflow of minority carriers that cause thyristor operation.
, Bs, 24. Note that in the above embodiment, an N-well is formed on a P-type substrate to form a parallel MO8 semiconductor. Although the case where a device is formed is shown, the present invention is not limited to this, and can also be applied to a complementary MO8 semiconductor device 1 in which a P well is formed on an N type substrate.

(7)発明の詳細 な説明するとおり、本発明によれば、リーク電流等の特
性的不利益をともなうことなく、構造が簡易〒微細化に
適し、しかも、その製造方法も簡易であり、ラッチアッ
プ現象の発生が防止されている、相補型MO8牛導体装
置を提供することが1きる。
(7) As described in detail, according to the present invention, the structure is simple and suitable for miniaturization without characteristic disadvantages such as leakage current, and the manufacturing method is also simple. It is possible to provide a complementary MO8 conductor device in which the occurrence of the up phenomenon is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術における相補ff1M08半導体装置
の概念的断面図であり、第2図は、従来技術における、
ラッチアップ現象防止対策の施された相補型MO8半導
体装董の概念的断面図1ある。第3.4.5.6.7.
8.9図は、本発明の−集施例にかかる、シ曹ットキ・
ドレイン型相補型MO84導体装置の製造方法における
各主要工程完了後の状態を示すウェーハの概念的断面図
1ある。
FIG. 1 is a conceptual cross-sectional view of a complementary ff1M08 semiconductor device in the prior art, and FIG. 2 is a conceptual sectional view of a complementary ff1M08 semiconductor device in the prior art.
There is a conceptual cross-sectional view 1 of a complementary MO8 semiconductor device in which measures are taken to prevent latch-up phenomenon. Section 3.4.5.6.7.
FIG. 8.9 shows the system according to the embodiment of the present invention.
There is a conceptual cross-sectional view 1 of a wafer showing the state after completion of each main process in a method for manufacturing a drain type complementary MO84 conductor device.

Claims (1)

【特許請求の範囲】[Claims] (11−導電型の半導体基板の一部領域の表層に反対導
電型のウェル領域を有し、前記基板と前記ウェル領域と
のそれぞれに形成された導電製を異にする一対のMO8
電界効果型トランジスタを有し、該一対のトランジスタ
のゲートは相互に接続されて入力端子を構成し、前記一
対のトランジスタのドレインは相互に接続されて出力端
子を構成し、前記一対のトランジスタのソースはそれぞ
れ正負の電源端子を構成する相萄型MO8牛導体装置に
おいて、前記ドレインは、前記基板表面と前記ウェル@
埴表面とのそれぞれとシ曹ノトキ接触をなしていること
を特徴とする、相補型MOB牛導体鋳置装
(11- Having a well region of an opposite conductivity type on the surface layer of a partial region of a semiconductor substrate of a conductivity type, and a pair of MO8s having different conductivity formed on the substrate and the well region, respectively)
field effect transistors, the gates of the pair of transistors are connected to each other to form an input terminal, the drains of the pair of transistors are connected to each other to form an output terminal, and the sources of the pair of transistors are connected to each other to form an output terminal. are phase-shaped MO8 conductor devices, which constitute positive and negative power supply terminals, respectively, and the drain is connected to the substrate surface and the well@
Complementary MOB conductor casting equipment, characterized in that it is in close contact with the clay surface.
JP56213693A 1981-12-29 1981-12-29 Complementary mos semiconductor device Pending JPS58116760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56213693A JPS58116760A (en) 1981-12-29 1981-12-29 Complementary mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56213693A JPS58116760A (en) 1981-12-29 1981-12-29 Complementary mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS58116760A true JPS58116760A (en) 1983-07-12

Family

ID=16643419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56213693A Pending JPS58116760A (en) 1981-12-29 1981-12-29 Complementary mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS58116760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038861A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Complementary type semiconductor integrated circuit device and manufacture thereof
JPS62229969A (en) * 1986-03-31 1987-10-08 Toshiba Corp Manufacture of supplementary semiconductor device
US5953955A (en) * 1994-11-24 1999-09-21 Nippondenso Co., Ltd. Starter with planetary gear speed reduction mechanism
JP2011238844A (en) * 2010-05-12 2011-11-24 Renesas Electronics Corp Semiconductor device
WO2012056615A1 (en) * 2010-10-26 2012-05-03 パナソニック株式会社 Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038861A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Complementary type semiconductor integrated circuit device and manufacture thereof
JPH0469433B2 (en) * 1983-08-12 1992-11-06 Hitachi Ltd
JPS62229969A (en) * 1986-03-31 1987-10-08 Toshiba Corp Manufacture of supplementary semiconductor device
US5953955A (en) * 1994-11-24 1999-09-21 Nippondenso Co., Ltd. Starter with planetary gear speed reduction mechanism
JP2011238844A (en) * 2010-05-12 2011-11-24 Renesas Electronics Corp Semiconductor device
WO2012056615A1 (en) * 2010-10-26 2012-05-03 パナソニック株式会社 Semiconductor device
US9099447B2 (en) 2010-10-26 2015-08-04 Socionext Inc. Semiconductor device
US9412757B2 (en) 2010-10-26 2016-08-09 Socionext Inc. Semiconductor device
US9831271B2 (en) 2010-10-26 2017-11-28 Socionext Inc. Semiconductor device
US10403644B2 (en) 2010-10-26 2019-09-03 Socionext Inc. Semiconductor device

Similar Documents

Publication Publication Date Title
US4213139A (en) Double level polysilicon series transistor cell
GB2153146A (en) Improvements in or relating to manufacture of cmos transistors
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
JPH10107280A (en) Semiconductor integrated circuit and fabrication thereof
JPS58116760A (en) Complementary mos semiconductor device
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
KR950001955B1 (en) Semiconductor device and manufacturing method thereof
JPS63192266A (en) Cmos integrated circuit and manufacture thereof
US5610428A (en) Semiconductor integrated circuit
JPS638623B2 (en)
JPS5828734B2 (en) hand tai souchi no seizou houhou
JPS61265859A (en) Complementary mos semiconductor device
JPH02148852A (en) Semiconductor device and manufacture thereof
JPS63104463A (en) Insulated gate field-effect semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JP3307028B2 (en) High breakdown voltage transistor and method of manufacturing the same
JPH02105566A (en) Complementary semiconductor device
KR100238644B1 (en) Soi device and manufacturing process thereof
JPS58124269A (en) Complementary type insulated gate field effect semiconductor device
JPS6120369A (en) Manufacture of semiconductor device
JP3918696B2 (en) Manufacturing method of semiconductor device
JPS5957470A (en) Semiconductor device
JPS616855A (en) Complementary type mos semiconductor device
JPH11150238A (en) Semiconductor device and its manufacture
JPH118389A (en) Semiconductor device