JPS5953656B2 - cathode ray tube equipment - Google Patents

cathode ray tube equipment

Info

Publication number
JPS5953656B2
JPS5953656B2 JP12740480A JP12740480A JPS5953656B2 JP S5953656 B2 JPS5953656 B2 JP S5953656B2 JP 12740480 A JP12740480 A JP 12740480A JP 12740480 A JP12740480 A JP 12740480A JP S5953656 B2 JPS5953656 B2 JP S5953656B2
Authority
JP
Japan
Prior art keywords
electrode
ray tube
cathode ray
electron beam
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12740480A
Other languages
Japanese (ja)
Other versions
JPS5750748A (en
Inventor
弘 鈴木
真佐男 夏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP12740480A priority Critical patent/JPS5953656B2/en
Publication of JPS5750748A publication Critical patent/JPS5750748A/en
Publication of JPS5953656B2 publication Critical patent/JPS5953656B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials

Description

【発明の詳細な説明】 本発明は陰極線管装置に関し、螢光体スクリ−ン面上の
全域において良好な解像度が得られるように構成したも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube device, which is constructed so that good resolution can be obtained over the entire area on the phosphor screen surface.

一般に、陰極線管装置の解像度は、螢光体スクリーン面
上に生じるビームスポット (輝点)の大きさおよび形
状に依存し、高い解像度を得るためには、ビームスポッ
トはできるだけ小さくかつ歪みのないことが重要である
In general, the resolution of a cathode ray tube device depends on the size and shape of the beam spot (bright spot) produced on the phosphor screen surface. In order to obtain high resolution, the beam spot must be as small as possible and without distortion. is important.

また、カラー陰極線管装置では、3電子ビームによるビ
ームスポットが螢光体スクリーン面上の任意の一点で正
しく集中することが解像度の面で重要であり、このこと
から、インライン形カラー陰極線管を使用するものでは
、水平偏向磁界分布を第1図aに示すようなビンクッシ
ョン状に、そして、垂直偏向磁界分布を第1図すに示す
ようなバレル状にそれぞれ歪ませることによって、3電
子ビーム1,2,3を自己集中(セルフコンバージェン
ス)させている。
In addition, in color cathode ray tube devices, it is important from the viewpoint of resolution that the beam spot of the three electron beams be correctly concentrated at any one point on the phosphor screen surface, and for this reason, an in-line type color cathode ray tube is used. In this case, by distorting the horizontal deflection magnetic field distribution into a bottle cushion shape as shown in Figure 1a and the vertical deflection magnetic field distribution into a barrel shape as shown in Figure 1A, three electron beams can be generated. , 2, and 3 are self-converging.

しかし、このような自己集中方式を採用すると、3電子
ビームの集中性は良好となっても、3電子ビームの断面
形状がビーム偏向角の増大に伴って歪み、螢光体スクリ
ーン面上のとくに周辺部に現われるビームスポットに、
第2図に示す傾向の歪みを生じやすくなる。
However, when such a self-concentration method is adopted, even though the concentration of the three electron beams is good, the cross-sectional shape of the three electron beams becomes distorted as the beam deflection angle increases, causing problems especially in areas on the phosphor screen surface. The beam spot that appears on the periphery,
This tends to cause distortions as shown in FIG.

すなわち、螢光体スクリーン面4の中央部に現われるビ
ームスポット5が真円となるのに対し、周辺部に現われ
るビームスポット6は、水平方向に長い楕円状の高輝度
コア部7のほかに、垂直方向に長い低輝度ヘイズ部8が
付随するかたちとなり、とくにスクリーン周辺部におい
て高い解像度を得2ることが困難になる。
That is, the beam spot 5 that appears at the center of the phosphor screen surface 4 is a perfect circle, whereas the beam spot 6 that appears at the periphery has a high-intensity core part 7 that is elongated in the horizontal direction. A vertically long low-luminance haze portion 8 accompanies the screen, making it difficult to obtain high resolution, especially at the periphery of the screen.

なお、前述のようなビームスポットの形状歪みは、自己
集中方式における偏向ヨークが3電子ビームに対して第
1図a、 l)に示すような非斉一磁界を与えること
に原因し、偏向磁界内の電子ビームは、電子銃内で付与
された集束を水平方向において弱められ、垂直方向にお
いて強められることになる。
The shape distortion of the beam spot as described above is caused by the deflection yoke in the self-concentration method applying a non-uniform magnetic field to the three electron beams as shown in Figure 1 a and l). The electron beam given within the electron gun is weakened in the horizontal direction and strengthened in the vertical direction.

本発明は、前述のような従来の欠点を除去するためにな
されたもので、つぎに本発明の陰極線管装置を図面に示
した実施例とともに説明する。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art. Next, a cathode ray tube device of the present invention will be described with reference to embodiments shown in the drawings.

第3図において、電子銃9は、水平−直線上に配列され
た3個の陰極10’、 10”、 10’″、制御
電極11.加速電極系12、集束電極13および陽極1
4からなり、加速電極系12は、電子ビーム通路に沿っ
て順次に配列された平板状の第■、第2および第3の格
子電極15. 16. 17からなっている。
In FIG. 3, the electron gun 9 includes three cathodes 10', 10", 10'" and a control electrode 11. Accelerating electrode system 12, focusing electrode 13 and anode 1
The accelerating electrode system 12 consists of flat grid electrodes 15.4, second and third grid electrodes 15. 16. It consists of 17.

第4図に示すように、両側の第1および第3の格子電極
15.17は、各3個の円形の電子ビーム通過孔18’
、 18”、 18” ;19’、 19”、
19″′を有しているが、中央の第2の格子電極16
は3個の横長矩形状の電子ビーム通過孔20’、20”
、20″′を有している。
As shown in FIG. 4, the first and third grid electrodes 15.17 on both sides each have three circular electron beam passing holes 18'.
, 18", 18";19',19",
19'', but the central second grid electrode 16
are three oblong rectangular electron beam passing holes 20', 20''.
, 20''.

そして、第1および第3の格子電極15.17には一定
の加速電圧■g2が与えられ、第2の格子電極16には
、ビーム偏向量に応じて変化するダイナミック電圧Vg
2′が与えられる。
A constant accelerating voltage g2 is applied to the first and third grid electrodes 15.17, and a dynamic voltage Vg2 is applied to the second grid electrode 16, which changes depending on the amount of beam deflection.
2' is given.

ダイナミック電圧■g2′は、第5図に実線21および
一点鎖線22で示すように偏向電流23が零のとき、つ
まり、ビームスポットが螢光体スクリーン面の中央部に
現われるとき、電圧Vg2と同一の値をとり、偏向電流
の増減に伴って電圧■g2から徐々に下降または上昇す
る。
The dynamic voltage g2' is the same as the voltage Vg2 when the deflection current 23 is zero, as shown by the solid line 21 and the dashed-dotted line 22 in FIG. 5, that is, when the beam spot appears at the center of the phosphor screen surface. As the deflection current increases or decreases, the voltage gradually decreases or increases from g2.

したがって、ビームスポットが螢光体スクリーン面の中
央に現われるとき、第1ないし第3の格子電極15,1
6゜17はすべて同一電位Vg2となり、第1、第2お
よび第3の格子電極15,16,17の各間にレンズ電
界は生成されず、第2の格子電極16の電子ビーム通過
孔20’、20″、20”が非円形であるにもかかわら
ず、電子ビームに対して軸非対称性電界が作用せず、ス
クリーン面中央部において真円形のビームスポットが得
られる。
Therefore, when the beam spot appears at the center of the phosphor screen surface, the first to third grid electrodes 15,1
6° 17 are all at the same potential Vg2, and no lens electric field is generated between each of the first, second and third grid electrodes 15, 16, 17, and the electron beam passing hole 20' of the second grid electrode 16 , 20'', and 20'' are non-circular, no axially asymmetric electric field acts on the electron beam, and a perfectly circular beam spot is obtained at the center of the screen surface.

一方、偏向電流の増減すなわちビーム偏向量の増大に伴
って電圧Vg2′がvg2から下降または上昇すると、
一定の加速電圧Vg2が印加されている第1および第3
の格子電極15.17と第2の格子電極16との間にレ
ンズ電界か゛生成される。
On the other hand, when the voltage Vg2' decreases or increases from vg2 as the deflection current increases or decreases, that is, the amount of beam deflection increases,
The first and third to which a constant acceleration voltage Vg2 is applied.
A lens electric field is generated between the first grid electrode 15,17 and the second grid electrode 16.

このレンズ電界は、第2の格子電極16の電子ビーム通
過孔20’、 20”、 20”’が軸非対称形で
あることから、ここを通過する3電子ビームはそれぞれ
軸非対称性の集束作用を受ける。
Since the electron beam passing holes 20', 20'', and 20''' of the second grid electrode 16 are axially asymmetric, the three electron beams passing through the lens electric field each have an axially asymmetric focusing effect. receive.

第2の格子電極16の電子ビーム通過孔20’、 2
0”、 20″’が、第4図に示すような横長矩形ま
たは横長楕円形の場合、前記レンズ電界は、ここを通過
する電子ビームに対して垂直方向で強く水平方向で弱い
集束作用を与える。
Electron beam passing holes 20', 2 of the second grid electrode 16
0", 20"' is a horizontally long rectangle or a horizontally long ellipse as shown in FIG. .

この結果、加速電極系12を出た直後の電子ビームは、
水平方向に長い楕円の断面形状を有し、この断面形状で
メインレンズ部24’、24”、24”’に射入する。
As a result, the electron beam immediately after leaving the accelerating electrode system 12 is
It has a horizontally long elliptical cross-sectional shape, and enters the main lens portions 24', 24'', 24''' with this cross-sectional shape.

レンズ゛の周縁部を通る電子ビーム部分の屈折率は、レ
ンズの中央部付近を通る電子ビーム部分の屈折率に比し
て大となる(球面収差のために)ので、第6図に示すよ
うに横長楕円形断面の電子ビーム25か′メインレンズ
部24に入ると、ビーム外周部分の垂直方向のフォーカ
ス点26は、水平方向のフォーカス点27よりも遠い点
に生じる。
The refractive index of the part of the electron beam that passes through the periphery of the lens is larger than that of the part of the electron beam that passes near the center of the lens (due to spherical aberration), so as shown in Figure 6, When an electron beam 25 having a horizontally oblong elliptical cross section enters the main lens section 24, a focus point 26 in the vertical direction on the outer periphery of the beam occurs at a point farther than a focus point 27 in the horizontal direction.

28は螢光体スクリーン面の位置を示す。28 indicates the position of the phosphor screen surface.

このように、加速電極系12を通過した電子ビームの断
面形状がビーム偏向量の増大に伴い水平方向に長い楕円
状に歪むと、この電子ビームのうち、偏向収差に大きく
影響するビーム外周部分の屈折率が、垂直方向に比して
水平方向で大となるのであって、この現象は、偏向磁界
内での電子ビームが前述のようにビーム偏向量の増大に
伴い水平方向で弱く、垂直方向で強く集束されるのを打
ち消すように作用する。
As described above, when the cross-sectional shape of the electron beam that has passed through the accelerating electrode system 12 is distorted into a long ellipse in the horizontal direction as the amount of beam deflection increases, the outer peripheral portion of the electron beam, which has a large influence on the deflection aberration, becomes distorted. The refractive index becomes larger in the horizontal direction than in the vertical direction, and this phenomenon is caused by the fact that the electron beam within the deflecting magnetic field becomes weaker in the horizontal direction as the amount of beam deflection increases, and weaker in the vertical direction. It acts to cancel out the strong focusing caused by

このため、水平方向に大きく偏向された電子ビームによ
るビームスポットといえども、これを真円に近づけるこ
とが可能となり、螢光体スクリーン面のとくに左右両側
および対角線上領域の解像度が高められる。
Therefore, even though the beam spot is caused by an electron beam that is largely deflected in the horizontal direction, it is possible to make the beam spot close to a perfect circle, and the resolution of the phosphor screen surface, especially on both the left and right sides and on the diagonal, is improved.

螢光体スクリーン面の上部中間および下部中間付近に現
われるビームスポットの歪みはもともと軽微であるから
、螢光体スクリーン面上の全域において非常に鮮明な再
生画像を得ることができる。
Since the distortion of the beam spot appearing near the upper middle and lower middle of the phosphor screen surface is originally slight, a very clear reproduced image can be obtained over the entire area on the phosphor screen surface.

また、加速電極系12においてダイナミック電圧vg2
′の印加される第2の格子電極16は、一定電圧■g2
の印加される第1および第3の格子電極15.17間に
位置して静電的に遮蔽されるので、好ましくない輝度変
調効果を生じることがない。
Further, in the accelerating electrode system 12, a dynamic voltage vg2
' is applied to the second grid electrode 16, which has a constant voltage g2
is located between the first and third grid electrodes 15, 17 to which the voltage is applied and is electrostatically shielded, so that no undesirable brightness modulation effects occur.

さらに、第3の格子電極17と集束電極13との間に生
成される予備集束レンズに変化を生じることもないので
、きわめて安定な動作を得ることか゛できる。
Furthermore, since there is no change in the pre-focusing lens formed between the third grid electrode 17 and the focusing electrode 13, extremely stable operation can be achieved.

さらにまた、第1および゛第2の格子電極15.16間
距離ならびに第2および第3の格子電極16.17間距
離は、それぞれ0.1mm程度の小値に設定できるので
、各間における電位差が小さくても、十分な電界強度を
得ることができる。
Furthermore, since the distance between the first and second grid electrodes 15 and 16 and the distance between the second and third grid electrodes 16 and 17 can be set to small values of about 0.1 mm, the potential difference between each Even if the voltage is small, sufficient electric field strength can be obtained.

加速電圧Vg2の値は、必要な最大ビーム電流値にもと
すき決められるが、通常は1kV以下の比較的低い電圧
で十分である。
The value of the accelerating voltage Vg2 is determined depending on the required maximum beam current value, but a relatively low voltage of 1 kV or less is usually sufficient.

このことは、ダイナミック電IF”EVg2’の変化幅
が比較的小さくてもよいことを意味し、ダイナミック電
圧発生回路はコンパクトかつ安価に構成できる。
This means that the variation width of the dynamic voltage IF "EVg2' may be relatively small, and the dynamic voltage generation circuit can be constructed compactly and at low cost.

以上は、本発明をインライン形カラー陰極線管装置に適
用した実施例につきのべたが、本発明の目的とするとこ
ろは、非斉−偏向磁界内で偏向作用を受けた電子ビーム
によるビームスボッ1〜の形状歪を補正する点にあり、
1ビームまたは2ビームで動作する陰極線管装置にも前
述と同様に適用できる。
Although the embodiments in which the present invention is applied to an in-line color cathode ray tube device have been described above, the purpose of the present invention is to improve beam deflection by electron beams deflected within an asymmetric deflection magnetic field. The point is to correct shape distortion,
The same can be applied to a cathode ray tube device that operates with one beam or two beams.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、 l)は非斉一偏向磁界分布と3電子ビー
ムとの関係を示す図、第2図は自己集中方式を採用した
カラー陰極線管装置の螢光体スクリーン面上に現われる
ビームスポットの形状歪を模式的に示す図、第3図は本
発明を実施したインライン形カラー陰極線管装置の電子
銃部の側断面図、第4図は同カラー陰極線管装置の加速
電極系の斜視図、第5図は偏向電流とダイナミック電圧
との関係を示す信号波形図、第6図は横長楕円断面の電
子ビームの外周部分のメインレンズ部における屈折状態
を説明するための線図である。 11・・・・・・制御電極、12・・・・・・加速電極
系、13・・・・・・集束電極、15・・・・・・第1
の格子電極、16・・・・・・第2の格子電極、17・
・・・・・第3の格子電極、18’、18”、18”’
、19’、19”、19”、20’、20”、20”・
・・・・・電子ビーム通過孔、vg2・・・・・・一定
の加速電圧、Vg2’・・・・・・ダイナミック電圧。
Figures 1a and l) are diagrams showing the relationship between the non-uniform deflection magnetic field distribution and three electron beams, and Figure 2 is a diagram showing the beam spot appearing on the phosphor screen surface of a color cathode ray tube device that uses the self-focusing method. A diagram schematically showing shape distortion, FIG. 3 is a side sectional view of the electron gun section of an in-line color cathode ray tube device embodying the present invention, and FIG. 4 is a perspective view of the accelerating electrode system of the same color cathode ray tube device. FIG. 5 is a signal waveform diagram showing the relationship between deflection current and dynamic voltage, and FIG. 6 is a diagram illustrating the refraction state of the outer peripheral portion of the electron beam having a horizontally oblong elliptical cross section at the main lens portion. 11... Control electrode, 12... Accelerating electrode system, 13... Focusing electrode, 15... First
grid electrode, 16... second grid electrode, 17.
...Third grid electrode, 18', 18", 18"'
, 19', 19", 19", 20', 20", 20"・
...Electron beam passage hole, vg2...constant acceleration voltage, Vg2'...dynamic voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 制御電極と集束電極との間に配設された加速電極系
が、第1、第2および第3の格子電極からなり、一定の
加速電圧が印加される両側の第1および第3の格子電極
は円形の電子ビーム通過孔を有し、ビーム偏向量の増大
に伴って前記一定の加速電圧から徐々に下降または上昇
するダイナミック電圧が印加される中央の第2の格子電
極は、軸非対称形の電子ビーム通過孔を有していること
を特徴とする陰極線管装置。
1. The accelerating electrode system disposed between the control electrode and the focusing electrode consists of first, second and third grid electrodes, with the first and third grids on both sides to which a constant acceleration voltage is applied. The electrode has a circular electron beam passage hole, and the central second grid electrode is of an axially asymmetrical shape, to which a dynamic voltage is applied that gradually decreases or increases from the constant acceleration voltage as the amount of beam deflection increases. A cathode ray tube device characterized in that it has an electron beam passage hole.
JP12740480A 1980-09-11 1980-09-11 cathode ray tube equipment Expired JPS5953656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12740480A JPS5953656B2 (en) 1980-09-11 1980-09-11 cathode ray tube equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12740480A JPS5953656B2 (en) 1980-09-11 1980-09-11 cathode ray tube equipment

Publications (2)

Publication Number Publication Date
JPS5750748A JPS5750748A (en) 1982-03-25
JPS5953656B2 true JPS5953656B2 (en) 1984-12-26

Family

ID=14959144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12740480A Expired JPS5953656B2 (en) 1980-09-11 1980-09-11 cathode ray tube equipment

Country Status (1)

Country Link
JP (1) JPS5953656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210746A (en) * 1990-12-07 1992-07-31 Daikin Ind Ltd Stator for motor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192250A (en) * 1982-05-06 1983-11-09 Matsushita Electronics Corp Cathode-ray tube device
JPS58197639A (en) * 1982-05-13 1983-11-17 Matsushita Electronics Corp Cathode-ray tube device
JPS58198832A (en) * 1982-05-14 1983-11-18 Matsushita Electronics Corp Cathode-ray tube device
JPS58204448A (en) * 1982-05-21 1983-11-29 Matsushita Electronics Corp Cathode-ray tube device
JPS6174246A (en) * 1984-09-20 1986-04-16 Toshiba Corp Electron gun for color picture tube
JPH0514552Y2 (en) * 1987-07-29 1993-04-19
KR0147541B1 (en) * 1989-12-31 1998-08-01 김정배 Multi-collection type electron gun for cathode-ray tube
JP3743230B2 (en) 1999-08-30 2006-02-08 日産自動車株式会社 Solid electrolyte sintered body, method for producing the same, and fuel cell using the solid electrolyte sintered body
JP3598956B2 (en) 2000-08-28 2004-12-08 日産自動車株式会社 Gallate composite oxide solid electrolyte material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210746A (en) * 1990-12-07 1992-07-31 Daikin Ind Ltd Stator for motor

Also Published As

Publication number Publication date
JPS5750748A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
USRE34339E (en) Cathode ray tube
US4877998A (en) Color display system having an electron gun with dual electrode modulation
JPH0427656B2 (en)
JP2616844B2 (en) Color cathode ray tube
JP2938476B2 (en) Color picture tube equipment
JPS5953656B2 (en) cathode ray tube equipment
US5367230A (en) Cathode-ray tube with convergence yoke lens systems
JP2928282B2 (en) Color picture tube equipment
JPH021341B2 (en)
JPH0131259B2 (en)
US5418421A (en) Cathode-ray tube with electrostatic convergence electrode assembly
JPH0138348B2 (en)
JPH0161222B2 (en)
KR950004399B1 (en) Dynamic focus electron gun
JPH021342B2 (en)
JPH021340B2 (en)
JP3672390B2 (en) Electron gun for color cathode ray tube
JPH0560211B2 (en)
JPS63198241A (en) Color cathode tube
JP3056497B2 (en) Color picture tube equipment
JPH0158824B2 (en)
JP2878731B2 (en) Color picture tube equipment
JP2960498B2 (en) Color picture tube equipment
JP2957679B2 (en) Color picture tube equipment
KR940010984B1 (en) Electron gun for c-crt