JPH021342B2 - - Google Patents
Info
- Publication number
- JPH021342B2 JPH021342B2 JP57086751A JP8675182A JPH021342B2 JP H021342 B2 JPH021342 B2 JP H021342B2 JP 57086751 A JP57086751 A JP 57086751A JP 8675182 A JP8675182 A JP 8675182A JP H021342 B2 JPH021342 B2 JP H021342B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- grid electrode
- electron beam
- focusing
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims description 25
- 230000001133 acceleration Effects 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 241000226585 Antennaria plantaginifolia Species 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/50—Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
- H01J29/503—Three or more guns, the axes of which lay in a common plane
Description
【発明の詳細な説明】
本発明は陰極線管装置に関し、蛍光体スクリー
ン面上の全域において良好な解像度が得られるよ
うに構成したものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube device, which is constructed so that good resolution can be obtained over the entire area on the surface of a phosphor screen.
一般に、陰極線管装置の解像度は、蛍光体スク
リーン面上に生じるビームスポツト(輝点)の大
きさおよび形状に依存し、高い解像度を得るため
には、ビームスポツトはできるだけ小さくかつ歪
みのないことが重要である。また、カラー陰極線
管装置では、3電子ビームによるビームスポツト
が蛍光体スクリーン面上の任意の一点で正しく集
中することが解像度の面で重要であり、このこと
から、インライン形カラー陰極線管を使用するも
のでは、水平偏向磁界分布を第1図aに示すよう
なピンクツシヨン状に、そして、垂直偏向磁界分
布を第1図bに示すようなバレル状にそれぞれ歪
ませることによつて、3電子ビーム1,2,3を
自己集中(セルフコンバージエンス)させてい
る。しかし、このような自己集中方式を採用する
と、3電子ビームの集中性は良好となつても、3
電子ビームの断面形状がビーム偏向角の増大に伴
つて歪み、蛍光体スクリーン面上のとくに周辺部
に現われるビームスポツトに、第2図に示す傾向
の歪みを生じやすくなる。すなわち、蛍光体スク
リーン面4の中央部に現われるビームスポツト5
が真円となるのに対し、周辺部に現われるビーム
スポツト6は、水平方向に長い楕円状の高輝度コ
ア部7のほかに、垂直方向に長い低輝度ヘイズ部
8が付随するかたちとなり、とくにスクリーン周
辺部において高い解像度を得ることが困難にな
る。 In general, the resolution of a cathode ray tube device depends on the size and shape of the beam spot (bright spot) produced on the phosphor screen surface, and in order to obtain high resolution, the beam spot must be as small as possible and free of distortion. is important. In addition, in a color cathode ray tube device, it is important from the viewpoint of resolution that the beam spot of the three electron beams be correctly concentrated at any one point on the phosphor screen surface, and for this reason, an in-line type color cathode ray tube is used. By distorting the horizontal deflection magnetic field distribution into a pincushion shape as shown in Figure 1a and the vertical deflection magnetic field distribution into a barrel shape as shown in Figure 1b, three electron beams can be generated. , 2 and 3 are self-converging. However, if such a self-concentration method is adopted, even if the concentration of the three electron beams is good, the three
The cross-sectional shape of the electron beam becomes distorted as the beam deflection angle increases, and the beam spots appearing on the phosphor screen surface, particularly at the periphery, tend to become distorted as shown in FIG. That is, a beam spot 5 appearing at the center of the phosphor screen surface 4
is a perfect circle, whereas the beam spot 6 that appears at the periphery has a horizontally long elliptical high-brightness core part 7 and a vertically long low-brightness haze part 8, which is particularly It becomes difficult to obtain high resolution at the periphery of the screen.
なお、前述のようなビームスポツトの形状歪み
は、自己集中方式における偏向ヨークが3電子ビ
ームに対して第1図a,bに示すような非斉一磁
界を与えることに原因し、偏向磁界内の電子ビー
ムは、電子銃内で付与された集束を水平方向にお
いて弱められ、垂直方向において強められること
になる。 The shape distortion of the beam spot as described above is caused by the deflection yoke in the self-concentration method applying a non-uniform magnetic field to the three electron beams as shown in Figure 1 a and b. The electron beam is defocused in the electron gun in the horizontal direction and strengthened in the vertical direction.
本発明は、前述のような従来の欠点を除去する
ためになされたもので、つぎに本発明の陰極線管
装置を図面に示した実施例とともに説明する。 The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art. Next, a cathode ray tube device of the present invention will be described with reference to embodiments shown in the drawings.
第3図において、電子銃9は、水平一直線上に
配列された3個の陰極10′,10″,10、制
御格子電極11、加速電極系12、集束電極13
および陽極14からなり、加速電極系12は、電
子ビーム通路に沿つて順次に配列された平板状の
第1および第2の格子電極15,16からなつて
いる。第4図に示すように第1の格子電極15
は、3個の円形の電子ビーム通過孔17′,1
7″,17を有する電極板18と、3個の横長
矩形状の電子ビーム通過孔19′,19″,19
を有する電極板20とを張り合わせた構造となつ
ており、第2の格子電極16は、3個の円形の電
子ビーム通過孔21′,21″,21を有してい
る。そして、第1の格子電極15に一定の加速電
圧Vg2が印加され、第2の格子電極16には、ビ
ーム偏向量に応じて変化するダイナミツク電圧
Vg2′が印加される。 In FIG. 3, the electron gun 9 includes three cathodes 10', 10'', 10 arranged horizontally in a straight line, a control grid electrode 11, an accelerating electrode system 12, and a focusing electrode 13.
and an anode 14, and the accelerating electrode system 12 consists of first and second grid electrodes 15, 16 in the form of flat plates arranged sequentially along the electron beam path. As shown in FIG.
has three circular electron beam passing holes 17', 1
7'', 17, and three oblong rectangular electron beam passing holes 19', 19'', 19.
The second grid electrode 16 has three circular electron beam passing holes 21', 21'', and 21. A constant acceleration voltage V g2 is applied to the grid electrode 15, and a dynamic voltage that changes depending on the amount of beam deflection is applied to the second grid electrode 16.
V g2 ′ is applied.
ダイナミツク電圧Vg2′は、第5図に線22で
示すように偏向電流23が零のとき、つまり、ビ
ームスポツトが蛍光体スクリーン面の中央部に現
われるとき、電圧Vg2と同一の値をとり、偏向電
流の増大に伴つて徐々に上昇する波状波形のもの
である。したがつて、ビームスポツトが蛍光体ス
クリーン面の中央部に表われるとき、第1および
第2の格子電極15,16は同一電位Vg2とな
り、両格子電極15,16間にはレンズ電界は生
成されず、第1の格子電極15の電極板20の電
子ビーム通過孔19′,19″,19が非円形で
あるにもかかわらず、電子ビームに対して軸非対
称電界が作用せず、蛍光体スクリーン面中央部に
おいて真円形のビームスポツトが得られる。 The dynamic voltage V g2 ' takes the same value as the voltage V g2 when the deflection current 23 is zero, as shown by the line 22 in FIG. 5, that is, when the beam spot appears at the center of the phosphor screen surface. , which has a waveform that gradually rises as the deflection current increases. Therefore, when the beam spot appears at the center of the phosphor screen surface, the first and second grid electrodes 15, 16 have the same potential V g2 , and a lens electric field is generated between both grid electrodes 15, 16. Although the electron beam passing holes 19', 19'', and 19 of the electrode plate 20 of the first grid electrode 15 are non-circular, no axially asymmetric electric field acts on the electron beam, and the phosphor A perfectly circular beam spot is obtained at the center of the screen surface.
一方、偏向電流の増減すなわちビーム偏向量の
増大に伴つて電圧Vg2′がVg2から上昇すると、一
定の加速電圧Vg2が印加されている第1の格子電
極15と第2の格子電極16との間にレンズ電界
が生成される。このレンズ電界は、電極板20の
電子ビーム通過孔19′,19″,19が軸非対
称形であることから、ここを通過する電子ビーム
はそれぞれ軸非対称の集束作用を受ける。電極板
20の電子ビーム通過孔19′,19″,19が
第4図に示すような横長矩形または横長楕円形の
場合、前記レンズ電界は、ここを通過する電子ビ
ームに対して垂直方向で強く水平方向で弱い集束
作用を与える。このため、加速電極系12を出た
直後の電子ビームは、水平方向に長い楕円の断面
形状を有し、この断面形状でメインレンズ部2
4′,24″,24に入射する。 On the other hand, when the voltage V g2 ' increases from V g2 as the deflection current increases or decreases, that is, the amount of beam deflection increases, the first grid electrode 15 and the second grid electrode 16 to which a constant acceleration voltage V g2 is applied A lens electric field is generated between the two. Since the electron beam passing holes 19', 19'', and 19 of the electrode plate 20 are axially asymmetric, the electron beams passing through the lens electric field are each subjected to an axially asymmetric focusing effect. When the beam passing holes 19', 19'', and 19 are in the shape of a horizontally long rectangle or a horizontally long ellipse as shown in FIG. give effect. Therefore, the electron beam immediately after exiting the accelerating electrode system 12 has a horizontally long elliptical cross-sectional shape, and with this cross-sectional shape, the main lens portion 2
4', 24'', and 24.
第6図に示すように、横長楕円形断面の電子ビ
ーム25がメインレンズ部24に入ると、レンズ
の球面収差のために水平方向で強く、垂直方向で
弱い集束作用が働き、垂直方向のフオーカス点2
6は水平方向のフオーカス点27よりも遠い点に
生じる。 As shown in FIG. 6, when an electron beam 25 with a horizontally oblong elliptical cross section enters the main lens section 24, due to the spherical aberration of the lens, a focusing effect is strong in the horizontal direction and weak in the vertical direction, resulting in a focusing effect in the vertical direction. Point 2
6 occurs at a point farther than the focus point 27 in the horizontal direction.
このように、加速電極系12を通過した電子ビ
ームの断面形状がビーム偏向量の増大に伴い水平
方向に長い楕円状に歪むと、メインレンズ部24
による電子ビームへの集束作用が、垂直方向に比
して水平方向で強くなるのであつて、この現象
は、偏向磁界内での電子ビームが前述のようにビ
ーム偏向量の増大に伴い水平方向で弱く、垂直方
向で強く集束されるのを打ち消すように作用す
る。 In this way, when the cross-sectional shape of the electron beam that has passed through the accelerating electrode system 12 is distorted into a horizontally elongated ellipse as the amount of beam deflection increases, the main lens portion 24
The focusing effect on the electron beam by It is weak and acts to cancel out the strong focusing in the vertical direction.
このため、水平方向に大きく偏向された電子ビ
ームによるビームスポツトといえども、これを真
円に近づけることが可能となり、蛍光体スクリー
ン面のとくに左右両側および対角線上領域の解像
度が高められる。蛍光体スクリーン面の上部中間
および下部中間付近に現われるビームスポツトの
歪みはもともと軽微であるから、蛍光体スクリー
ン面上の全域において非常に鮮明な再生画像を得
ることができる。 Therefore, even though the beam spot is caused by an electron beam that is largely deflected in the horizontal direction, it is possible to make the beam spot close to a perfect circle, and the resolution of the phosphor screen surface is improved, particularly on both the left and right sides and in the diagonal area. Since the distortion of the beam spot appearing near the upper middle and lower middle of the phosphor screen surface is originally slight, a very clear reproduced image can be obtained over the entire region on the phosphor screen surface.
加速電圧Vg2の値は、必要な最大ビーム電流値
にもとずき決められるが、通常は1kV以下の比較
的低い電圧で十分である。このことは、ダイナミ
ツク電圧Vg2′の変化幅が比較的小さくてもよい
ことを意味し、ダイナミツク電圧発生回路はコン
パクトかつ安価に構成できる。 The value of the accelerating voltage V g2 is determined based on the required maximum beam current value, but a relatively low voltage of 1 kV or less is usually sufficient. This means that the variation width of the dynamic voltage V g2 ' may be relatively small, and the dynamic voltage generating circuit can be constructed compactly and inexpensively.
さらに、第2の格子電極電位がビーム偏向量の
増大に伴い上昇すると、それよりも高い一定電位
が与えられている集束電極との間の電位差が小と
なる結果、ここに生成されるプリフオーカスレン
ズのレンズ電界に変化を生じ、メインレンズとの
トータル的なレンズ作用によつてダイナミツクフ
オーカス動作が得られ、画面周辺部でのいわゆる
偏向ぼけを防ぐことができる。 Furthermore, when the potential of the second grid electrode increases as the amount of beam deflection increases, the potential difference between the second grid electrode and the focusing electrode, which is given a constant potential higher than the second grid electrode, decreases, resulting in the preform generated here. A change occurs in the lens electric field of the cass lens, and dynamic focus operation is obtained by the total lens action with the main lens, making it possible to prevent so-called deflection blur at the periphery of the screen.
以上は、本発明をインライン形カラー陰極線管
装置に適用した実施例につきのべたが、本発明の
目的とするところは、非斉一偏向磁界内で偏向作
用を受けた電子ビームによるビームスポツトの形
状歪を補正する点にあり、1ビームまたは2ビー
ムで動作する陰極線管装置にも前述と同様に適用
できる。 The above has described an embodiment in which the present invention is applied to an in-line color cathode ray tube device, but the purpose of the present invention is to reduce shape distortion of a beam spot due to an electron beam subjected to a deflection action within a non-uniform deflection magnetic field. The present invention is applicable to cathode ray tube devices operating with one beam or two beams in the same manner as described above.
第1図a,bは非斉一偏向磁界分布と3電子ビ
ームとの関係を示す図、第2図は自己集中方式を
採用したカラー陰極線管装置の蛍光体スクリーン
面上に現われるビームスポツトの形状歪を模式的
に示す図、第3図は本発明を実施したインライン
形カラー陰極線管装置の電子銃部の側断面図、第
4図は同カラー陰極線管装置の加速電極系の斜視
図、第5図は偏向電流とダイナミツク電圧との関
係を示す信号波形図、第6図は横長楕円断面の電
子ビームのメインレンズ部における集束状態を説
明するための線図である。
11……制御格子電極、12……加速電極系、
13……集束電極、15……第1の格子電極、1
6……第2の格子電極、Vg2……一定の加速電
圧、Vg2′……ダイナミツク電圧。
Figures 1a and b are diagrams showing the relationship between the nonuniform deflection magnetic field distribution and three electron beams, and Figure 2 is a diagram showing the shape distortion of the beam spot appearing on the phosphor screen surface of a color cathode ray tube device using the self-concentration method. FIG. 3 is a side sectional view of the electron gun section of an in-line color cathode ray tube device embodying the present invention, FIG. 4 is a perspective view of the accelerating electrode system of the same color cathode ray tube device, and FIG. The figure is a signal waveform diagram showing the relationship between deflection current and dynamic voltage, and FIG. 6 is a diagram for explaining the focusing state of an electron beam having a horizontally long elliptical cross section at the main lens section. 11... Control grid electrode, 12... Accelerating electrode system,
13... Focusing electrode, 15... First grid electrode, 1
6...second grid electrode, V g2 ...constant accelerating voltage, V g2 '...dynamic voltage.
Claims (1)
集束電極との間に配設された加速電極系が、第1
の格子電極と第2の格子電極とからなり、一定の
加速電圧が印加される前記第1の格子電極は円形
の電子ビーム通過孔を有して前記制御格子電極に
向き合う電極板と、軸非対称形の電子ビーム通過
孔を有して前記第2の格子電極に向き合う電極板
とを重ね合わせたものからなり、ビーム偏向量の
増大に伴つて前記一定の加速電圧から徐々に上昇
する波状波形のダイナミツク電圧が印加される前
記第2の格子電極は円形の電子ビーム通過孔を有
して前記集束電極に向き合つていることを特徴と
する陰極線管装置。1. An accelerating electrode system disposed between a control grid electrode and a focusing electrode to which a constant focusing voltage is applied,
The first grid electrode, to which a constant acceleration voltage is applied, has a circular electron beam passage hole and faces the control grid electrode, and the first grid electrode is axially asymmetrical. and an electrode plate facing the second grid electrode, each having a shaped electron beam passing hole, and a wavy waveform that gradually increases from the constant acceleration voltage as the amount of beam deflection increases. A cathode ray tube device characterized in that the second grid electrode to which a dynamic voltage is applied has a circular electron beam passage hole and faces the focusing electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8675182A JPS58204448A (en) | 1982-05-21 | 1982-05-21 | Cathode-ray tube device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8675182A JPS58204448A (en) | 1982-05-21 | 1982-05-21 | Cathode-ray tube device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58204448A JPS58204448A (en) | 1983-11-29 |
JPH021342B2 true JPH021342B2 (en) | 1990-01-11 |
Family
ID=13895463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8675182A Granted JPS58204448A (en) | 1982-05-21 | 1982-05-21 | Cathode-ray tube device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204448A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63133436A (en) * | 1986-11-23 | 1988-06-06 | Sony Corp | Cathode-ray tube |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750748A (en) * | 1980-09-11 | 1982-03-25 | Matsushita Electronics Corp | Cathode ray tube |
-
1982
- 1982-05-21 JP JP8675182A patent/JPS58204448A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750748A (en) * | 1980-09-11 | 1982-03-25 | Matsushita Electronics Corp | Cathode ray tube |
Also Published As
Publication number | Publication date |
---|---|
JPS58204448A (en) | 1983-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0427656B2 (en) | ||
US4701678A (en) | Electron gun system with dynamic focus and dynamic convergence | |
JP2938476B2 (en) | Color picture tube equipment | |
KR940010986B1 (en) | Electron gun for c-crt | |
JPS5953656B2 (en) | cathode ray tube equipment | |
JPS59211947A (en) | Cathode ray tube | |
JP2673111B2 (en) | Electron gun for beam spot distortion prevention | |
JP2928282B2 (en) | Color picture tube equipment | |
JPH021341B2 (en) | ||
JPH0131259B2 (en) | ||
JPH06283112A (en) | Electron gun | |
JPH0138348B2 (en) | ||
JPH021342B2 (en) | ||
JPH0161222B2 (en) | ||
KR950004399B1 (en) | Dynamic focus electron gun | |
JPH021340B2 (en) | ||
JPS63198241A (en) | Color cathode tube | |
JP3056497B2 (en) | Color picture tube equipment | |
JPH0158824B2 (en) | ||
JPS58818B2 (en) | color picture tube | |
JP2960498B2 (en) | Color picture tube equipment | |
KR100235999B1 (en) | A converging electrode of electron gun for color crt | |
KR20020073595A (en) | Display device and cathode ray tube | |
KR940010984B1 (en) | Electron gun for c-crt | |
JP3074179B2 (en) | Cathode ray tube |