JPS58197639A - Cathode-ray tube device - Google Patents

Cathode-ray tube device

Info

Publication number
JPS58197639A
JPS58197639A JP8091782A JP8091782A JPS58197639A JP S58197639 A JPS58197639 A JP S58197639A JP 8091782 A JP8091782 A JP 8091782A JP 8091782 A JP8091782 A JP 8091782A JP S58197639 A JPS58197639 A JP S58197639A
Authority
JP
Japan
Prior art keywords
focusing
electrode
grid
voltage
electrode system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091782A
Other languages
Japanese (ja)
Other versions
JPH021340B2 (en
Inventor
Masao Natsuhara
夏原 眞佐男
Koichi Sugawara
浩一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP8091782A priority Critical patent/JPS58197639A/en
Publication of JPS58197639A publication Critical patent/JPS58197639A/en
Publication of JPH021340B2 publication Critical patent/JPH021340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Abstract

PURPOSE:To obtain a good beam spot with few distortion in the central part and peripheral section of a phosphor screen face by increasing and decreasing dynamic voltage from focusing voltage depending upon the beam deflection. CONSTITUTION:An electron gun 9 is provided with three cathodes 10', 10'', and 10''', control electrode 11, acceleration electrode system 12, front stage focusing electrode system 13, and rear stage focusing electrode system 14. The front stage focusing system 13 consists of the first, second, and third grid electrodes 15, 16, and 17 that are arranged sequentially along an electron beam path. Fixed focusing voltage is applied to the first and third grid electrodes 15 and 17 and dynamic voltage that varies depending upon the beam deflection is applied to the second grid electrode 16. Besides, the rear stage focusing electrode system 14 consists of a grid electrode 21 at a cathode side and a grid electrode 22 at a phosphor screen face. When the beam spot appears at the peripheral section of the phosphor screen face, the dynamic voltage applied to the grid electrode 16 of the front stage focusing lens system 13 is equivalent to the value of the focusing voltage and slowly decreases or increases it following the increase and decrease of deflection current.

Description

【発明の詳細な説明】 本発明は、陰極線管装置に関し、螢光体スクリーン面上
の全域において良好な解像度が得られるように構成した
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode ray tube device, which is constructed so that good resolution can be obtained over the entire area on the phosphor screen surface.

一般に、陰極線管装置の解像度は、螢光体スクリーン面
上に生じるビームスポット(輝点)の大きさおよび形状
に依存し、高い解像度を得るためには、ビームスポット
はできるだけ小さくかつ歪みのないことが重要である。
In general, the resolution of a cathode ray tube device depends on the size and shape of the beam spot (bright spot) produced on the phosphor screen surface. In order to obtain high resolution, the beam spot must be as small as possible and without distortion. is important.

また、カラー陰極線管装置では、3電子ビームによるビ
ームスポットが螢光体スクリーン面上の任意の一点で正
しく集中することが解像度の面で重要であり、このこと
から、インライン形力2−陰極管を使用するものでは、
水平偏向磁界分布を第1図(a)に示すようなビンクッ
ション状に、そして、垂直偏向磁界分布を第1図(b)
に示すようなバレル状にそnぞれ歪ませることによって
、3電子ビーム1,2.3を自己集中(セルフコンバー
ジーンス)させている。
In addition, in a color cathode ray tube device, it is important from the viewpoint of resolution that the beam spot of the three electron beams be correctly concentrated at any one point on the phosphor screen surface. For those that use
The horizontal deflection magnetic field distribution is shaped like a bottle cushion as shown in Figure 1(a), and the vertical deflection magnetic field distribution is shaped like Figure 1(b).
The three electron beams 1, 2.3 are self-converged by distorting them into a barrel shape as shown in FIG.

しかし、このような自己集中方式を採用すると、3電子
ビームの集中性は良好となっても、3電子ビームの断面
形状がビーム偏向角の増大に伴って歪み、螢光体スクリ
ーン面上のとくに周辺部に現わnるビームスポットに第
2図に示す傾向の歪みを生じやすくなる。すなわち、螢
光体スクリーン面4の中央部に現わnるビームスポット
6が真円となるのに対し、周辺部に境われるビームスポ
ット6は、水平方向に長い楕円状の高輝度コア都7のほ
かに垂直方向に長い低輝度ヘイズ部8が付随するかたち
となり、とくにスクリーン周辺部において高い解像度を
侍ることか困難になる。
However, when such a self-concentration method is adopted, even though the concentration of the three electron beams is good, the cross-sectional shape of the three electron beams becomes distorted as the beam deflection angle increases, causing problems especially in areas on the phosphor screen surface. The beam spot appearing in the peripheral area tends to be distorted as shown in FIG. That is, the beam spot 6 appearing at the center of the phosphor screen surface 4 is a perfect circle, whereas the beam spot 6 bordering the periphery is a high-intensity core center 7 in the shape of a horizontally long ellipse. In addition to this, a vertically long low-luminance haze portion 8 is attached, making it difficult to maintain high resolution, especially at the periphery of the screen.

なお、前述のようなビームスポット形状の歪みは、自己
集中方式における偏向ヨークが3電子ビームに対して第
1図(a)、 (b)に示すような非斉一磁界を与える
ことに原因し、偏向磁界内の電子ビームは、電子銃内で
付与された集束を水平方向において弱めら九、垂直方向
において強めらnることになる。
Note that the above-mentioned distortion of the beam spot shape is caused by the deflection yoke in the self-focusing method applying a non-uniform magnetic field to the three electron beams as shown in FIGS. 1(a) and 1(b). The electron beam within the deflecting magnetic field will weaken the focusing provided in the electron gun in the horizontal direction and strengthen it in the vertical direction.

本発明は、前述のような従来の欠点を除去するためにな
さfLf!:、もので、つぎに本発明の陰極線管装置を
図面に示した実施例とともに説明する。
The present invention has been made to eliminate the drawbacks of the prior art as mentioned above. DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a cathode ray tube device according to the present invention will be explained along with embodiments shown in the drawings.

第3図において、電子銃9は、水平−直線上に配列さ九
た3個の陰極10’、1σつ 1σく制飾電極11、加
速電極系12、前段集束電極系13および後段集束電極
系14を有している。前段集束系13は、電子ビーム通
路に沿って順次に配列さnた第1.第2および第3の格
子電極15,16゜17からなっており、第4図に示す
ように、第1および第3の格子電極15.17は、各3
個の円形の電子ビーム通過孔18’、18’:18“’
; 19’。
In FIG. 3, the electron gun 9 includes three cathodes 10' arranged horizontally in a straight line, a 1σ decoration electrode 11, an acceleration electrode system 12, a front-stage focusing electrode system 13, and a rear-stage focusing electrode system. It has 14. The pre-focusing system 13 includes first and second focusing systems sequentially arranged along the electron beam path. It consists of second and third grid electrodes 15, 16, 17, and as shown in FIG.
circular electron beam passing holes 18', 18': 18"'
; 19'.

1cl’、  1cl’督有しており、第2の格子電極
16は、横長矩形状の電子ビーム通過孔20’、  2
 o″、20“′を有している。そして、第1および第
3の格子電極15.17には一足の集束電圧Vfoa 
 が与えられ、第2の格子電極16には、ビーム偏向量
に応じて変化するダイナミック電圧”foaが与えら扛
る。また、後段集束電極系14は、陰極側の格子市憶2
1と螢光体スクリーン面押の格子篭@!、22とからな
り、第5図に示すように両格子電極21゜22ij、そ
nぞn縦長矩形状の電子ビーム通過孔23’、2ゴ’、
  2 f’; 24’、  24”、  24”を有
している。そして、両格子電極21.22には、−足の
集束電圧Vfo。と陽極電圧■aがそnぞn与えらnる
0 前段集束レンズ系13の第2の格子電極16に与えられ
るダイナミック電圧”foaは、第6図に実線26また
は一点鎖線26で示すように偏向電流27が最大値また
は最小値となるとき、つまり、ビームスポットが螢光体
スクリーン面の周辺部に現われるとき、電圧Vfo。と
同一の値をとり、偏向電流の増減に伴って電圧■fo。
1cl', 1cl', and the second grid electrode 16 has horizontally long rectangular electron beam passing holes 20', 2
o'', 20''. The first and third grid electrodes 15.17 are provided with a focusing voltage Vfoa.
is applied to the second grating electrode 16, and a dynamic voltage "foa" that changes depending on the amount of beam deflection is applied to the second grating electrode 16.Furthermore, the latter focusing electrode system 14 is connected to the grating electrode 2 on the cathode side.
1 and a lattice basket with a phosphor screen embossed @! , 22, as shown in FIG.
2 f';24',24'',24''. A negative focusing voltage Vfo is applied to both grid electrodes 21 and 22. The dynamic voltage "foa" applied to the second grid electrode 16 of the front-stage focusing lens system 13 is as shown by the solid line 26 or the dashed-dotted line 26 in FIG. When the deflection current 27 reaches its maximum or minimum value, that is, when the beam spot appears at the periphery of the phosphor screen, it takes the same value as the voltage Vfo, and as the deflection current increases or decreases, the voltage Fo .

から徐々に下降または上昇する。したがって、ビームス
ポットが螢光体スクリーン面の周辺部に現われるとき、
第1゜第2および第3の格子電極15,16,17は同
一電位■fo0となり、 前段集束電極系13にはレン
ズ電界は生成さnず、第2の格子電極16の電子ビーム
通過孔20’、  20’、 2 d’−7)5軸非対
称であるにもかかわらず、軸非対称レンズ電界が生成さ
fLない。したがって、電子ビームはなんら集束作用を
受けることなく前段集束電極系13を通過し、後段集束
電極系14に達する。第6図に示すように後段集束電極
系14の陰極側および螢光体スクリーン面側の格子電極
21.22には、集束電圧Vfo。と陽極電圧■8とが
それぞれ印加さnるが、電子ビーム通過孔23’、 2
3’、 23“; 24’、 24’。
Gradually descend or rise from Therefore, when the beam spot appears at the periphery of the phosphor screen surface,
1st degree The second and third grid electrodes 15, 16, and 17 have the same potential fo0, no lens electric field is generated in the front-stage focusing electrode system 13, and the electron beam passing hole 20 of the second grid electrode 16 ', 20', 2 d'-7) Despite the five-axis asymmetry, no axis-asymmetric lens electric field is generated fL. Therefore, the electron beam passes through the front-stage focusing electrode system 13 without being subjected to any focusing effect, and reaches the rear-stage focusing electrode system 14. As shown in FIG. 6, a focusing voltage Vfo is applied to the grid electrodes 21 and 22 on the cathode side and the phosphor screen side of the post-focusing electrode system 14. and anode voltage (8) are applied respectively to the electron beam passing holes 23', 2.
3', 23";24',24'.

24す;縦長矩形状となっているため、格子電極21と
22との間で軸非対称レンズ28’、  28’、  
28’が生成さnlここを通過する電子ビームはそ扛ぞ
n軸非対称な集束作用を受ける。本実施例の後段集束電
極系14のように、電子ビーム通過孔を縦長矩形状ある
いは縦長楕円状とする場合に形成さnる軸非対称レンズ
は、電子ビームに対して水平方向で強く垂直方向で弱い
集束レンズとなる。このため、第7図に示すように電子
ビーム29が軸非対称レンズ28を通過するとき、水平
方向で強く、垂直方向で弱い集束作用力5働き、垂直方
向のフォーカス点30は水平方向のフォーカス点3.1
よりも遠い点に生じる。この現象は、偏向磁界内での電
子ビームが前述のようにビーム偏向量の増大に伴い水平
方向で弱く、垂直方向で強く集束さnるのを打ち消すよ
うに作用する。このため、水平方向に大きく偏向さnf
C,電子ビームによるビームスポラトラ真円に近づける
ことができ、螢光体スクリーン面のとくに左右両筒およ
び対角線上領域での解像度が高めら九る。
24; Since it has a vertically long rectangular shape, axially asymmetric lenses 28', 28',
The electron beam generated by 28' and passing through it is subjected to an asymmetric focusing action along the n axis. As in the latter stage focusing electrode system 14 of this embodiment, when the electron beam passing hole is formed into a vertically elongated rectangular shape or a vertically elongated elliptical shape, the axis asymmetric lens formed is strongly horizontal and vertical to the electron beam. It becomes a weak focusing lens. Therefore, as shown in FIG. 7, when the electron beam 29 passes through the axially asymmetric lens 28, the focusing force 5 is strong in the horizontal direction and weak in the vertical direction, and the focus point 30 in the vertical direction is the focus point in the horizontal direction. 3.1
occurs at a point further away than This phenomenon acts to cancel out the fact that the electron beam within the deflection magnetic field becomes weakly focused in the horizontal direction and strongly focused in the vertical direction as the amount of beam deflection increases, as described above. Therefore, nf is largely deflected in the horizontal direction.
C. The beam sporatra by the electron beam can be made close to a perfect circle, and the resolution of the phosphor screen surface, especially in the left and right cylinders and in the diagonal area, is increased.

−万、ビーム偏向量の減少に伴って電圧”foaがvf
Ooから下降または上昇すると、前段集束電極系13に
おいて一足の集束電圧■foo  が印加さ扛ている第
1および第3の格子電極15.17と、第2の格子電極
16との間に軸非対称レンズ電界が生成さnる。第2の
格子電極16の電子ビーム通過孔2σ、20j2fi第
4図のように横長矩形状あるいは横長楕円状にすると、
ここに生成さnる軸非対称レンズ32’、  31.3
2’は、3電子ビームに対して垂直方向で強く、水平方
向で弱い軸非対称集束作用を示す。しかも、この軸非対
称集束作用は、後段集束電極系14において形成さnる
軸非対称レンズ2 B’、  28’、  2♂め軸非
対称集束作用を、ビーム偏向角の減少に伴い徐々に打ち
消す傾向のものであるから、ダイナミック電圧”foa
 の信号波形25.26の最小値ないしは最大値を適切
に選ぶことにより、偏向電流が零すなわちビームスポッ
トが螢光体スクリーン面の中央部に現わnるときにも、
真円のビームスポラトラ得ることができる。
-10,000, as the amount of beam deflection decreases, the voltage "foa" changes to vf
When descending or rising from Oo, a focusing voltage foo of one foot is applied in the front-stage focusing electrode system 13. There is an axial asymmetry between the first and third grid electrodes 15, 17 and the second grid electrode 16. A lens electric field is generated. If the electron beam passing holes 2σ, 20j2fi of the second grid electrode 16 are made into a horizontally long rectangular shape or a horizontally long ellipse shape as shown in FIG.
The n-axis asymmetric lens 32', 31.3 generated here
2' exhibits an axially asymmetric focusing effect that is strong in the vertical direction and weak in the horizontal direction for the three electron beams. Moreover, this axially asymmetric focusing effect tends to gradually cancel out the axially asymmetric focusing effect of the second axially asymmetric lenses 2 B', 28', and 2♂ formed in the subsequent focusing electrode system 14 as the beam deflection angle decreases. Since it is a dynamic voltage “foa”
By appropriately selecting the minimum or maximum value of the signal waveforms 25 and 26, even when the deflection current is zero, that is, the beam spot appears at the center of the phosphor screen surface,
You can get a perfectly round beam sporatra.

以上のように、本発明を実施した陰極線管装置では、ビ
ーム偏向量に応じてダイナミック電圧V′f0゜を集束
電圧vfooから増減させることにより、螢光体スクリ
ーン面の中央部および周辺部で歪みノ少ない良好なビー
ムスポットが得られる。螢光体スクリーン面の上部中間
付近に現われるビームスポットの歪みはもともと軽微で
あるから、螢光体スクリーン面上の全域において非常に
鮮明な再生画像を得ることができる。
As described above, in the cathode ray tube device embodying the present invention, by increasing or decreasing the dynamic voltage V′f0° from the focusing voltage vfoo depending on the amount of beam deflection, distortion occurs in the central and peripheral portions of the phosphor screen surface. A good beam spot with a small number of beams can be obtained. Since the distortion of the beam spot appearing near the upper middle of the phosphor screen surface is originally slight, a very clear reproduced image can be obtained over the entire area on the phosphor screen surface.

以上は、本発明をインライン形カラー陰極線管装置に適
用した実施例につき述べたが、本発明の目的とするとこ
ろは、非斉−偏向磁界内で偏向作用を受けた電子ビーム
によるビームスポットの形状歪みを補正する点にあり、
1ビームまたは2ビームで動作する陰極線管装置にも前
述と同様に適用できる。また、軸非対称形の電子ビーム
通過孔は、前段集束電極系の少なくとも一つの格子電極
および後段集束電極系の少なくとも一つの格子電極に設
ければよい。
The embodiments in which the present invention is applied to an in-line color cathode ray tube device have been described above, but the object of the present invention is to improve the shape of the beam spot caused by the electron beam deflected within the asymmetric deflection magnetic field. The point is to correct distortion,
The same can be applied to a cathode ray tube device that operates with one beam or two beams. Further, the axially asymmetric electron beam passage hole may be provided in at least one grid electrode of the front-stage focusing electrode system and at least one grid electrode of the rear-stage focusing electrode system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は非斉一偏向磁界分布と3電子
ビームとの関係を示す図、第2図は自己集中方式を採用
したカラー陰極線管装置の螢光体スクリーン面上に現わ
nるビームスポットの形状歪みを模式的に示す図、第3
図は本発明を実施したインライン形カラー陰極線管装置
の電子競部の側断面図、第4図は同右2−陰極線管装置
の前段集束電極系の斜視図、第6図は後段集束系の斜視
図、第6図は偏向電流とダイナミック電圧との関係を示
す信号波形図、第7図は後段集束電極系で形成さnる軸
非対称レンズによる電子ビームの集束状態を説明するた
めの図である。 10′、1o11Cf−・・・・・陰極、11・−・・
・・側脚電極、12・・・・・・加速電極系、13・・
・・・・前段集束電極系、14・・・・・・後段集束電
極系、15・・・・・・第1の格子電極、16・・・・
・・第2の格子電極、17・・・・・・第3の格子電極
、18′、18τ1Ef、19′、19′、11;20
’、 2o’: 2び・・・・・・電子ビーム通過孔、
Vfo。 第1図 (a) 第2図 第3図 第451I ll゛″ tδ”ts’ts 第5図 1
Figures 1 (a) and (b) are diagrams showing the relationship between the non-uniform deflection magnetic field distribution and three electron beams, and Figure 2 is a diagram showing the relationship between the non-uniform deflection magnetic field distribution and three electron beams, and Figure 2 shows the relationship between the non-uniform deflection magnetic field distribution and the three electron beams. Figure 3 schematically showing shape distortion of a rolling beam spot.
The figure is a side cross-sectional view of the electronic control section of an in-line color cathode ray tube device in which the present invention is implemented, FIG. 6 is a signal waveform diagram showing the relationship between deflection current and dynamic voltage, and FIG. 7 is a diagram for explaining the focusing state of the electron beam by the n-axis asymmetric lens formed in the subsequent focusing electrode system. . 10', 1o11Cf-... cathode, 11...
...Side leg electrode, 12...Acceleration electrode system, 13...
...Front-stage focusing electrode system, 14... Back-stage focusing electrode system, 15... First grid electrode, 16...
...Second grid electrode, 17...Third grid electrode, 18', 18τ1Ef, 19', 19', 11; 20
', 2o': 2bi...electron beam passing hole,
Vfo. Figure 1 (a) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電子ビーム集束電極系が前段集束電極系と後段集束電極
系とからなり、前記前段集束電極系が第1、第2および
第3の格子電極を有し、前記第1および第3の格子電極
に一定の集束電圧が印加され、前記第2の格子電極には
ビーム偏向量の変化に伴って前記一定の集束電圧から徐
々に下降または上昇するダイナミック電圧が印加され、
前記前段集束電極系の少なくとも一つの格子電極および
前記後段集束電極系の少なくとも一つの格子電極は相互
に直交、する方向に長い軸非対称形の電子ビーム通過孔
を有していることを特徴とする陰極線管装置。
The electron beam focusing electrode system includes a front-stage focusing electrode system and a rear-stage focusing electrode system, and the front-stage focusing electrode system has first, second, and third grid electrodes, and the first and third grid electrodes are connected to the first and third grid electrodes. A constant focusing voltage is applied, and a dynamic voltage is applied to the second grid electrode, which gradually decreases or increases from the constant focusing voltage as the amount of beam deflection changes,
At least one grid electrode of the front-stage focusing electrode system and at least one grid electrode of the second-stage focusing electrode system have an axis-asymmetric electron beam passage hole that is long in a direction orthogonal to each other. Cathode ray tube device.
JP8091782A 1982-05-13 1982-05-13 Cathode-ray tube device Granted JPS58197639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8091782A JPS58197639A (en) 1982-05-13 1982-05-13 Cathode-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8091782A JPS58197639A (en) 1982-05-13 1982-05-13 Cathode-ray tube device

Publications (2)

Publication Number Publication Date
JPS58197639A true JPS58197639A (en) 1983-11-17
JPH021340B2 JPH021340B2 (en) 1990-01-11

Family

ID=13731752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8091782A Granted JPS58197639A (en) 1982-05-13 1982-05-13 Cathode-ray tube device

Country Status (1)

Country Link
JP (1) JPS58197639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251608A2 (en) * 1986-06-26 1988-01-07 Rca Licensing Corporation Color cathode ray tube display system and electron gun therefor
US4728859A (en) * 1985-09-09 1988-03-01 Matsushita Electronics Corporation In-line electron gun

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150961A (en) * 1978-05-19 1979-11-27 Hitachi Ltd Electronic gun for cathode-ray tube
JPS563949A (en) * 1979-06-22 1981-01-16 Toshiba Corp Color picture tube device
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150961A (en) * 1978-05-19 1979-11-27 Hitachi Ltd Electronic gun for cathode-ray tube
JPS563949A (en) * 1979-06-22 1981-01-16 Toshiba Corp Color picture tube device
JPS5750748A (en) * 1980-09-11 1982-03-25 Matsushita Electronics Corp Cathode ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728859A (en) * 1985-09-09 1988-03-01 Matsushita Electronics Corporation In-line electron gun
EP0251608A2 (en) * 1986-06-26 1988-01-07 Rca Licensing Corporation Color cathode ray tube display system and electron gun therefor

Also Published As

Publication number Publication date
JPH021340B2 (en) 1990-01-11

Similar Documents

Publication Publication Date Title
JPS61250933A (en) Cathode-ray tube
US5300854A (en) Electrode structure for an electron gun for a cathode ray tube
JPS5953656B2 (en) cathode ray tube equipment
JPS58192252A (en) Cathode-ray tube device
JPH021341B2 (en)
KR100230435B1 (en) Electron gun for color cathode ray-tube
JP2686225B2 (en) Electron gun for color cathode ray tube
US6825621B2 (en) Electron gun for color cathode ray tube
JPS58197639A (en) Cathode-ray tube device
JPH04212242A (en) Multiple focusing type electron gun for cathode-ray tube
JPH067145U (en) Electron gun for color cathode ray tube
JPH0138348B2 (en)
JPH0560211B2 (en)
KR100294500B1 (en) electronic gun for cathode ray tube
KR0158464B1 (en) Electron gun for color cathode ray tube
JPH06275212A (en) Electron gun for cathode-ray tube
KR940005270Y1 (en) Electron gun for c-crt
JP3310518B2 (en) Electron gun for color cathode ray tube
KR940005268Y1 (en) Electron gun for c-crt
JPH0161222B2 (en)
KR950000651B1 (en) Electron gun for color cathode-ray tube
JPH021342B2 (en)
KR100332099B1 (en) Electronic Gun of In-Line type in CRT
JPH0216536B2 (en)
JPS58818B2 (en) color picture tube