JPH0161222B2 - - Google Patents

Info

Publication number
JPH0161222B2
JPH0161222B2 JP57076285A JP7628582A JPH0161222B2 JP H0161222 B2 JPH0161222 B2 JP H0161222B2 JP 57076285 A JP57076285 A JP 57076285A JP 7628582 A JP7628582 A JP 7628582A JP H0161222 B2 JPH0161222 B2 JP H0161222B2
Authority
JP
Japan
Prior art keywords
electrode
focusing
grid electrode
voltage
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57076285A
Other languages
Japanese (ja)
Other versions
JPS58192250A (en
Inventor
Masao Natsuhara
Hiroshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP7628582A priority Critical patent/JPS58192250A/en
Publication of JPS58192250A publication Critical patent/JPS58192250A/en
Publication of JPH0161222B2 publication Critical patent/JPH0161222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 本発明は陰極線管装置に関し、螢光体スクリー
ン面上の全域において良好な解像度が得られるよ
うに構成したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube device, which is constructed so that good resolution can be obtained over the entire area on the phosphor screen surface.

一般に、陰極線管装置の解像度は、螢光体スク
リーン面上に生じるビームスポツト(輝点)の大
きさおよび形状に依存し、高い解像度を得るため
には、ビームスポツトはできるだけ小さくかつ歪
みのないことが重要である。また、カラー陰極線
管装置では、3電子ビームによるビームスポツト
が螢光体スクリーン面上の任意の一点で正しく集
中することが解像度の面で重要であり、このこと
から、インライン形カラー陰極線管を使用するも
のでは、水平偏向磁界分布を第1図aに示すよう
なピンクツシヨン状に、そして、垂直偏向磁界分
布を第1図bに示すようなバレル状にそれぞれ歪
ませることによつて、3電子ビーム1,2,3を
自己集中(セルフコンバージエンス)させてい
る。しかし、このような自己集中方式を採用する
と、3電子ビームの集中性は良好となつても、3
電子ビームの断面形状がビーム偏向角の増大に伴
つて歪み、螢光体スクリーン面上のとくに周辺部
に現われるビームスポツトに、第2図に示す傾向
の歪みを生じやすくする。すなわち、螢光体スク
リーン面4の中央部に現われるビームスポツト5
が真円となるのに対し、周辺部に現われるビーム
スポツト6は、水平方向に長い楕円状の高輝度コ
ア部7のほかに、垂直方向に長い低輝度ヘイズ部
8が付随するかたちとなり、とくにスクリーン周
辺部において高い解像度を得ることが困難にな
る。
In general, the resolution of a cathode ray tube device depends on the size and shape of the beam spot (bright spot) produced on the phosphor screen surface, and in order to obtain high resolution, the beam spot must be as small as possible and without distortion. is important. In addition, in color cathode ray tube devices, it is important from the viewpoint of resolution that the beam spots of the three electron beams are correctly concentrated at any one point on the phosphor screen surface, and for this reason, an in-line type color cathode ray tube is used. In this case, three electron beams can be generated by distorting the horizontal deflection magnetic field distribution into a pincushion shape as shown in Figure 1a and the vertical deflection magnetic field distribution into a barrel shape as shown in Figure 1b. 1, 2, and 3 are self-converging. However, if such a self-concentration method is adopted, even if the concentration of the three electron beams is good, the three
The cross-sectional shape of the electron beam is distorted as the beam deflection angle increases, and the beam spots appearing on the phosphor screen surface, particularly in the peripheral area, tend to be distorted as shown in FIG. That is, a beam spot 5 appearing at the center of the phosphor screen surface 4
is a perfect circle, whereas the beam spot 6 that appears at the periphery has a horizontally long elliptical high-brightness core part 7 and a vertically long low-brightness haze part 8, which is especially It becomes difficult to obtain high resolution at the periphery of the screen.

なお、前述のようなビームスポツトの形状歪み
は、自己集中方式における偏向ヨークが3電子ビ
ームに対して第1図a,bに示すような非斉一磁
界を与えることに起因し、偏向磁界内の電子ビー
ムは、電子銃内で付与された集束を水平方向にお
いて弱められ、垂直方向において強められること
になる。
The shape distortion of the beam spot as described above is due to the fact that the deflection yoke in the self-concentration method applies a non-uniform magnetic field to the three electron beams as shown in Figure 1 a and b. The electron beam is defocused in the electron gun in the horizontal direction and strengthened in the vertical direction.

本発明は、前述のような従来の欠点を除去する
ためになされたもので、つぎに本発明の陰極線管
装置を図面に示した実施例とともに説明する。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art. Next, a cathode ray tube device of the present invention will be described with reference to embodiments shown in the drawings.

第3図において、電子銃9は、水平一直線状に
配列された3個の陰極10′,10″,10、制
御電極11、加速電極12、集束電極系13およ
び陽極14からなり、集束電極系13は、電子ビ
ーム通路に沿つて順次に配列された平板状の第
1、第2の格子電極15,16および箱形の主集
束電極17からなつている。第4図に示すよう
に、第1の格子電極15および主集束電極17の
第2格子電極側端板部17aは、各3個の円形の
電子ビーム通過孔18′,18″,18;19′,
19″,19を有しているが、中央の第2の格
子電極16は3個の横長矩形状の電子ビーム通過
孔20′,20″,20を有している。そして、
第1の格子電極15および主集束電極17には一
定の集束電圧Vfpcが与えられ、第2の格子電極1
6には、ビーム偏向量に応じて変化するダイナミ
ツク電圧Vfpc′が与えられる。
In FIG. 3, the electron gun 9 consists of three cathodes 10', 10'', 10, a control electrode 11, an accelerating electrode 12, a focusing electrode system 13, and an anode 14 arranged horizontally in a straight line. 13 consists of flat plate-shaped first and second grid electrodes 15, 16 and a box-shaped main focusing electrode 17 arranged sequentially along the electron beam path. The second grid electrode side end plate portion 17a of the first grid electrode 15 and the main focusing electrode 17 has three circular electron beam passing holes 18', 18'', 18; 19',
19'', 19, and the central second grid electrode 16 has three horizontally elongated rectangular electron beam passing holes 20', 20'', 20. and,
A constant focusing voltage V fpc is applied to the first grid electrode 15 and the main focusing electrode 17, and the second grid electrode 1
6 is given a dynamic voltage V fpc ' that changes depending on the amount of beam deflection.

ダイナミツク電圧Vfpc′は、第5図に実線21
または一点鎖線22で示すように偏向電流23が
零のとき、つまり、ビームスポツトが螢光体スク
リーン面の中央部に現われるとき、電圧Vfpcと同
一の値をとり、偏向電流の増減に伴つて電圧Vfpc
から徐々に下降または上昇する。したがつて、ビ
ームスポツトが螢光体スクリーン面の中央に現わ
れるとき、第1、第2の格子電極15,16およ
び主集束電極17はすべて同一電位Vfpcとなり、
これらの電極15,16,17の各間にレンズ電
界は生成されず、第2の格子電極16の電子ビー
ム通過孔20′,20″,20が非円形であるに
もかかわらず、電子ビームに対して軸非対称性電
界が作用せず、スクリーン面中央部において真円
形のビームスポツトが得られる。
The dynamic voltage V fpc ′ is shown by the solid line 21 in FIG.
Alternatively, when the deflection current 23 is zero as shown by the dashed line 22, that is, when the beam spot appears at the center of the phosphor screen surface, it takes the same value as the voltage V fpc , and as the deflection current increases or decreases, it takes on the same value as the voltage V fpc. Voltage V fpc
Gradually descend or rise from Therefore, when the beam spot appears at the center of the phosphor screen surface, the first and second grid electrodes 15, 16 and the main focusing electrode 17 are all at the same potential V fpc ;
No lens electric field is generated between each of these electrodes 15, 16, 17, and even though the electron beam passing holes 20', 20'', 20 of the second grid electrode 16 are non-circular, the electron beam On the other hand, no axially asymmetric electric field acts, and a perfectly circular beam spot is obtained at the center of the screen surface.

一方、偏向電流の増減すなわちビーム偏向量の
増大に伴つて電圧Vfpc′がVfpcから下降または上昇
すると、一定の集束電圧Vfpcが印加されている第
1の格子電極15と第2の格子電極16との間お
よび第2の格子電極16と主集束電極17との間
にレンズ電界が生成される。このレンズ電界は、
第2の格子電極16の電子ビーム通過孔20′,
20″,20が軸非対称形であることから、こ
こを通過する3電子ビームはそれぞれ軸非対称性
の集束作用を受ける。第2の格子電極16の電子
ビーム通過孔20′,20″,20が、第4図に
示すような横長矩形または横長楕円形の場合、前
記レンズ電界は、ここを通過する電子ビームに対
して垂直方向で強く水平方向で弱い集束作用を与
える。この結果、集束電極系13を出た直後の電
子ビームは、水平方向に長い楕円の断面形状を有
し、この断面形状でメインレンズ部24′,2
4″,24に入射する。
On the other hand, when the voltage V fpc ′ falls or rises from V fpc as the deflection current increases or decreases, that is, the amount of beam deflection increases, the first grid electrode 15 and the second grid to which a constant focusing voltage V fpc is applied A lens electric field is generated between the electrode 16 and between the second grid electrode 16 and the main focusing electrode 17. This lens electric field is
electron beam passing hole 20' of second grid electrode 16;
Since the holes 20'', 20 are axially asymmetric, the three electron beams passing through them are each subjected to an axially asymmetric focusing effect. , in the case of a horizontally long rectangle or horizontally long ellipse as shown in FIG. 4, the lens electric field gives a strong focusing effect in the vertical direction and a weak focusing effect in the horizontal direction on the electron beam passing through the lens. As a result, the electron beam immediately after exiting the focusing electrode system 13 has a horizontally long elliptical cross-sectional shape, and with this cross-sectional shape, the main lens portions 24' and 24'
4″, 24.

第6図に示すように、横長楕円形断面の電子ビ
ーム25がメインレンズ部24に入ると、レンズ
の球面収差のために水平方向で強く、垂直方向で
弱い集束作用が働き、垂直方向のフオーカス点2
6は水平方向のフオーカス点27よりも遠い点に
生じる。
As shown in FIG. 6, when an electron beam 25 with a horizontally oblong elliptical cross section enters the main lens section 24, due to the spherical aberration of the lens, a focusing effect is strong in the horizontal direction and weak in the vertical direction, resulting in a focusing effect in the vertical direction. Point 2
6 occurs at a point farther than the focus point 27 in the horizontal direction.

このように、集束電極系13を通過した電子ビ
ームの断面形状がビーム偏向量の増大に伴い水平
方向に長い楕円状に歪むと、メインレンズ部24
による電子ビームへの集束作用が、垂直方向に比
して水平方向で強くなるのであつて、この現象
は、偏向磁界内での電子ビームが前述のようにビ
ーム偏向量の増大に伴い水平方向で弱く、垂直方
向で強く集束されるのを打ち消すように作用す
る。
In this way, when the cross-sectional shape of the electron beam that has passed through the focusing electrode system 13 is distorted into a horizontally elongated ellipse as the amount of beam deflection increases, the main lens portion 24
The focusing effect on the electron beam by It is weak and acts to cancel out the strong focusing in the vertical direction.

このため、水平方向に大きく偏向された電子ビ
ームによるビームスポツトといえども、これを真
円に近づけることが可能となり、螢光体スクリー
ン面のとくに左右両側および対角線上領域の解像
度が高められる。螢光体スクリーン面の上部中間
および下部中間付近に現われるビームスポツトの
歪みはもともと軽微であるから、螢光体スクリー
ン面上の全域において非常に鮮明な再生画像を得
ることができる。
Therefore, even though the beam spot is caused by an electron beam that is largely deflected in the horizontal direction, it is possible to make the beam spot close to a perfect circle, and the resolution of the phosphor screen surface is improved, particularly on both left and right sides and in diagonal areas. Since the distortion of the beam spot appearing near the upper middle and lower middle of the phosphor screen surface is originally slight, a very clear reproduced image can be obtained over the entire area on the phosphor screen surface.

また、集束電極系13においてダイナミツク電
圧Vfpc′の印加される第2の格子電極16は、一
定電圧Vfpcの印加される第1の格子電極15と主
集束電極17との間に位置して静電的に遮蔽され
るので、好ましくない輝度変調効果を生じること
がない。
Further, in the focusing electrode system 13, the second grid electrode 16 to which the dynamic voltage V fpc ' is applied is located between the first grid electrode 15 to which the constant voltage V fpc is applied and the main focusing electrode 17. Since it is electrostatically shielded, it does not produce undesirable brightness modulation effects.

さらに、加速電極12と第1の格子電極15と
の間に生成される予備集束レンズは、両電極に一
定の加速電圧および一定の集束電圧がそれぞれ印
加されるので変化せず、しかも、この予備集束レ
ンズは前記軸非対称性レンズを電子ビームのクロ
スオーバ点から遠ざけるので、軸非対称性レンズ
によるビーム補正作用が効率よく働き、安定性も
良好となる。
Furthermore, the pre-focusing lens generated between the accelerating electrode 12 and the first grid electrode 15 does not change because a constant accelerating voltage and a constant focusing voltage are respectively applied to both electrodes; Since the focusing lens moves the axially asymmetric lens away from the crossover point of the electron beam, the beam correction effect by the axially asymmetric lens works efficiently and stability is also improved.

以上は、本発明をインライン形カラー陰極線管
装置に適用した実施例につき述べたが、本発明の
目的とするところは、非斉一偏向磁界内で偏向作
用を受けた電子ビームによるビームスポツトの形
状歪を補正する点にあり、1ビームまたは2ビー
ムで動作する陰極線管装置にも前述と同様に適用
できる。
The above has described an embodiment in which the present invention is applied to an in-line color cathode ray tube device. However, the purpose of the present invention is to reduce shape distortion of a beam spot due to an electron beam subjected to a deflection action within a non-uniform deflection magnetic field. The present invention is applicable to cathode ray tube devices operating with one beam or two beams in the same manner as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは非斉一偏向磁界分布と3電子ビ
ームとの関係を示す図、第2図は自己集中方式を
採用したカラー陰極線管装置の螢光体スクリーン
面上に現われるビームスポツトの形状歪を模式的
に示す図、第3図は本発明を実施したインライン
形カラー陰極線管装置の電子銃部の側断面図、第
4図は同カラー陰極線管装置の集束電極系の斜視
図、第5図は偏向電流とダイナミツク電圧との関
係を示す信号波形図、第6図は横長楕円断面の電
子ビームのメインレンズ部における集束状態を説
明するための線図である。 11……制御電極、12……加速電極、13…
…集束電極系、15……第1の格子電極、16…
…第2の格子電極、17……主集束電極、18′,
18″,18,19′,19″,19,20′,
20″,20……電子ビーム通過孔、Vfpc……
一定の集束電圧、Vfpc′……ダイナミツク電圧。
Figures 1a and b are diagrams showing the relationship between the nonuniform deflection magnetic field distribution and three electron beams, and Figure 2 is the shape of the beam spot appearing on the phosphor screen surface of a color cathode ray tube device that uses the self-focusing method. 3 is a side sectional view of the electron gun section of an in-line color cathode ray tube device embodying the present invention; FIG. 4 is a perspective view of the focusing electrode system of the same color cathode ray tube device; FIG. FIG. 5 is a signal waveform diagram showing the relationship between deflection current and dynamic voltage, and FIG. 6 is a diagram illustrating the focusing state of an electron beam having a horizontally long elliptical cross section at the main lens portion. 11...control electrode, 12...acceleration electrode, 13...
...Focusing electrode system, 15...First grid electrode, 16...
...Second grid electrode, 17...Main focusing electrode, 18',
18″, 18, 19′, 19″, 19, 20′,
20″, 20……Electron beam passing hole, V fpc ……
Constant focusing voltage, V fpc ′...dynamic voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 一定の加速電圧が印加される平板状の加速電
極と最終加速電極たる陽極との間に配設された集
束電極系が、前記加速電極との間に予備集束レン
ズを生成する平板状の第1の格子電極と、平板状
の第2の格子電極と、前記第2の格子電極側に端
板部を有する箱形の主集束電極とからなり、一定
の集束電圧が印加される前記第1の格子電極およ
び同格子電極に接続された前記主集束電極の前記
端板部は円形の電子ビーム通過孔を有し、ビーム
偏向量の増大に伴つて前記一定の集束電圧から
徐々に下降または上昇するダイナミツク電圧が印
加される前記第2の格子電極は、軸非対称形の電
子ビーム通過孔を有していることを特徴とする陰
極線管装置。
1. A focusing electrode system disposed between a flat accelerating electrode to which a constant accelerating voltage is applied and an anode serving as the final accelerating electrode includes a flat accelerating electrode system that forms a preliminary focusing lens between the accelerating electrode and the anode. The first grid electrode is composed of one grid electrode, a flat second grid electrode, and a box-shaped main focusing electrode having an end plate portion on the side of the second grid electrode, and to which a constant focusing voltage is applied. The grid electrode and the end plate portion of the main focusing electrode connected to the grid electrode have a circular electron beam passing hole, and as the amount of beam deflection increases, the focusing voltage gradually decreases or increases from the constant focusing voltage. A cathode ray tube device, wherein the second grid electrode to which a dynamic voltage is applied has an axially asymmetric electron beam passage hole.
JP7628582A 1982-05-06 1982-05-06 Cathode-ray tube device Granted JPS58192250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7628582A JPS58192250A (en) 1982-05-06 1982-05-06 Cathode-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7628582A JPS58192250A (en) 1982-05-06 1982-05-06 Cathode-ray tube device

Publications (2)

Publication Number Publication Date
JPS58192250A JPS58192250A (en) 1983-11-09
JPH0161222B2 true JPH0161222B2 (en) 1989-12-27

Family

ID=13601032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7628582A Granted JPS58192250A (en) 1982-05-06 1982-05-06 Cathode-ray tube device

Country Status (1)

Country Link
JP (1) JPS58192250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125707A (en) * 1991-11-01 1993-05-21 Isao Saito Spreader for antifreezing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469540A3 (en) * 1990-07-31 1993-06-16 Kabushiki Kaisha Toshiba Electron gun for cathode-ray tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125707A (en) * 1991-11-01 1993-05-21 Isao Saito Spreader for antifreezing agent

Also Published As

Publication number Publication date
JPS58192250A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
US4701678A (en) Electron gun system with dynamic focus and dynamic convergence
JP2616844B2 (en) Color cathode ray tube
EP0111872B1 (en) Cathode ray tube apparatus
JP2938476B2 (en) Color picture tube equipment
KR940010986B1 (en) Electron gun for c-crt
JPS5953656B2 (en) cathode ray tube equipment
JP2673111B2 (en) Electron gun for beam spot distortion prevention
JP2928282B2 (en) Color picture tube equipment
JPH021341B2 (en)
JPH0131259B2 (en)
JPH0161222B2 (en)
JPH0138348B2 (en)
JPH021342B2 (en)
JPH021340B2 (en)
JP3672390B2 (en) Electron gun for color cathode ray tube
JPS63198241A (en) Color cathode tube
JPH0437538B2 (en)
JP2804051B2 (en) Color picture tube equipment
JP3056497B2 (en) Color picture tube equipment
JP2960498B2 (en) Color picture tube equipment
JPS58818B2 (en) color picture tube
JP2767741B2 (en) Electron muzzle for color cathode ray tube
JPH0158824B2 (en)
JPH0360145B2 (en)
KR940010984B1 (en) Electron gun for c-crt